Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2"

Transcript

1 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2

2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά, θεμελιώδη, ή έσχατα, όπως αυτά της ύπαρξης, γνώσης, αξίας, αιτίας, γλώσσας και του νου. Ξεχωρίζει από άλλους τρόπους αντιμετώπισης των παραπάνω προβλημάτων, από την κριτική και γενικώς συστηματική προσέγγιση των θεμάτων και την οικοδόμησή της πάνω σε λογικές εξηγήσεις.

3 Βοηθάει στη διερεύνηση των ορίων της ανθρώπινης σκέψης, ακόμα και όταν δεν φτάνει σε κάποιο αποτέλεσμα ο επαγωγικός της προβληματισμός. Δεν θα ήταν λάθος να πούμε ότι φιλοσοφία είναι σκέψη πάνω στην ίδια τη σκέψη και τις δυνατότητες της. Σε τι χρησιμεύει; αναζητά απαντήσεις σε ερωτήματα που πιθανώς ξεπερνούν τις ανθρώπινες γνωστικές δυνατότητες, Μάς ανοίγει νέους δρόμους

4 Φιλόσοφοι της Αρχαϊκής εποχής Οι Βασικότεροι φιλόσοφοι της Αρχαϊκής εποχής ήταν: Θαλής ο Μιλήσιος Αναξίμανδρος Αναξιμένης Πυθαγόρας Ηράκλειτος

5 Οι απόψεις των φιλοσόφων Οι περισσότεροι προηγούμενοι φιλόσοφοι χρησιμοποιώντας τη λογική προσπαθούσαν να εξηγήσουν τα φυσικά φαινόμενα και να καταλάβουν πως δημιουργήθηκε ο κόσμος. Ο κάθε φιλόσοφος είχε τη δική του άποψη και υποστήριζε κάτι διαφορετικό.

6 Θαλής: Η άποψη του Θαλή, ήταν ότι όλα προέρχονταν από το νερό, αν και δεν είναι αρκετά κατανοητό τι εννοούσε με αυτό. Μάλλον πίστευε ότι όλοι οι οργανισμοί γεννιούνται από το υγρό στοιχείο. Οι φυσικοί φιλόσοφοι Αναξίμανδρος: Ο Αναξίμανδρος πίστευε ότι ο κόσμος μας είναι ένας από τους πολλούς, ότι όλοι αυτοί οι αμέτρητοι κόσμοι γεννιούνταν από κάτι που ο ίδιος ονόμαζε άπειρο. Αναξιμένης: Ο συγκεκριμένος φιλόσοφος θεωρούσε πως, πηγή ζωής και αφετηρία όλων των πραγμάτων ήταν ο αέρας. Ο Αναξιμένης γνώριζε τη θεωρία του Θαλή όμως, από πού προερχόταν το νερό; Αυτό που πίστευε εκείνος ήταν ότι το νερό δεν ήταν παρα συμπυκνωμένος αέρας. Οι πρώτοι Έλληνες φιλόσοφοι είναι γνωστοί ως «Φυσικοί φιλόσοφοι», επειδή ασχολήθηκαν προπάντων με τη φύση και τα φυσικά φαινόμενα.

7 Οι επιστήμες κατά την Αρχαϊκή εποχή Οι επιστήμες που αναπτύχθηκαν κατά την Αρχαϊκή εποχή ήταν: Γεωγραφία Μαθηματικά Μετεωρολογία

8 Γεωγραφία Η Γεωγραφία είναι η συστηματική σπουδή και περιγραφή τόσο της επιφάνειας της Γης, όσο και των φαινομένων που συμβαίνουν σ αυτή. Είναι η επιστήμη που μελετά και τις κατ επέκταση σχέσεις του ανθρώπου προς τη Γη. Η Γεωγραφία παρουσιάζει ασύγκριτο ενδιαφέρον και πολύ ανώτερο από τη "ξηρή" παράταξη και παράθεση ονομάτων και αριθμών. Και ακριβώς αυτή την αντίληψη σχημάτισαν πρώτοι οι Έλληνες, διακρίνοντας και πρώτοι τα ουσιώδη χαρακτηριστικά προσδιορίζοντάς τα με μία λέξη "Γεωγραφία.

