Oris sodobne kozmologije, IV. predavanje: Kozmologija ob koncu 20. in na začetku 21. stoletja

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Oris sodobne kozmologije, IV. predavanje: Kozmologija ob koncu 20. in na začetku 21. stoletja"

Transcript

1 Oris sodobne kozmologije, IV. predavanje: Kozmologija ob koncu 20. in na začetku 21. stoletja Marko Uršič, Sodobna filozofska kozmologija, FF, 2016

2 Ponovitev: Einstein in Hubble, utemeljitelja sodobne kozmologije Sodobni, standardni kozmološki model, splošno znan kot model prapoka (ali velikega poka, Big Bang), v katerem se vesolje razvija, se je začel oblikovati na osnovi: 1. Einsteinove splošne teorije relativnosti (GTR, 1915) in Friedmannovih dinamičnih modelov prostora-časa (1922), slednje sta dopolnila Robertson in Walker (FRW-modeli); in 2. Hubblovega odkritja raztezanja vesolja (rdeči premiki spektrov galaksij); to je prvo kozmološko dejstvo, ki ga je Hubble izrazil z zakonom: v = H 0. d (Hubblov zakon, 1929). Albert Einstein, 1920 Edwin Hubble pri teleskopu na gori Wilson, 1930

3 Ponovitev: trije klasični modeli raztezanja vesolja Aleksander Friedmann ( ) evklidski kozmos (Ω = 1) Ruski matematik Friedmann je leta 1922 odkril takšne rešitve Einsteinovih enačb polja, pri katerih se (vesoljni) prostor v času razteza in s tem predvidel dinamične modele vesolja. Razvoj vesolja (slika zgoraj) in tudi optika videnja objektov v njem (slika desno) sta v teh modelih katerih metriko sta dopolnila Robertson in Walker, 1935 odvisna od razmerja (Ω) med dejansko in kritično povprečno gostoto vesolja. Kot kaže, je vesolje znotraj našega horizonta ravno (Ω = 1). Trije FRW-modeli so idealni v tem smislu, da: 1) predpostavljajo globalno homogenost vesolja; 2) da je v njih kozmološka konstanta (Einstein, 1917) enaka nič. Najnovejše meritve (od 1998 dalje) geometrije vesolja s pomočjo supernov pa kažejo, da (2) verjetno ne drži, a tudi (1) je zgolj induktivna generalizacija, ki ima znotraj našega horizonta podporo v izotropiji prasevanja. sferični kozmos (Ω > 1) hiperbolični kozmos (Ω < 1) Vir slik: Scientific American, 1999.

4 Novi scenariji (tj. variante standardnega modela) razvoja vesolja Vesolje je velikansko, razsrediščeno in v našem kozmološkem obdobju skoraj prazno: med galaksijami, vesoljnimi atomi, so velikanske razdalje, ki se še, celo pospešeno, povečujejo. Raziskave rdečih sprektralnih premikov supernov iz drugih galaksij po letu 1998 (gl. večjo sliko desno) namreč kažejo, da se vesolje razteza pospešeno - ne pa pojemajoče, kot so predvidevali zdaj že polpretekli Friedmannovi modeli. To pa pomeni, da v vesolju vseskozi deluje neka antigravitacija ( sila vakuuma, temna energija?), ki naj bi, kot kažejo meritve, na razdalji 5 milijard SL, tj. pred 5 milijardami let (gl. manjšo sliko desno), prevzela pobudo in na globalni ravni prevladala nad gravitacijo (ki pa lokalno seveda še vedno trdno veže zvezde v galaksije in galaksije v jate). Einsteinova največja zmota, uvedba kozmološke konstante, je spet aktualna! Vir slike: Scientific American, februar, 2004