9 Συνέχεια Η γεωγραφία έφτασε σε πολύ μεγάλη ακμή στον ελληνικό κόσμο (Ιστορία της ανθρωπότητας, 1970), οι Έλληνες είχαν ακριβή εικόνα της περιοχής της Μεσογείου. Ο Όμηρος στην Ιλιάδα μας δίνει λεπτομερή περιγραφή τόσο των Ελλήνων όσο και των συμμάχων των Τρώων. Πριν από το 500 π.χ. ο Ηρόδοτος αναφέρει τον Κωλαίο από την Σάμο ότι επισκέφτηκε εγκαταλελειμμένους εμπορικούς σταθμούς στην Ισπανία. Ο ίδιος συγγραφέας αναφέρει ότι ο τύραννος της Μιλήτου, Αρισταγόρας κατείχε μιαν ορειχάλκινη πλάκα που πάνω της απεικονίζονταν ξηρές και θάλασσες. (Ιστορία της ανθρωπότητας, 1970).

10 Η συμβολή των Ελλήνων στην επιστήμη της γεωγραφίας Η γεωγραφία είχε εισαχθεί από την εποχή του Ομήρου αναβαθμίστηκε σε επιστήμη την εποχή των Ιώνων φιλοσόφων. Αυτοί υπήρξαν οι πρώτοι που αντιλήφθηκαν το σχήμα της Γης και τη σχέση της με τον ήλιο και τα άλλα ουράνια σώματα. Οι φιλόσοφοι Θαλής, Αναξίμανδρος και Εκαταίος έδωσαν νόημα στη λέξη γεωγραφία ο πρώτος μίλησε για τη σφαιρικότητα της Γης ο δεύτερος έφτιαξε το πρώτο πίνακα του τότε γνωστού κόσμου ο τρίτος συνέγραψε το πρώτο γεωγραφικό έργο για την Ευρώπη και την Ασία (Λεοντίδου, 2011). Στη Σάμο, που την εποχή εκείνη πρέπει να θεωρείται σαν μέρος της Ιωνίας, ο Αρίσταρχος ανακάλυψε το ηλιοκεντρικό σύστημα δυο χιλιάδες χρόνια πριν τον Κοπέρνικο. Ο εν λόγω φιλόσοφος είχε θητεύσει στη σχολή του Αριστοτέλη στην Αθήνα, από τα πολλά έργα που είχε συγγράψει διασώζονται ελάχιστα αποσπάσματα, διατύπωσε πάντως με σαφήνεια ότι η Γη περιστρέφεται γύρω από τον ήλιο με αποτέλεσμα να κατηγορηθεί για ασέβεια.

11 Μαθηματικά Πολλοί αρχαίοι Έλληνες, είχαν σημαντική επίδραση στα μαθηματικά: Ο Θαλής αναφέρεται ως σπουδαίος γεωμέτρης. Κέρδισε μάλιστα τον θαυμασμό των Αιγυπτίων μετρώντας το ύψος των πυραμίδων, βασιζόμενος στο μήκος της σκιάς τους και της σκιάς μιας ράβδου που έμπηγε στο έδαφος. Γνωστό είναι το Θεώρημα του Θαλή που αναφέρει: όταν παράλληλες ευθείες τέμνονται από δύο άλλες ευθείες, τότε τα τμήματα μεταξύ των παραλλήλων που ορίζονται στην μια τέμνουσα, είναι ανάλογα. Ο Πυθαγόρας έμεινε γνωστός για το Πυθαγόρειο θεώρημά του, σύμφωνα με το οποίο σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας (η πλευρά απέναντι από την ορθή γωνία) είναι ίση με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών.

12 Μετεωρολογία Το ενδιαφέρον του ανθρώπου για την μελλοντική γνώση του καιρού είναι τόσο παλαιό, ώστε χάνεται στα βάθη των μυθολογικών αιώνων. Αρχαίοι λαοί όπως Ινδοί, Αιγύπτιοι, Ασσύριοι, Βαβυλώνιοι, κ.λπ. παρατηρούσαν τα διάφορα φαινόμενα και κατά τις δυνάμενες αντιλήψεις τους τα ενσωμάτωναν στις διάφορες δοξασίες τους. Όμως αυτές οι προβλέψεις που στηρίζονταν κυρίως στους αστέρες ήταν ατελείς. Ωστόσο, ήταν χρήσιμες στις κύριες τότε ασχολίες τους, στη γεωργία και την κτηνοτροφία. Οι αρχαίοι όμως Έλληνες που εξ ανάγκης βρέθηκαν, μετά τους τρεις κατακλυσμούς του αρχαίου ελλαδικού χώρου να αναπτύσσουν τη ναυτιλία όχι μόνο συμπλήρωναν τις παρατηρήσεις τους δίνοντας αλληγορικές ερμηνείες, αλλά έφθασαν και να τις κωδικοποιούν. Η Ελληνική Μυθολογία είναι πλούσια σε τέτοια παραδείγματα.