5 Globinsko kartiranje vesolja s pomočjo eksplozij supernov in gravitacijskega lečenja Hubblov posnetek supernove SN Refsdal ( ), imenovane po norveškem astrofiziku, ki je prvi 1964 predlagal merjenje hitrosti raztezanja daljnega (=zgodnjega) vesolja s pomočjo gravitacijskega lečenja žarkov iz supernov. Skica na desni kaže gravitacijsko lečenje svetlobe z neke daljne galaksije, ki se ukrivlja v gravitacijskem polju bližjih galaksij in prihaja na Zemljo s časovnimi zamiki: le-ti omogočajo globinsko kartiranje vesolja. (Vir: NASA in članek dr. Maruše Bradač v Delu, )

6 Napihnjenje ( inflacija ) vesolja kot dopolnitev standardnega modela Hipoteza kozmičnega napihnjenja ali inflacije (Alan Guth, 1980) pravi: V zelo kratkem časovnem intervalu, v delčku prve sekunde po prapoku (tj. po domnevni prvotni singularnosti), od t K do 10-32, se vesolje napihne za velikanski faktor Vzrok tega fantastičnega dogodka naj bi bila energija (kvantnega) vakuuma, ki naj bi se sprostila v obliki fazne spremembe pri lomu simetrije med močno jedrsko in elektrošibko silo. Napihnjenje naj bi se zgodilo silno pospešeno in vesolje naj bi se razširilo nadsvetlobno hitro (širil naj bi se namreč sam prostor-čas). Nekateri menijo, da prav temu silnemu dogodku, vesoljnemu napihnjenju bolj ustreza izraz prapok kot domnevni prvotni singularnosti. (Treba pa ju je razlikovati.) Vir slike: Joseph Silk, A Short History of the Universe, 1997 V inflacijskem univerzumu je prostor, ki se je razširil v času inflacije, postal večji od horizonta (rumeni krog), tj. razdalje, ki jo je svetloba prepotovala od prapoka [do danes]. Iz tega sledi, da je vesolje mnogo večje, kot ga lahko vidimo [v našem kozmološkem času].

7 Hipoteza o napihnjenju vesolja rešuje probleme standardnega modela Vir slike: Joseph Silk, A Short History of the Universe, Slika pokaže, kako inflacija predvideva takšno geometrijo vidnega vesolja [tj. vesolja znotraj našega lokalnega horizonta, Hubblove sfere], ki je zelo blizu geometriji evklidskega [tj. ravnega ] prostora (Silk, str. 82, [op.] M.U). Kajti: 1. napihnjenje izravna prostor in tako razreši problem ravnosti 2. napihnjenje homogenizira prostor in tako razreši problem horizonta oz. izotropije neba (predvsem prasevanja). Torej: Če je napihnjenje res bilo, potem razrešuje probleme standardnega modela. Ostaja pa odprto vprašanje, ali je hipoteza napihnjenja sploh resnična. Energije (frekvence sevanj), ki so takrat delovale, so prevelike, da bi jih lahko simulirali in proučevali v današnjih pospeševalnikih delcev. Pač pa kozmologi poskušajo empirično pokazati, da je napihnjenje vtisnilo svoj pečat v prasevanje ( gl. poznejša slida: zvočni valovi pri napihnjenju).

8 Prasevanje kot najstarejši vesoljni fosil Prasevanje, ki prihaja s Hubblove sfere (tj. našega vesoljnega horizonta, ki je oddaljen od nas ~ 14 milijard svetlobnih let), je najstarejši vesoljni fosil, namreč odtis prvotne strukture oz. energetske zrnatosti zgodnjega vesolja. Na sliki vidimo to zrnatost na globusu prasevanja, posneto z raziskovalnim satelitom WMAP (in pozneje umetno obarvano). Prasevanje je namreč skoraj popolnoma izotropno (tj. v vseh smereh enako) s temperaturo T 3ºK, vendar so na njem opazne majhne temperaturne oziroma energetske razlike (± 10-4 ºK). Na najstarejšem vesoljnem fosilu so torej zrnati odtisi prvotnih razlik v temperaturi prasevanja, ki so nekakšna semena, iz katerih pozneje nastanejo makrostrukture: galaktične jate, galaksije itd. Izvor teh razlik so kvantne fluktuacije (nihanja) že v prvi sekundi po prapoku.