13 Οι Έλληνες φιλόσοφοι στη μετεωρολογία Από την μελέτη των κειμένων των αρχαίων Ελλήνων σοφών και μετεωρολόγων συνάγεται το συμπέρασμα ότι από τον 5ο αιώνα π.χ. οι Έλληνες συνέχισαν τις αντίστοιχες προσπάθειες των προαναφερομένων λαών. Συγκεκριμένα : Ο Αριστοτέλης, γύρω στο 350 π.χ., δημοσίευσε 4 ευμεγέθη βιβλία που τα ονόμασε "Μετεωρολογικά". Σ αυτό το πελώριο κατ έκταση και σπουδαιότητα έργο, συνέλεξε όλες τις γνωστές τότε παρατηρήσεις - γνώσεις όχι μόνο για τον καιρό αλλά και για την θάλασσα και τον ουρανό. Τα "Μετεωρολογικά" του Αριστοτέλη για δύο χιλιάδες χρόνια απετέλεσαν το πρότυπο διδακτικό βιβλίο της Μετεωρολογίας και όχι μόνο. Ο Θεόφραστος, μαθητής του Αριστοτέλη, έγραψε το βιβλίο των "Σημείων" που θα μπορούσε να χαρακτηριστεί συνδυασμός της τότε επιστήμης και παράδοσης. Περιείχε δε πολλούς κανόνες ειδικά για την πρόγνωση του καιρού, καθώς και μερικές ενδείξεις που τότε πίστευαν ότι μπορούσαν να φανερώσουν πως θα είναι ο καιρός το επόμενο έτος ή και ακόμα πιο μετά. Συγκεκριμένα το έργο αυτό περιελάμβανε 8 "σημεία" περί βροχής, 45 περί ανέμων, 50 για καταιγίδες, 24 για καλοκαιρίες, ακόμη και 7 για πρόγνωση ολόκληρου έτους (ετήσιες) και πέραν αυτού χρονικά.

14 ΤΕΛΟΣ «Δεν μπορώ να διδάξω κανέναν τίποτα, μπορώ μόνο να τον κάνω να σκεφτεί» Σωκράτης

Σύλλογος Αρχαίας Ελληνικής Φιλοσοφίας «σὺν Ἀθηνᾷ»

Σύλλογος Αρχαίας Ελληνικής Φιλοσοφίας «σὺν Ἀθηνᾷ» Σύλλογος Αρχαίας Ελληνικής Φιλοσοφίας «σὺν Ἀθηνᾷ» Τμήμα 5 ης -6 ης Δημοτικού Σάββατο, 27 Οκτωβρίου 2012 Θαλής ο Μιλήσιος 630/635 π.χ. 543 π.χ. Ο πρώτος φιλόσοφος! Ο Θαλής ο Μιλήσιος ανήκει στους προσωκρατικούς

Διαβάστε περισσότερα

Ποτάμια γεωμορφολογία. Ιστορικά στοιχεία

Ποτάμια γεωμορφολογία. Ιστορικά στοιχεία Ποτάμια γεωμορφολογία Ιστορικά στοιχεία Τι είναι Ποτάμια Γεωμορφολογία? Ποτάμια Γεωμορφολογία είναι η επιστήμη που μελετά το σχηματισμό-διαμόρφωση της επιφάνειας της Γης (ανάγλυφου) από το ρέον νερό και

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείμενο 1 Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σημαντικά βήματα για την ανάπτυξη των επιστημών,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012»

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ Χαρτογραφία στην Αρχαϊκή Εποχή και στο Ισλάμ Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Τάξη

Διαβάστε περισσότερα

Η φιλοσοφία και οι αρχαίοι Έλληνες φιλόσοφοι

Η φιλοσοφία και οι αρχαίοι Έλληνες φιλόσοφοι ύλλογος Αρχαίας Ελληνικής Υιλοσοφίας «σὺν Ἀθηνᾷ» Η φιλοσοφία και οι αρχαίοι Έλληνες φιλόσοφοι 12 ο Γυμνάσιο Θεσσαλονίκης 12 Δεκεμβρίου 2012 Κατερίνα Φατζοπούλου-Σζημαγιώργη Σί σημαίνει φιλοσοφία; Υιλώ

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Εργάστηκαν οι παρακάτω μαθητές της ομάδας «ΜΑΣΕ» της Γ' Γυμνασίου του 2 ου Γυμνασίου Πειραιά: ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Θαλής ο Μιλήσιος «Χαλεπόν Εαυτόν Γνώναι»

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ uiopasdfghjklzxcvbnmqwertyui 30/7/2016 ΣΩΤΗΡΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

Η ΦΥΣΙΚΗ. Ισαάκ Νεύτων

Η ΦΥΣΙΚΗ. Ισαάκ Νεύτων Η ΦΥΣΙΚΗ Η Κλασσική Φυσική έγινε μια ξεχωριστή επιστήμη όταν οι πρώιμοι μοντέρνοι Ευρωπαίοι χρησιμοποίησαν πειραματικές και μαθηματικές μεθόδους για να ανακαλύψουν αυτά που θεωρούνται σήμερα Νόμοι της

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 014-015 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α. ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια

ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια 18 ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια χαρακτηριστικά αποδίδουμε σε ένα πρόσωπο το οποίο λέμε

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 3 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Αναλογίες- Ομοιότητα- Μετρικές σχέσεις 15-0-16 Θέμα 1 ο : Α.i. Να διατυπώσετε το Πυθαγόρειο Θεώρημα. (5 μον.) ii. Πότε δύο ευθύγραμμα τμήματα

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

ελιές, παστά ψάρια, και σπάνια από κρέας, κυρίως στην Αθήνα.

ελιές, παστά ψάρια, και σπάνια από κρέας, κυρίως στην Αθήνα. Η τροφή της Αρχαϊκής οικογένειας ήταν αποτελούνταν από λαχανικά, ελιές, παστά ψάρια, και σπάνια από κρέας, κυρίως στην Αθήνα. Η ενδυμασία των Αρχαίων Ελλήνων ήταν κομψή, αλλά όχι εξεζητημένη. Το βασικό

Διαβάστε περισσότερα

Οι πυραμίδες είναι τάφοι για τους βασιλιάδες της Αιγύπτου, τους Φαραώ. Σκοπός της πυραμίδας ήταν να «στεγάσει» το νεκρό Φαραώ κατά τη διάρκεια της

Οι πυραμίδες είναι τάφοι για τους βασιλιάδες της Αιγύπτου, τους Φαραώ. Σκοπός της πυραμίδας ήταν να «στεγάσει» το νεκρό Φαραώ κατά τη διάρκεια της ΑΙΓΥΠΤΟΣ ΠΥΡΑΜΙΔΕΣ Οι πυραμίδες είναι τάφοι για τους βασιλιάδες της Αιγύπτου, τους Φαραώ. Σκοπός της πυραμίδας ήταν να «στεγάσει» το νεκρό Φαραώ κατά τη διάρκεια της μεταθανάτιας ζωής του. Οι αρχαιολόγοι

Διαβάστε περισσότερα

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας.

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας. Πρόλογος 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήματος. 3.Παρουσίαση του σκοπού της έρευνας. 4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 5.Διαμωρφωση της υπόθεσης της έρευνας. 6.Ανάλυση

Διαβάστε περισσότερα

Περί της Ταξινόμησης των Ειδών

Περί της Ταξινόμησης των Ειδών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά,

Διαβάστε περισσότερα

Η ΑΝΘΡΩΠΙΝΗ ΕΞΕΛΙΞΗ. Ερευνητική Εργασία Β' Τετραμήνου. Υπεύθυνη Καθηγήτρια: Μ.Φρονίμου

Η ΑΝΘΡΩΠΙΝΗ ΕΞΕΛΙΞΗ. Ερευνητική Εργασία Β' Τετραμήνου. Υπεύθυνη Καθηγήτρια: Μ.Φρονίμου Η ΑΝΘΡΩΠΙΝΗ ΕΞΕΛΙΞΗ Ερευνητική Εργασία Β' Τετραμήνου Υπεύθυνη Καθηγήτρια: Μ.Φρονίμου Στην επιστήμη της βιολογίας, με τον όρο εξέλιξη εννοείται η αλλαγή στις ιδιότητες ενός πληθυσμού οργανισμών στο πέρασμα