9 Katere so največje znane strukture ( makrostrukture ) v vesolju? Sodobne astronomske meritve s pomočjo zvezd supernov (kot standardnih svetilnikov ), najsvetlejših eksplozij v drugih galaksijah omogočajo globinsko kartiranje vesolja. Čeprav je vesolje globalno, tj. na horizontu (Hubblovi sferi), skoraj povsem izotropno in homogeno, kar je razvidno iz prasevanja, pa se galaktične jate in nadjate strukturirajo v velikanske zidove ali opne (pajčevinaste strukture na sliki: vsaka rumena pikica predstavlja galaksijo); te strukture so tudi večje od milijarde SL, med njimi pa so ogromne praznine, mehurji. Na sliki vidimo dve doslej največji raziskavi vesoljnih makrostruktur : prva, harvardska raziskava (do 1986) je odkrila prvi Veliki zid (Great Wall); druga raziskava, Sloan Digital Sky Survey, pa je segla še mnogo globlje in do leta 2001 kartirala več kot milijon galaksij do razdalje dveh milijard SL ter odkrila še veliko večje zidove. Vir slike: Scientific American, februar, 2004

10 Kako so nastale makrostrukture v vesolju? Kako se je v razvoju vesolja snov zbrala v te makrostrukture? Kozmologi poskušajo najti odgovor na to vprašanje predvsem na dva načina: 1. z opazovanjem prasevanja, majhnih razlik v njegovi siceršnji izotropiji ( granulacija prasevanja); 2. z računalniškimi simulacijami raztezajoče se, prvotno homogene snovi (gl. slike). Na slikah vidimo računalniško simulacijo štirih časovnih presekov raztezajočega se vesolja: po 120 milijonih let, po 490 milijonih let, po 1,2 milijarde let in po 13,7 milijardah let (danes). Vir slike: Scientific American, februar, 2004

11 »Virtualno vesolje«ponazarja nastajanje makrostruktur Projekt Illustris (2013): računalniška simulacija nastajanja makrostruktur, tj. galaktičnih»grozdov«, iz katerih so pozneje nastale jate galaksij. V tem procesu imata pomembno vlogo»temna snov«in»temna energija«, ki po izračunih tvorita 95% celotne vesoljne maseenergije, tj. vidna svetla snov tvori samo 5% vsega. (Vir: MIT in članek Radovana Kozmosa v Delu, maja 2014).

12 Ali je mogoče z opazovanjem prasevanja empirično preveriti hipotezo vesoljnega napihnjenja (inflacije)? Satelit, imenovan WMAP (Wilkinson Microwave Anisotropy Probe) od leta 2001 dalje raziskuje fino strukturo prasevanja, tj. njegovo anizotropijo oziroma (majhne) odklone od globalne izotropije, ki so sledi prvotnih zrn, iz katerih so se razvile makrostrukture. Dosedanja poročila posredno in vsaj delno potrjujejo teorijo napihnjenja na tri načine: 1. Povprečna kotna velikost te zrnatosti (okrog 1 ) je v skladu s teoretskim predvidevanjem, kajti njen izvor naj bi bile (izračunane) kvantne fluktuacije v inflatornem polju, ki naj bi povzročile zvočne valove <acoustic waves>, tj. zgoščine in razredčine v plazmi ( ognjeni krogli zgodnjega vesolja), ki se ob koncu stanja plazme vtisnejo v fotonsko prasevanje. 2. Izmerjeni zvočni valovi na prasevanju so skalno invariantni <scale invariant>, tj., amplitude valov se ne razlikujejo pri večjih ali manjših valovnih dolžinah, kar tudi predvideva teorija napihnjenja. 3. Gl. naslednji slide Vir slike: Wayne Hu & Martin White, The Cosmic Symphony Scientific American, februar 2004

13 Vesoljne harmonije 3. Zvočni valovi imajo obliko sinhroniziranih harmoničnih nihanj, iz česar lahko sklepamo, da so nastali tako rekoč v istem trenutku (inflacija je trajala en sam hip, s). Hu & White povzemata: Inflacija, hitro raztezanje vesolja v prvih trenutkih po prapoku, je sprožila zvočne valove, ki so izmenoma zgostili in razredčili prvotno plazmo. Potem ko se je vesolje dovolj ohladilo, da so lahko nastali nevtralni atomi [tj let po prapoku, ob koncu stanja plazme], je bil vzorec variacij gostote, ki so ga povzročili zvočni valovi, zamrznjen v prasevanje. (Scientific American, 2004/II, str. 34, podč. M.U.) Ob tem optimistično ugotavljata: Evidenca, ki podpira teorijo inflacije, je zdaj torej najdena v podrobnem vzorcu zvočnih valov v prasevanju. (Ibid.) Morda res, vendar ta evidenca še ni dovolj znanstveno prepričljiva za vse kozmologe, je pa filozofsko lepa (pitagorejci ). Te raziskave spadajo v kvantno kozmologijo. Brian Greene pravi : Po inflacijski teoriji več kot 100 milijard galaksij, ki svetijo v vesolju kot nebeški diamanti, ni nič drugega kot kvantna mehanika, vtisnjena v celotno nebo. Zame ta ugotovitev predstavlja eno največjih čudes sodobne znanstvene dobe. (Tkanina vesolja, 364) Vir slike: Wayne Hu & Martin White, The Cosmic Symphony. Scientific American, februar 2004

14 Glavni teoretski problem sodobnega kozmološkega modela: neusklajenost teorije relativnosti in kvantne mehanike V standardnem kozmološkem modelu nastopata Einsteinova teorija gravitacije (GTR) in kvantna mehanika, ki pa (še) nista teoretsko kompatibilni Med drugim je tudi to razlog, da je sam prapok v strogem pomenu le domneven (kot singularnost?), saj se znanstvena razlaga konča pri Planckovem času, pri s.

15 Sedem možnih odgovorov (inter alia) na vprašanje: Zakaj je vesolje tako velikansko in razsrediščeno? 1. Vprašanje zakaj je za vesolje nesmiselno, saj dejansko ni nobenega zadostnega razloga za takšno velikost oziroma razsrediščenost vesolja tako pač JE. (Ampak s tem se razum težko sprijazni.) 2. V multiverzumu (brezštevilnem mnoštvu svetov) se že najde ravno pravšnje, namreč takšno vesolje, kot je naše, druga so pač manjša morda pa celo večja? ( Antropično načelo, evolucija brez smotra.) 3. Naše vesolje je nujno tako veliko v prostoru-času, zato da lahko iz sebe porodi en sam samcat otok zavesti : našo zemljico, človeško telo, možgane. (Ali s tem predpostavljamo smotrnost vesolja?) 4. Neskončnost in razsrediščenost vesolja sta lepši in boljši od končnosti in središčnosti. (Klasiki se s tem nikakor ne bi strinjali, pač pa je oceansko občutje ugajalo Brunu in romantikom.) 5. Vesolje mora biti neskončno zaradi naše svobodne volje/zavesti, da bi imela na razpolago neomejeno količino prostora-časa le kako naj bo svobodna, če naleti na mejo? (Ali je brezmejnost res bistvo svobode?) 6. Vesolje sploh ni zares tako neznansko veliko takšnega zgolj vidimo zaradi neke iluzije, npr. zrcaljenja prostorskih replik v času ipd. (Tudi če bi bilo to globalno res, bi bilo vesolje še vedno velikansko.) 7. Edino, kar je v vesolju resnično pomembno, je duša in/ali duh, zanju pa bližina in daljava pomenita nekaj povsem drugega, saj sta v Enem, edinem pravem središču vsega, kar je. (Da, morda, morda res )

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

SEMINAR - 4. LETNIK. Veliki pok. Avtor: Daša Rozmus. Mentor: dr. Anže Slosar in prof. dr. Tomaž Zwitter. Ljubljana, Marec 2011