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΛΙΤΟΧΩΡΟΥ ΔΗΜΙΟΥΡΓΙΚΗ ΕΡΓΑΣΙΑ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΛΙΤΟΧΩΡΟΥ ΔΗΜΙΟΥΡΓΙΚΗ ΕΡΓΑΣΙΑ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΛΙΤΟΧΩΡΟΥ ΔΗΜΙΟΥΡΓΙΚΗ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: «ΕΜΠΕΙΡΙΣΜΟΣ ΚΑΙ ΑΡΙΣΤΟΤΕΛΗΣ» ΜΑΘΗΤΡΙΑ: ΠΡΙΑΜΗ ΒΑΓΙΑ, Β4 ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΝΤΑΒΑΡΟΣ ΧΡΗΣΤΟΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2016 17 Περιεχόμενα ΠΕΡΙΛΗΨΗ... 3 ΕΙΣΑΓΩΓΗ...

Διαβάστε περισσότερα

Κατακόρυφη πτώση σωμάτων

Κατακόρυφη πτώση σωμάτων Κατακόρυφη πτώση σωμάτων Τα ερωτήματα Δύο σώματα έχουν το ίδιο σχήμα και τις ίδιες διαστάσεις με το ένα να είναι βαρύτερο του άλλου. Την ίδια στιγμή τα δύο σώματα αφήνονται ελεύθερα να πέσουν μέσα στον

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ):

Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μετεωρολογία Κλιματολογία (ΘΕΩΡΙΑ): Μιχάλης Βραχνάκης Αναπληρωτής Καθηγητής ΤΕΙ Θεσσαλίας Σημειώσεις Μετεωρολογίας Κλιματολογίας Βύρων Τάντος Καθηγητής ΤΕΙ Σημειώσεις Μετεωρολογίας Κλιματολογίας ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

Οι επιστήµες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίµανδρο. Θαλής ο Μιλήσιος

Οι επιστήµες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίµανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείµενο 1 Οι επιστήµες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίµανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σηµαντικά βήµατα για την ανάπτυξη των επιστηµών,

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

Κατακόρυφη πτώση σωμάτων. Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015

Κατακόρυφη πτώση σωμάτων. Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015 Κατακόρυφη πτώση σωμάτων Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015 Α. Εισαγωγή Ερώτηση 1. Η τιμή της μάζας ενός σώματος πιστεύετε ότι συνοδεύει το σώμα εκ κατασκευής

Διαβάστε περισσότερα

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb. Βασικές έννοιες Τα σώματα μπορούν να αλληλεπιδράσουν ηλεκτρικά. Ο Θαλής ο Μιλήσιος παρατήρησε πρώτος την έλξη μικρών αντικειμένων από ήλεκτρο, αφού πρώτα τριφτεί σε ξηρό ύφασμα. Το φαινόμενο αυτό ονομάστηκε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΙΔΕΩΝ ΤΩΝ ΠΡΩΤΟΕΤΩΝ ΦΟΙΤΗΤΩΝ ΦΥΣΙΚΗΣ

ΣΤΑΤΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΙΔΕΩΝ ΤΩΝ ΠΡΩΤΟΕΤΩΝ ΦΟΙΤΗΤΩΝ ΦΥΣΙΚΗΣ ΣΤΑΤΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΙΔΕΩΝ ΤΩΝ ΠΡΩΤΟΕΤΩΝ ΦΟΙΤΗΤΩΝ ΦΥΣΙΚΗΣ Πτυχιακή Εργασία Πέτρου Μαρία Επιβλέπων Καθηγητής Βλάχος Λουκάς «Ο πιο σπουδαίος απλός παράγοντας που επηρεάζει τη μάθηση είναι

Διαβάστε περισσότερα

Θέματα Επιστημολογίας. Ρένια Γασπαράτου

Θέματα Επιστημολογίας. Ρένια Γασπαράτου Ρένια Γασπαράτου Στο σημερινό μάθημα: λίγη ιστορία της φιλοσοφίας (&) της επιστήμης ο παραδοσιακός ορισμός της γνώσης Οι απαρχές της φιλοσοφίας & της επιστήμης Ιωνία, 7ος-6ος αι. π.χ. Προ-σωκρατικοί (Θαλής,

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

Προσέγγιση της θεωρίας και της έρευνας στη Λογιστική. Εμπειρική Έρευνα Διατύπωση ερευνητικής υπόθεσης - Δειγματοληψία Μέθοδος ανάλυσης

Προσέγγιση της θεωρίας και της έρευνας στη Λογιστική. Εμπειρική Έρευνα Διατύπωση ερευνητικής υπόθεσης - Δειγματοληψία Μέθοδος ανάλυσης Προσέγγιση της θεωρίας και της έρευνας στη Λογιστική Εμπειρική Έρευνα Διατύπωση ερευνητικής υπόθεσης - Δειγματοληψία Μέθοδος ανάλυσης Πειραματικός σχεδιασμός Έρευνα μέσω ερωτηματολογίου Συνεντεύξεις Παρουσίαση

Διαβάστε περισσότερα

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Ρεαλιστικά Μαθηματικά Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 Θέµα Α1 Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 Α.1.1. Να γράψετε στο τετράδιό σας τα ονόµατα των φιλοσόφων (στήλη Α) και δίπλα την έννοια (στήλη Β) που συνδέεται µε τον καθένα: Α

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α1 Α.1.1. Να γράψετε στο τετράδιό σας τα ονόµατα των φιλοσόφων (στήλη Α) και δίπλα την έννοια (στήλη Β) που συνδέεται µε τον

Διαβάστε περισσότερα

Πρακτική άσκηση σε σχολεία της Δευτεροβάθμιας Εκπαίδευσης

Πρακτική άσκηση σε σχολεία της Δευτεροβάθμιας Εκπαίδευσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Μαθηματικών Πρακτική άσκηση σε σχολεία της Δευτεροβάθμιας Εκπαίδευσης Βασιλική Μάντζιου Α.Μ.: 1112201000125 1ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΔΙΔΑΣΚΑΛΙΑ

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ. ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ Β ΤΑΞΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ»

ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ. ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ Β ΤΑΞΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ» ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ Β ΤΑΞΗΣ ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ» Αριστοτέλης (384-322 π.χ.) Ο Αριστοτέλης γεννήθηκε το 384 π.χ. Ήταν γιος ενός θεραπευτή.

Διαβάστε περισσότερα

ΜΕΤΑΦΡΑΣΗ ΤΟΥ ΤΕΣΤ ΝΟΗΜΟΣΥΝΗΣ WPPSI-III UK

ΜΕΤΑΦΡΑΣΗ ΤΟΥ ΤΕΣΤ ΝΟΗΜΟΣΥΝΗΣ WPPSI-III UK ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΤΑΦΡΑΣΗ ΤΟΥ ΤΕΣΤ ΝΟΗΜΟΣΥΝΗΣ WPPSI-III UK ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: κος ΧΡΙΣΤΟΔΟΥΛΙΔΗΣ

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι

Διαβάστε περισσότερα

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο Εισηγητής: Μακρής Νικόλαος Γενικός τίτλος «Ένας μαγικός αλλά άγνωστος κόσμος» Ένας μαγικός αλλά

Διαβάστε περισσότερα

Ο όρος αστρονομία Αστρονομία

Ο όρος αστρονομία Αστρονομία Ο όρος αστρονομία Η Αστρονομία είναι η επιστήμη που ερευνά και εξετάζει όλα τα ουράνια σώματα καθώς και τις σχέσεις, κινήσεις και δυναμική αυτών. Αναφέρεται στην παρατήρηση και την ερμηνεία των φαινομένων

Διαβάστε περισσότερα

α) «άτοµα» β) «απεικάσµατα» γ) «επιθυµητικό». Μονάδες 12

α) «άτοµα» β) «απεικάσµατα» γ) «επιθυµητικό». Μονάδες 12 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004-05-25 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΟΜΑ Α Α Α.1 Να µεταφέρετε στο τετράδιό

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO

ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO 1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) Μαθηματικά αντικείμενα Έννοιες Ιδιότητες (θεωρήματα, πορίσματα) Σχέσεις Ενέργειες Διαδικασίες Αναπαραστάσεις

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις.

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις. ΕΙΣΑΓΩΓΗ Στα πλαίσια του προγράμματος περιβαλλοντικής Αγωγής, τη σχολική χρονιά 2012-2013, αποφασίσαμε με τους μαθητές του τμήματος Β 3 να ασχοληθούμε με κάτι που θα τους κέντριζε το ενδιαφέρον. Έτσι καταλήξαμε

Διαβάστε περισσότερα

Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου. Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70

Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου. Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70 Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70 Εκφράζουν πρακτικότητα/πραγματικότητα Οικοδομούν τον πραγματικό κόσμο. Εκφράζει