SEMINAR - 4. LETNIK. Veliki pok. Avtor: Daša Rozmus. Mentor: dr. Anže Slosar in prof. dr. Tomaž Zwitter. Ljubljana, Marec 2011 SEMINAR - 4. LETNIK Veliki pok Avtor: Daša Rozmus Mentor: dr. Anže Slosar in prof. dr. Tomaž Zwitter Ljubljana, Marec 2011 Povzetek Že stoletja pred našim štetjem so se ljudje spraševali kaj nas obdaja,

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice

GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Moderna fizika - seminarska naloga GALAKSIJE OPAZOVANJE GALAKSIJ, izračuni, posledice Domžale, dne 20. 2. 2004 Marjan Grilj, 3.l. fizika vsš, FMF Vsebina: (1) Osnove: (a) opazovanje (b) določanje oddaljenosti

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

I. del: Dinamika prozornega vesolja Vsebino občasno dopolnim! Če nimate radi matematike, preberite prvih 16 strani in zaključek.

I. del: Dinamika prozornega vesolja Vsebino občasno dopolnim! Če nimate radi matematike, preberite prvih 16 strani in zaključek. I. del: Dinamika prozornega vesolja Vsebino občasno dopolnim! Če nimate radi matematike, preberite prvih 16 strani in zaključek. Dinamika vesolja krivulje velikosti vesolja v odvisnosti od časa, glede

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...

1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Odnos med subjektom in objektom, med človekom in naravo v moderni znanosti

Odnos med subjektom in objektom, med človekom in naravo v moderni znanosti Odnos med subjektom in objektom, med človekom in naravo v moderni znanosti Trije primeri iz fizike: I. vloga opazovalca (referenčnega okvira) v Einsteinovi relativnostni teoriji II. III. pomen zavesti

Διαβάστε περισσότερα

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25

CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25 1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Svetovno leto fizike: POMEN EINSTEINOVIH ODKRITIJ. R ik R 2 g ik = 8πG c 4 T ik E = mc 2 ALI ZGODBA O KONCU FIZIKE. R. Krivec Institut J.

Svetovno leto fizike: POMEN EINSTEINOVIH ODKRITIJ. R ik R 2 g ik = 8πG c 4 T ik E = mc 2 ALI ZGODBA O KONCU FIZIKE. R. Krivec Institut J. 1 Svetovno leto fizike: POMEN EINSTEINOVIH ODKRITIJ K = hν W 0 R ik R 2 g ik = 8πG c 4 T ik E = mc 2 ALI ZGODBA O KONCU FIZIKE R. Krivec Institut J. Stefan 2 Domišljija je pomembnejša od znanja. Albert

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

Nebesna mehankarija Ozvezdja 20 Seznam ozvezdij 22 Nebesna krogla 25 Merjenje kotov na nebu 30 Sezonske karte 34 Prvi koraki 46

Nebesna mehankarija Ozvezdja 20 Seznam ozvezdij 22 Nebesna krogla 25 Merjenje kotov na nebu 30 Sezonske karte 34 Prvi koraki 46 Kazalo O daljnogledih in vsem, kar sodi zraven Daljnogled 2 Stojalo 8 Skrb za optiko 11 Ve;ni boj z vlago 15 Nebesna mehankarija Ozvezdja 20 Seznam ozvezdij 22 Nebesna krogla 25 Merjenje kotov na nebu

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev

IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja

Διαβάστε περισσότερα

Moderna fizika: nekaj zanimivosti in predstavitev predmeta

Moderna fizika: nekaj zanimivosti in predstavitev predmeta Moderna fizika: nekaj zanimivosti in predstavitev predmeta Peter Križan DELCI in SILE po nadstropjih DELCI in SILE, urejeni po NADSTROPJIH Velikost(m) Predmet Sila Smisel Strokovnjak 1021 kopice galaksij

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

ZEMLJOMOR ALI GEOCID ARGUMENTI ZA IN PROTI. Zakaj bi želeli razbiti Zemljo? Vi, vi nori, bedasti, manijak! ZAKAJ?