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Γενική Μετεωρολογία. Δρ. Χαράλαμπος Φείδας. Ανα[ληρωτής Καθηγητής Α.Π.Θ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Τομέας Μετεωρολογίας και Κλιματολογίας

Γενική Μετεωρολογία. Δρ. Χαράλαμπος Φείδας. Ανα[ληρωτής Καθηγητής Α.Π.Θ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Τομέας Μετεωρολογίας και Κλιματολογίας Γενική Μετεωρολογία Α.Π.Θ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Δρ. Χαράλαμπος Φείδας Ανα[ληρωτής Καθηγητής Τομέας Μετεωρολογίας και Κλιματολογίας Θεσσαλονίκη 2013 Εισαγωγή Σκοπός του μαθήματος είναι: η μελέτη του καιρού και

Διαβάστε περισσότερα

ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804)

ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804) ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ - ΣΥΝΤΟΜΗ ΠΕΡΙΛΗΨΗ ΤΗΣ ΓΝΩΣΙΟΘΕΩΡΙΑΣ ΤΟΥ 1 ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804) (Η σύντομη περίληψη που ακολουθεί και η επιλογή των αποσπασμάτων από την πραγματεία του Καντ για την ανθρώπινη γνώση,

Διαβάστε περισσότερα

Ουσίες και Χημικές Οντότητες Μια διδακτική προσέγγιση

Ουσίες και Χημικές Οντότητες Μια διδακτική προσέγγιση Ουσίες και Χημικές Οντότητες Μια διδακτική προσέγγιση Γενικά Οδηγίες για τον εκπαιδευτικό Η Χημεία είναι η επιστήμη που ασχολείται με τη μελέτη της σύστασης των ουσιών καθώς και με τις μεταβολές τους κατά

Διαβάστε περισσότερα

Λογιστική Θεωρία και Έρευνα

Λογιστική Θεωρία και Έρευνα Μεταπτυχιακό Πρόγραμμα στη Λογιστική & Χρηματοοικονομική Master of Science (MSc) in Accounting and Finance ΤΕΙ ΠΕΙΡΑΙΑ Λογιστική Θεωρία και Έρευνα Εισαγωγή στη Λογιστική Έρευνα Η αναζήτηση της αλήθειας

Διαβάστε περισσότερα

Φυσικές επιστήμες και περιβάλλον. Γιάννης Γονιδάκης, Βασίλης Ζούμπος, Γιώργος Μαρούδης, Σπύρος Χριστοδούλου

Φυσικές επιστήμες και περιβάλλον. Γιάννης Γονιδάκης, Βασίλης Ζούμπος, Γιώργος Μαρούδης, Σπύρος Χριστοδούλου * Φυσικές επιστήμες και περιβάλλον Γιάννης Γονιδάκης, Βασίλης Ζούμπος, Γιώργος Μαρούδης, Σπύρος Χριστοδούλου Περιβάλλον Το περιβάλλον στη σύγχρονη τέχνη, έργο αποτελούμενο από σύνολο διαφόρων στοιχείων

Διαβάστε περισσότερα

Γεωδαισία, Αστρονομία, Μαγνητικό Πεδίο. Ομάδα 2 : Δανάη Κόκκαλη-Θλιβερού, Κροκίδα Στεφανία, Μαρκιανίδου Ελένη, Μάρκου Σεμίνα, Ματιάτου Αλίκη

Γεωδαισία, Αστρονομία, Μαγνητικό Πεδίο. Ομάδα 2 : Δανάη Κόκκαλη-Θλιβερού, Κροκίδα Στεφανία, Μαρκιανίδου Ελένη, Μάρκου Σεμίνα, Ματιάτου Αλίκη Γεωδαισία, Αστρονομία, Μαγνητικό Πεδίο Ομάδα 2 : Δανάη Κόκκαλη-Θλιβερού, Κροκίδα Στεφανία, Μαρκιανίδου Ελένη, Μάρκου Σεμίνα, Ματιάτου Αλίκη Η ΓΕΩΔΑΙΣΙΑ ΣΤΗΝ ΑΡΧΑΙΑ ΕΛΛΑΔΑ Η γεωδαισία< γη + δαίω ή δαίομαι