ZEMLJOMOR ALI GEOCID ARGUMENTI ZA IN PROTI. Zakaj bi želeli razbiti Zemljo? Vi, vi nori, bedasti, manijak! ZAKAJ? 1 Andrej Ivanuša, december 2010 ZEMLJOMOR ALI GEOCID Odločili ste se, da izvršite zemljomor ali, če rečemo s tujko, geocid. Torej, odločili ste se, da razstrelite Zemljo. Da jo razstavite na prafaktorje,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega

Izpeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega Izeljava Jensenove in Hölderjeve neenakosti ter neenakosti Minkowskega 1. Najosnovnejše o konveksnih funkcijah Definicija. Naj bo X vektorski rostor in D X konveksna množica. Funkcija ϕ: D R je konveksna,

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

MATEMATIČNI IZRAZI V MAFIRA WIKIJU

MATEMATIČNI IZRAZI V MAFIRA WIKIJU I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

Oddelek za fiziko. Seminar - 4. letnik. Viskoznost vakuuma. Avtor: Rok Hribar. Mentor: prof. dr. Rudi Podgornik. Ljubljana, 16. marec 2011.

Oddelek za fiziko. Seminar - 4. letnik. Viskoznost vakuuma. Avtor: Rok Hribar. Mentor: prof. dr. Rudi Podgornik. Ljubljana, 16. marec 2011. Oddelek za fiziko Seminar - 4. letnik Viskoznost vakuuma Avtor: Rok Hribar Mentor: prof. dr. Rudi Podgornik Ljubljana, 16. marec 2011 Povzetek Casimirjeva sila je sila, ki deluje na nevtralne objekte in

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta

Matematika 1. Gabrijel Tomšič Bojan Orel Neža Mramor Kosta Matematika Gabrijel Tomšič Bojan Orel Neža Mramor Kosta 6. november 200 Poglavje 2 Zaporedja in številske vrste 2. Zaporedja 2.. Uvod Definicija 2... Zaporedje (a n ) = a, a 2,..., a n,... je predpis,

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

V meandru Eridana. Novice> Nove ocene o [tevilu planetov v na[i Galaksiji> vsaj 100 milijard jih je! ozvezdja Zajec za binokle

V meandru Eridana. Novice> Nove ocene o [tevilu planetov v na[i Galaksiji> vsaj 100 milijard jih je! ozvezdja Zajec za binokle Novice> Nove ocene o [tevilu planetov v na[i Galaksiji> vsaj 100 milijard jih je! januar 2013 [tevilka 1 cena 5,70 EUR V meandru Eridana ozvezdja Zajec za binokle intervju Laserski kazalniki kraljica znanosti

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Effect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek

Effect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe 8 Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe barvanih poliestrskih filamentnih tkanin po drgnjenju July November

Διαβάστε περισσότερα

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ

1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri

Διαβάστε περισσότερα

ARHITEKTURA DETAJL 1, 1:10

ARHITEKTURA DETAJL 1, 1:10 0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

1 Fibonaccijeva stevila

1 Fibonaccijeva stevila 1 Fibonaccijeva stevila Fibonaccijevo število F n, kjer je n N, lahko definiramo kot število načinov zapisa števila n kot vsoto sumandov, enakih 1 ali Na primer, število 4 lahko zapišemo v obliki naslednjih

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik

5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2

Snov v električnem polju. Električno polje dipola (prvi način) Prvi način: r + d 2 Snov v lktričnm polju lktrično polj ipola (prvi način) P P - Prvi način: z r = r Δr r = r Δr Δr Δ r - r r r r r r Δr rδr =, = 4πε r r 4πε r r r r = r cos, r r r = r cos. r Vlja: = cos, r r r r r = cos,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4) Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja

Διαβάστε περισσότερα

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil.

Spoznajmo sedaj definicijo in nekaj osnovnih primerov zaporedij števil. Zaporedja števil V matematiki in fiziki pogosto operiramo s približnimi vrednostmi neke količine. Pri numeričnemu računanju lahko npr. število π aproksimiramo s števili, ki imajo samo končno mnogo neničelnih

Διαβάστε περισσότερα