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

Φάκελος Ερευνητικής Εργασίας Σχολείο:Γενικό Λύκειο Ζεφυρίου Τμήμα:Α 1-Α 2

Φάκελος Ερευνητικής Εργασίας Σχολείο:Γενικό Λύκειο Ζεφυρίου Τμήμα:Α 1-Α 2 Φάκελος Ερευνητικής Εργασίας Σχολείο:Γενικό Λύκειο Ζεφυρίου Τμήμα:Α 1-Α 2 Θέμα: Θρησκευτικές και επιστημονικές αντιλήψεις για την δημιουργία του σύμπαντος Ονοματεπώνυμα μαθητών: Αλέξανδρος Λάσκος, Γαρυφαλένια

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Λούντβιχ Βιτγκενστάιν

Λούντβιχ Βιτγκενστάιν Λούντβιχ Βιτγκενστάιν Ο τάφος του Βίτγκεντάιν στο Κέιμπριτζ κοσμείται από το ομοίωμα μιας ανεμόσκαλας: «Οι προτάσεις μου αποτελούν διευκρινίσεις, όταν αυτός που με καταλαβαίνει, τελικά τις αναγνωρίσει

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

8 Ασκήσεις Εμπέδωσης (Version )

8 Ασκήσεις Εμπέδωσης (Version ) 8 Ασκήσεις Εμπέδωσης (Version -9-05) Ε. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (A = ). Από τυχαίο σημείο Δ της ΑΓ φέρουμε ΔΕ ΒΓ. Να αποδείξετε ότι: i) τα τρίγωνα ΑΒΓ και ΔΕΓ είναι όμοια, ii) ΑΓ Ε = ΑΒ ΕΓ. Τα τρίγωνα

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά.

x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά. 1 x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά. Πριν λίγα χρόνια, όταν είχε έρθει στην Ελλάδα ο νομπελίστας χημικός Ilya Prigogine (πέθανε πρόσφατα), είχε

Διαβάστε περισσότερα

Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής)

Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής) Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής) Από την εποχή που οι άνθρωποι σήκωσαν τα μάτια τους προς τον ουρανό και παρατήρησαν τον Ήλιο (τον θεό τους) και τα αστέρια, είχαν την πεποίθηση ότι η Γη είναι

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΑ ΚΑΙ ΕΠΙΠΕΔΑ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο.

4.1 ΕΥΘΕΙΑ ΚΑΙ ΕΠΙΠΕΔΑ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο. ΜΕΡΟΣ 4.1 ΕΥΕΙ ΚΙ ΕΠΙΠΕ ΣΤΟ ΧΩΡΟ 367 4.1 ΕΥΕΙ ΚΙ ΕΠΙΠΕ ΣΤΟ ΧΩΡΟ Ευθείες και επίπεδα Οι πρωταρχικές έννοιες του χώρου είναι: το σημείο, η ευθεία και το επίπεδο. α Σχετικές θέσεις δύο επιπέδων Οι δυνατές

Διαβάστε περισσότερα

Π ρόγνωση καιρού λέγεται η διαδικασία πρόβλεψης των ατµοσφαιρικών συνθηκών που πρόκειται να επικρατήσουν σε µια συγκεκριµένη περιοχή, για κάποια ορισµένη µελλοντική χρονική στιγµή ή περίοδο. Στην ουσία

Διαβάστε περισσότερα

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την

66 Γεωμετρία Σχήμα 11.1: Το ΜΝ είναι κοινό μέτρο των και ΓΔ. τόσο ανατρεπτική που απαγόρευσαν να διαδοθεί αυτή η γνώση. Οταν μάλιστα ο *** παρέβει την Κεφάλαιο 11 Αναλογίες, Ομοιότητα Η έννοια του λόγου ορίζεται στο πέμπτο βιβλίο των Στοιχείων του Ευκλείδη ως εξής: Λόγος εστί δύο μεγεθών ομογενών η κατά πηλικότητά ποια σχέσις Λόγον έχειν προς άλληλα

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β Ημερήσιου και Γ Εσπερινού Γενικού Λυκείου II. Διαχείριση διδακτέας ύλης Κεφάλαιο 7 ο (Προτείνεται να διατεθούν 6 διδακτικές ώρες). 7.1-7.6 Στις παραγράφους αυτές γίνεται πρώτη

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

Σταυρούλα Πατσιομίτου

Σταυρούλα Πατσιομίτου Αριστοτέλους Μεταφυσικά 1078 α 30 Σταυρούλα Πατσιομίτου spatsiomitou@sch.gr Σ υνδέονται τα Μαθηματικά με την Αισθητική, με την Τέχνη, με την Τεχνολογία. Πόσο σημαντικό είναι να γνωρίζουμε την Ιστορία τους;

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα