Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια. Μαριάννα Μπιτσάνη Α 2"

Transcript

1 Η φιλοσοφία και οι επιστήμες στα Αρχαϊκά χρόνια Μαριάννα Μπιτσάνη Α 2

2 Τι είναι η φιλοσοφία; Φιλοσοφία είναι η επιστήμη που ασχολείται με: ερωτήματα προβλήματα ή απορίες που μπορούμε να αποκαλέσουμε οριακά, θεμελιώδη, ή έσχατα, όπως αυτά της ύπαρξης, γνώσης, αξίας, αιτίας, γλώσσας και του νου. Ξεχωρίζει από άλλους τρόπους αντιμετώπισης των παραπάνω προβλημάτων, από την κριτική και γενικώς συστηματική προσέγγιση των θεμάτων και την οικοδόμησή της πάνω σε λογικές εξηγήσεις.

3 Βοηθάει στη διερεύνηση των ορίων της ανθρώπινης σκέψης, ακόμα και όταν δεν φτάνει σε κάποιο αποτέλεσμα ο επαγωγικός της προβληματισμός. Δεν θα ήταν λάθος να πούμε ότι φιλοσοφία είναι σκέψη πάνω στην ίδια τη σκέψη και τις δυνατότητες της. Σε τι χρησιμεύει; αναζητά απαντήσεις σε ερωτήματα που πιθανώς ξεπερνούν τις ανθρώπινες γνωστικές δυνατότητες, Μάς ανοίγει νέους δρόμους

4 Φιλόσοφοι της Αρχαϊκής εποχής Οι Βασικότεροι φιλόσοφοι της Αρχαϊκής εποχής ήταν: Θαλής ο Μιλήσιος Αναξίμανδρος Αναξιμένης Πυθαγόρας Ηράκλειτος

5 Οι απόψεις των φιλοσόφων Οι περισσότεροι προηγούμενοι φιλόσοφοι χρησιμοποιώντας τη λογική προσπαθούσαν να εξηγήσουν τα φυσικά φαινόμενα και να καταλάβουν πως δημιουργήθηκε ο κόσμος. Ο κάθε φιλόσοφος είχε τη δική του άποψη και υποστήριζε κάτι διαφορετικό.

6 Θαλής: Η άποψη του Θαλή, ήταν ότι όλα προέρχονταν από το νερό, αν και δεν είναι αρκετά κατανοητό τι εννοούσε με αυτό. Μάλλον πίστευε ότι όλοι οι οργανισμοί γεννιούνται από το υγρό στοιχείο. Οι φυσικοί φιλόσοφοι Αναξίμανδρος: Ο Αναξίμανδρος πίστευε ότι ο κόσμος μας είναι ένας από τους πολλούς, ότι όλοι αυτοί οι αμέτρητοι κόσμοι γεννιούνταν από κάτι που ο ίδιος ονόμαζε άπειρο. Αναξιμένης: Ο συγκεκριμένος φιλόσοφος θεωρούσε πως, πηγή ζωής και αφετηρία όλων των πραγμάτων ήταν ο αέρας. Ο Αναξιμένης γνώριζε τη θεωρία του Θαλή όμως, από πού προερχόταν το νερό; Αυτό που πίστευε εκείνος ήταν ότι το νερό δεν ήταν παρα συμπυκνωμένος αέρας. Οι πρώτοι Έλληνες φιλόσοφοι είναι γνωστοί ως «Φυσικοί φιλόσοφοι», επειδή ασχολήθηκαν προπάντων με τη φύση και τα φυσικά φαινόμενα.

7 Οι επιστήμες κατά την Αρχαϊκή εποχή Οι επιστήμες που αναπτύχθηκαν κατά την Αρχαϊκή εποχή ήταν: Γεωγραφία Μαθηματικά Μετεωρολογία

8 Γεωγραφία Η Γεωγραφία είναι η συστηματική σπουδή και περιγραφή τόσο της επιφάνειας της Γης, όσο και των φαινομένων που συμβαίνουν σ αυτή. Είναι η επιστήμη που μελετά και τις κατ επέκταση σχέσεις του ανθρώπου προς τη Γη. Η Γεωγραφία παρουσιάζει ασύγκριτο ενδιαφέρον και πολύ ανώτερο από τη "ξηρή" παράταξη και παράθεση ονομάτων και αριθμών. Και ακριβώς αυτή την αντίληψη σχημάτισαν πρώτοι οι Έλληνες, διακρίνοντας και πρώτοι τα ουσιώδη χαρακτηριστικά προσδιορίζοντάς τα με μία λέξη "Γεωγραφία.

9 Συνέχεια Η γεωγραφία έφτασε σε πολύ μεγάλη ακμή στον ελληνικό κόσμο (Ιστορία της ανθρωπότητας, 1970), οι Έλληνες είχαν ακριβή εικόνα της περιοχής της Μεσογείου. Ο Όμηρος στην Ιλιάδα μας δίνει λεπτομερή περιγραφή τόσο των Ελλήνων όσο και των συμμάχων των Τρώων. Πριν από το 500 π.χ. ο Ηρόδοτος αναφέρει τον Κωλαίο από την Σάμο ότι επισκέφτηκε εγκαταλελειμμένους εμπορικούς σταθμούς στην Ισπανία. Ο ίδιος συγγραφέας αναφέρει ότι ο τύραννος της Μιλήτου, Αρισταγόρας κατείχε μιαν ορειχάλκινη πλάκα που πάνω της απεικονίζονταν ξηρές και θάλασσες. (Ιστορία της ανθρωπότητας, 1970).

10 Η συμβολή των Ελλήνων στην επιστήμη της γεωγραφίας Η γεωγραφία είχε εισαχθεί από την εποχή του Ομήρου αναβαθμίστηκε σε επιστήμη την εποχή των Ιώνων φιλοσόφων. Αυτοί υπήρξαν οι πρώτοι που αντιλήφθηκαν το σχήμα της Γης και τη σχέση της με τον ήλιο και τα άλλα ουράνια σώματα. Οι φιλόσοφοι Θαλής, Αναξίμανδρος και Εκαταίος έδωσαν νόημα στη λέξη γεωγραφία ο πρώτος μίλησε για τη σφαιρικότητα της Γης ο δεύτερος έφτιαξε το πρώτο πίνακα του τότε γνωστού κόσμου ο τρίτος συνέγραψε το πρώτο γεωγραφικό έργο για την Ευρώπη και την Ασία (Λεοντίδου, 2011). Στη Σάμο, που την εποχή εκείνη πρέπει να θεωρείται σαν μέρος της Ιωνίας, ο Αρίσταρχος ανακάλυψε το ηλιοκεντρικό σύστημα δυο χιλιάδες χρόνια πριν τον Κοπέρνικο. Ο εν λόγω φιλόσοφος είχε θητεύσει στη σχολή του Αριστοτέλη στην Αθήνα, από τα πολλά έργα που είχε συγγράψει διασώζονται ελάχιστα αποσπάσματα, διατύπωσε πάντως με σαφήνεια ότι η Γη περιστρέφεται γύρω από τον ήλιο με αποτέλεσμα να κατηγορηθεί για ασέβεια.

11 Μαθηματικά Πολλοί αρχαίοι Έλληνες, είχαν σημαντική επίδραση στα μαθηματικά: Ο Θαλής αναφέρεται ως σπουδαίος γεωμέτρης. Κέρδισε μάλιστα τον θαυμασμό των Αιγυπτίων μετρώντας το ύψος των πυραμίδων, βασιζόμενος στο μήκος της σκιάς τους και της σκιάς μιας ράβδου που έμπηγε στο έδαφος. Γνωστό είναι το Θεώρημα του Θαλή που αναφέρει: όταν παράλληλες ευθείες τέμνονται από δύο άλλες ευθείες, τότε τα τμήματα μεταξύ των παραλλήλων που ορίζονται στην μια τέμνουσα, είναι ανάλογα. Ο Πυθαγόρας έμεινε γνωστός για το Πυθαγόρειο θεώρημά του, σύμφωνα με το οποίο σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας (η πλευρά απέναντι από την ορθή γωνία) είναι ίση με το άθροισμα των τετραγώνων των δύο κάθετων πλευρών.

12 Μετεωρολογία Το ενδιαφέρον του ανθρώπου για την μελλοντική γνώση του καιρού είναι τόσο παλαιό, ώστε χάνεται στα βάθη των μυθολογικών αιώνων. Αρχαίοι λαοί όπως Ινδοί, Αιγύπτιοι, Ασσύριοι, Βαβυλώνιοι, κ.λπ. παρατηρούσαν τα διάφορα φαινόμενα και κατά τις δυνάμενες αντιλήψεις τους τα ενσωμάτωναν στις διάφορες δοξασίες τους. Όμως αυτές οι προβλέψεις που στηρίζονταν κυρίως στους αστέρες ήταν ατελείς. Ωστόσο, ήταν χρήσιμες στις κύριες τότε ασχολίες τους, στη γεωργία και την κτηνοτροφία. Οι αρχαίοι όμως Έλληνες που εξ ανάγκης βρέθηκαν, μετά τους τρεις κατακλυσμούς του αρχαίου ελλαδικού χώρου να αναπτύσσουν τη ναυτιλία όχι μόνο συμπλήρωναν τις παρατηρήσεις τους δίνοντας αλληγορικές ερμηνείες, αλλά έφθασαν και να τις κωδικοποιούν. Η Ελληνική Μυθολογία είναι πλούσια σε τέτοια παραδείγματα.

13 Οι Έλληνες φιλόσοφοι στη μετεωρολογία Από την μελέτη των κειμένων των αρχαίων Ελλήνων σοφών και μετεωρολόγων συνάγεται το συμπέρασμα ότι από τον 5ο αιώνα π.χ. οι Έλληνες συνέχισαν τις αντίστοιχες προσπάθειες των προαναφερομένων λαών. Συγκεκριμένα : Ο Αριστοτέλης, γύρω στο 350 π.χ., δημοσίευσε 4 ευμεγέθη βιβλία που τα ονόμασε "Μετεωρολογικά". Σ αυτό το πελώριο κατ έκταση και σπουδαιότητα έργο, συνέλεξε όλες τις γνωστές τότε παρατηρήσεις - γνώσεις όχι μόνο για τον καιρό αλλά και για την θάλασσα και τον ουρανό. Τα "Μετεωρολογικά" του Αριστοτέλη για δύο χιλιάδες χρόνια απετέλεσαν το πρότυπο διδακτικό βιβλίο της Μετεωρολογίας και όχι μόνο. Ο Θεόφραστος, μαθητής του Αριστοτέλη, έγραψε το βιβλίο των "Σημείων" που θα μπορούσε να χαρακτηριστεί συνδυασμός της τότε επιστήμης και παράδοσης. Περιείχε δε πολλούς κανόνες ειδικά για την πρόγνωση του καιρού, καθώς και μερικές ενδείξεις που τότε πίστευαν ότι μπορούσαν να φανερώσουν πως θα είναι ο καιρός το επόμενο έτος ή και ακόμα πιο μετά. Συγκεκριμένα το έργο αυτό περιελάμβανε 8 "σημεία" περί βροχής, 45 περί ανέμων, 50 για καταιγίδες, 24 για καλοκαιρίες, ακόμη και 7 για πρόγνωση ολόκληρου έτους (ετήσιες) και πέραν αυτού χρονικά.

14 ΤΕΛΟΣ «Δεν μπορώ να διδάξω κανέναν τίποτα, μπορώ μόνο να τον κάνω να σκεφτεί» Σωκράτης

Σύλλογος Αρχαίας Ελληνικής Φιλοσοφίας «σὺν Ἀθηνᾷ»

Σύλλογος Αρχαίας Ελληνικής Φιλοσοφίας «σὺν Ἀθηνᾷ» Σύλλογος Αρχαίας Ελληνικής Φιλοσοφίας «σὺν Ἀθηνᾷ» Τμήμα 5 ης -6 ης Δημοτικού Σάββατο, 27 Οκτωβρίου 2012 Θαλής ο Μιλήσιος 630/635 π.χ. 543 π.χ. Ο πρώτος φιλόσοφος! Ο Θαλής ο Μιλήσιος ανήκει στους προσωκρατικούς

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος

Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείμενο 1 Οι επιστήμες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίμανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σημαντικά βήματα για την ανάπτυξη των επιστημών,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο.

ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ. 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΔΡΟΜΕΣ. ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ 1 η εκδρομή (21/11/05): Επίσκεψη στο Αστεροσκοπείο. Στόχοι: Οι εκπαιδευόμενοι: Να ενημερωθούν για το σύμπαν. Να παρατηρήσουν τα ουράνια σώματα. Να σκεφτούν -να

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012»

Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ. Αρχαϊκή Εποχή και στο Ισλάμ. Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Εκπαιδευτήριο ΤΟ ΠΑΓΚΡΗΤΙΟΝ - ΓΥΜΝΑΣΙΟ Χαρτογραφία στην Αρχαϊκή Εποχή και στο Ισλάμ Ανάτυπο από τον τόμο «ΣΥΝΘΕΤΙΚΕΣ ΕΡΓΑΣΙΕΣ, ΣΤ, 2011-2012» Τάξη

Διαβάστε περισσότερα

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ

ΣΧΕΣΗ ΘΕΩΡΗΜΑΤΩΝ ΘΑΛΗ ΚΑΙ ΠΥΘΑΓΟΡΑ ΣΧΣΗ ΘΩΡΗΜΤΩΝ ΘΛΗ ΚΙ ΠΥΘΟΡ ισαγωγή ηµήτρης Ι Μπουνάκης dimitrmp@schgr Οι δυο µεγάλοι Έλληνες προσωκρατικοί φιλόσοφοι, Θαλής (περίπου 630-543 πχ) και Πυθαγόρας (580-500 πχ) άφησαν, εκτός των άλλων, στην

Διαβάστε περισσότερα

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ

Θαλής ο Μιλήσιος. «Χαλεπόν Εαυτόν Γνώναι» ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Εργάστηκαν οι παρακάτω μαθητές της ομάδας «ΜΑΣΕ» της Γ' Γυμνασίου του 2 ου Γυμνασίου Πειραιά: ΤΖΑΒΑΡΑΣ ΓΕΩΡΓΙΟΣ ΧΑΤΖΗΝΙΚΗΤΑΣ ΣΤΕΦΑΝΟΣ ΣΤΑΘΗΣ ΚΩΝ/ΝΟΣ ΤΖΑΒΑΡΑΣ ΒΑΣΙΛΗΣ Θαλής ο Μιλήσιος «Χαλεπόν Εαυτόν Γνώναι»

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty

qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ tyuiopasdfghjklzxcvbnmqwerty ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ uiopasdfghjklzxcvbnmqwertyui 30/7/2016 ΣΩΤΗΡΟΠΟΥΛΟΥ

Διαβάστε περισσότερα

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη

ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS 246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα:

Διαβάστε περισσότερα

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ;

ΦΩΣ ΚΑΙ ΣΚΙΑ. Πως δημιουργείτε η σκιά στη φυσική ; ΦΩΣ ΚΑΙ ΣΚΙΑ Πως δημιουργείτε η σκιά στη φυσική ; Λόγω της ευθύγραμμης διάδοσης του φωτός, όταν μεταξύ μιας φωτεινής πηγής και ενός περάσματος παρεμβάλλεται ένα αδιαφανές σώμα, δημιουργείτε στο πέρασμα

Διαβάστε περισσότερα

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας.

4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 6.Ανάλυση των παραμέτρων που θεωρήθηκε ότι δεν επηρεάζουν τα αποτελέσματα της έρευνας. Πρόλογος 1.Τίτλος της έρευνας. 2.Παρουσίαση του προβλήματος. 3.Παρουσίαση του σκοπού της έρευνας. 4.Παρουσίαση των κοινωνικών αναγκών που εξυπηρετεί η έρευνα. 5.Διαμωρφωση της υπόθεσης της έρευνας. 6.Ανάλυση

Διαβάστε περισσότερα

Περί της Ταξινόμησης των Ειδών

Περί της Ταξινόμησης των Ειδών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια

ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια 18 ΤΙ ΟΝΟΜΑΖΟΥΜΕ ΓΝΩΣΗ; ΠΟΙΑ ΕΙΝΑΙ ΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΤΗΣ; Το ερώτημα για το τι είναι η γνώση (τι εννοούμε όταν λέμε ότι κάποιος γνωρίζει κάτι ή ποια χαρακτηριστικά αποδίδουμε σε ένα πρόσωπο το οποίο λέμε

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα

Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή. Δρ. Κυριακή Τσιλίκα Η Γεωμετρία στην Υπηρεσία της Τέχνης και της Τεχνικής: μια ιστορική αναδρομή Δρ. Κυριακή Τσιλίκα Τμήμα Οικονομικών Επιστημών Πανεπιστημίου Θεσσαλίας Η απαρχή της Γεωμετρίας Οι Βαβυλώνιοι, για πρώτη φορά,

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ. ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ Β ΤΑΞΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ»

ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ. ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ Β ΤΑΞΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ» ΕΡΓΑΣΙΑ ΜΑΘΗΤΩΝ Β ΤΑΞΗΣ ΤΟΥ 46 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΘΗΝΩΝ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΜΑ: «ΑΡΙΣΤΟΤΕΛΗΣ ΓΝΩΣΗ» Αριστοτέλης (384-322 π.χ.) Ο Αριστοτέλης γεννήθηκε το 384 π.χ. Ήταν γιος ενός θεραπευτή.

Διαβάστε περισσότερα

Οι επιστήµες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίµανδρο. Θαλής ο Μιλήσιος

Οι επιστήµες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίµανδρο. Θαλής ο Μιλήσιος ΕΝΟΤΗΤΑ 1 - ΕΙΣΑΓΩΓΙΚΑ ΕΛΛΗΝΙΚΑ Κείµενο 1 Οι επιστήµες στην Αρχαία Ελλάδα. Από τον Θαλή στον Αναξίµανδρο. Είναι γνωστό πως στην Αρχαία Ελλάδα γίνονται τα πρώτα σηµαντικά βήµατα για την ανάπτυξη των επιστηµών,

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»

Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης

Διαβάστε περισσότερα

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων

Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε

Διαβάστε περισσότερα

Η ΑΝΘΡΩΠΙΝΗ ΕΞΕΛΙΞΗ. Ερευνητική Εργασία Β' Τετραμήνου. Υπεύθυνη Καθηγήτρια: Μ.Φρονίμου

Η ΑΝΘΡΩΠΙΝΗ ΕΞΕΛΙΞΗ. Ερευνητική Εργασία Β' Τετραμήνου. Υπεύθυνη Καθηγήτρια: Μ.Φρονίμου Η ΑΝΘΡΩΠΙΝΗ ΕΞΕΛΙΞΗ Ερευνητική Εργασία Β' Τετραμήνου Υπεύθυνη Καθηγήτρια: Μ.Φρονίμου Στην επιστήμη της βιολογίας, με τον όρο εξέλιξη εννοείται η αλλαγή στις ιδιότητες ενός πληθυσμού οργανισμών στο πέρασμα

Διαβάστε περισσότερα

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης

Άδειες Χρήσης. Διδακτική Μαθηματικών I. Ρεαλιστικά Μαθηματικά. Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Διδακτική Μαθηματικών I Ρεαλιστικά Μαθηματικά Διδάσκων: Επίκουρος Καθ. Κ. Τάτσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

Προσέγγιση της θεωρίας και της έρευνας στη Λογιστική. Εμπειρική Έρευνα Διατύπωση ερευνητικής υπόθεσης - Δειγματοληψία Μέθοδος ανάλυσης

Προσέγγιση της θεωρίας και της έρευνας στη Λογιστική. Εμπειρική Έρευνα Διατύπωση ερευνητικής υπόθεσης - Δειγματοληψία Μέθοδος ανάλυσης Προσέγγιση της θεωρίας και της έρευνας στη Λογιστική Εμπειρική Έρευνα Διατύπωση ερευνητικής υπόθεσης - Δειγματοληψία Μέθοδος ανάλυσης Πειραματικός σχεδιασμός Έρευνα μέσω ερωτηματολογίου Συνεντεύξεις Παρουσίαση

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα

ΠΥΘΑΓΟΡΑΣ. Πέτρου Αναστασία. Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΠΥΘΑΓΟΡΑΣ Πέτρου Αναστασία Υπεύθυνη Καθηγήτρια: Αργύρη Παναγιώτα ΑΘΗΝΑ 2013 Ο Πυθαγόρας (586 500 π.χ.) του Μνησάρχου και της «ωραίας υπέρ φύσιν» Πυθαϊδος γεννήθηκε στη Σάμο. Μικρός επισκέφθηκε τους Δελφούς,

Διαβάστε περισσότερα

α) «άτοµα» β) «απεικάσµατα» γ) «επιθυµητικό». Μονάδες 12

α) «άτοµα» β) «απεικάσµατα» γ) «επιθυµητικό». Μονάδες 12 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004-05-25 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΦΙΛΟΣΟΦΙΑΣ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟΛΟ ΣΕΛΙ ΩΝ: ΤΡΕΙΣ (3) ΟΜΑ Α Α Α.1 Να µεταφέρετε στο τετράδιό

Διαβάστε περισσότερα

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Ενότητα 5 Στερεομετρία Στην ενότητα αυτή θα μάθουμε: Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος. Να υπολογίζουμε το εμβαδόν

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις.

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις. ΕΙΣΑΓΩΓΗ Στα πλαίσια του προγράμματος περιβαλλοντικής Αγωγής, τη σχολική χρονιά 2012-2013, αποφασίσαμε με τους μαθητές του τμήματος Β 3 να ασχοληθούμε με κάτι που θα τους κέντριζε το ενδιαφέρον. Έτσι καταλήξαμε

Διαβάστε περισσότερα

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων)

επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) επινόηση ιδεατών αντικειμένων και οργάνωσή τους σε έννοιες (κατηγορίες ομοειδών αντικειμένων) Μαθηματικά αντικείμενα Έννοιες Ιδιότητες (θεωρήματα, πορίσματα) Σχέσεις Ενέργειες Διαδικασίες Αναπαραστάσεις

Διαβάστε περισσότερα

Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου. Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70

Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου. Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70 Μια διδακτική αξιοποίηση της λογοτεχνίας στα μαθηματικά του δημοτικού σχολείου Εισηγητής: Μακρής Νικόλαος Εκπαιδευτικός ΠΕ 70 Εκφράζουν πρακτικότητα/πραγματικότητα Οικοδομούν τον πραγματικό κόσμο. Εκφράζει

Διαβάστε περισσότερα

ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804)

ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804) ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ - ΣΥΝΤΟΜΗ ΠΕΡΙΛΗΨΗ ΤΗΣ ΓΝΩΣΙΟΘΕΩΡΙΑΣ ΤΟΥ 1 ΕΜΜΑΝΟΥΗΛ ΚΑΝΤ (1724-1804) (Η σύντομη περίληψη που ακολουθεί και η επιλογή των αποσπασμάτων από την πραγματεία του Καντ για την ανθρώπινη γνώση,

Διαβάστε περισσότερα

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 Θέµα Α1 Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 Α.1.1. Να γράψετε στο τετράδιό σας τα ονόµατα των φιλοσόφων (στήλη Α) και δίπλα την έννοια (στήλη Β) που συνδέεται µε τον καθένα: Α

Διαβάστε περισσότερα

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000

Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 Θέµατα Αρχών Φιλοσοφίας Θεωρητικής Κατεύθυνσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµα Α1 Α.1.1. Να γράψετε στο τετράδιό σας τα ονόµατα των φιλοσόφων (στήλη Α) και δίπλα την έννοια (στήλη Β) που συνδέεται µε τον

Διαβάστε περισσότερα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα

Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα Κ. Σ. Δ. Μ. Ο. Μ. Οι Πυθαγόρειοι φιλόσοφοι είναι μια φιλοσοφική, θρησκευτική και πολιτική σχολή που ιδρύθηκε τον 6ο αιώνα π.χ από τον Πυθαγόρα τον Σάμιο στον Κρότωνα της Κάτω Ιταλίας. Η κοινότητα στεγαζόταν

Διαβάστε περισσότερα

ΜΕΤΑΦΡΑΣΗ ΤΟΥ ΤΕΣΤ ΝΟΗΜΟΣΥΝΗΣ WPPSI-III UK

ΜΕΤΑΦΡΑΣΗ ΤΟΥ ΤΕΣΤ ΝΟΗΜΟΣΥΝΗΣ WPPSI-III UK ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΛΟΓΟΘΕΡΑΠΕΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΤΑΦΡΑΣΗ ΤΟΥ ΤΕΣΤ ΝΟΗΜΟΣΥΝΗΣ WPPSI-III UK ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: κος ΧΡΙΣΤΟΔΟΥΛΙΔΗΣ

Διαβάστε περισσότερα

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ

ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΒΕΔΙΚΑ ΜΑΘΗΜΑΤΙΚΑ: ΜΙΑ ΑΝΑΤΟΛΙΚΗ ΠΡΟΣΕΓΓΙΣΗ Συχνά τα Μαθηματικά χρησιμοποιούνται ως ένα «εργαλείο» προκειμένου να ανιχνευθεί η «εξυπνάδα» του κάθε ανθρώπου, να διαφοροποιηθούν οι μαθητές μεταξύ τους σε

Διαβάστε περισσότερα

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών

Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Η Στήλη των Μαθηματικών. Τετάρτη 15 Μαρτίου 2006 1/5 Η Στήλη των Μαθηματικών Από τον Κώστα Δόρτσιο, Σχ. Σύμβουλο Μαθηματικών Ν:6 ο Οι απαρχές των Μαθηματικών Τα μαθηματικά είναι η επιστήμη εκείνη η οποία

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Λογιστική Θεωρία και Έρευνα

Λογιστική Θεωρία και Έρευνα Μεταπτυχιακό Πρόγραμμα στη Λογιστική & Χρηματοοικονομική Master of Science (MSc) in Accounting and Finance ΤΕΙ ΠΕΙΡΑΙΑ Λογιστική Θεωρία και Έρευνα Εισαγωγή στη Λογιστική Έρευνα Η αναζήτηση της αλήθειας

Διαβάστε περισσότερα

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος

Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο. Εισηγητής: Μακρής Νικόλαος Ολοήμερο Δημοτικό Σχολείο Πορταριάς «Ν. Τσοποτός» Ανάπτυξη σχεδίου εργασίας στο ολοήμερο δημοτικό σχολείο Εισηγητής: Μακρής Νικόλαος Γενικός τίτλος «Ένας μαγικός αλλά άγνωστος κόσμος» Ένας μαγικός αλλά

Διαβάστε περισσότερα

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Το Θεώρημα γεννιέται πριν από 4000 χρόνια Οι ρίζες του Πυθαγορείου Θεωρήματος βρίσκονται στη Γεωμετρία. Το θεώρημα διαδραματίζει κεντρικό ρόλο σε πολυάριθμους επιστημονικούς κλάδους,

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε. ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΛΓΕΒΡΑ-ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 9 ΝΟΕΜΒΡΙΟΥ 2014 Θέμα 1 ο A. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: Ρ(Α Β) = Ρ(Α) +

Διαβάστε περισσότερα

Γενική Μετεωρολογία. Δρ. Χαράλαμπος Φείδας. Ανα[ληρωτής Καθηγητής Α.Π.Θ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Τομέας Μετεωρολογίας και Κλιματολογίας

Γενική Μετεωρολογία. Δρ. Χαράλαμπος Φείδας. Ανα[ληρωτής Καθηγητής Α.Π.Θ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ. Τομέας Μετεωρολογίας και Κλιματολογίας Γενική Μετεωρολογία Α.Π.Θ. ΤΜΗΜΑ ΓΕΩΛΟΓΙΑΣ Δρ. Χαράλαμπος Φείδας Ανα[ληρωτής Καθηγητής Τομέας Μετεωρολογίας και Κλιματολογίας Θεσσαλονίκη 2013 Εισαγωγή Σκοπός του μαθήματος είναι: η μελέτη του καιρού και

Διαβάστε περισσότερα

8 Ασκήσεις Εμπέδωσης (Version )

8 Ασκήσεις Εμπέδωσης (Version ) 8 Ασκήσεις Εμπέδωσης (Version -9-05) Ε. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ (A = ). Από τυχαίο σημείο Δ της ΑΓ φέρουμε ΔΕ ΒΓ. Να αποδείξετε ότι: i) τα τρίγωνα ΑΒΓ και ΔΕΓ είναι όμοια, ii) ΑΓ Ε = ΑΒ ΕΓ. Τα τρίγωνα

Διαβάστε περισσότερα

Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής)

Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής) Μέγιστον τόπος. Ἅπαντα γάρ χωρεῖ. (Θαλής) Από την εποχή που οι άνθρωποι σήκωσαν τα μάτια τους προς τον ουρανό και παρατήρησαν τον Ήλιο (τον θεό τους) και τα αστέρια, είχαν την πεποίθηση ότι η Γη είναι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά.

x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά. 1 x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά. Πριν λίγα χρόνια, όταν είχε έρθει στην Ελλάδα ο νομπελίστας χημικός Ilya Prigogine (πέθανε πρόσφατα), είχε

Διαβάστε περισσότερα

Π ρόγνωση καιρού λέγεται η διαδικασία πρόβλεψης των ατµοσφαιρικών συνθηκών που πρόκειται να επικρατήσουν σε µια συγκεκριµένη περιοχή, για κάποια ορισµένη µελλοντική χρονική στιγµή ή περίοδο. Στην ουσία

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

Αρχικά σπούδασε Ιατρική, όμως ο καθηγητής του Οστίλιο Ρίτσι (μαθηματικός) τον έστρεψε στις Θετικές Επιστήμες.

Αρχικά σπούδασε Ιατρική, όμως ο καθηγητής του Οστίλιο Ρίτσι (μαθηματικός) τον έστρεψε στις Θετικές Επιστήμες. Γαλιλαίος (1581-1643) Γεννήθηκε στην Πίζα το 1581 Αρχικά σπούδασε Ιατρική, όμως ο καθηγητής του Οστίλιο Ρίτσι (μαθηματικός) τον έστρεψε στις Θετικές Επιστήμες. Ως δευτεροετής φοιτητής ανακάλυψε: 1. Τον

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ

Εαρινό Εξάμηνο 2011. 23.02.11 Χ. Χαραλάμπους ΑΠΘ. Ιστορία των Μαθηματικών. Χαρά Χαραλάμπους Τμήμα Μαθηματικών, ΑΠΘ Εαρινό εξάμηνο 2011 23.02.11 Χ. Χαραλάμπους ΑΠΘ Υπολογισμός (ακρίβεια έως 5 δεκαδικά) Yale Babylonian collection, 1800 π.χ. 24 51 10 1+ + + = 1.41421296 2 3 60 60 60 Τετραγωνική ρίζα του 2 Ποια είναι η

Διαβάστε περισσότερα

Η καμπύλωση του χώρου-θεωρία της σχετικότητας

Η καμπύλωση του χώρου-θεωρία της σχετικότητας Η καμπύλωση του χώρου-θεωρία της σχετικότητας Σύμφωνα με τη Γενική Θεωρία της Σχετικότητας που διατύπωσε ο Αϊνστάιν, το βαρυτικό πεδίο κάθε μάζας δημιουργεί μια καμπύλωση στον χώρο (μάλιστα στον χωροχρόνο),

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

Η προέλευση του Sketchpad 1

Η προέλευση του Sketchpad 1 Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση

Διαβάστε περισσότερα

ΣΥΜΜΕΤΟΧΗ ΤΟΥ 3 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟ ΠΕΙΡΑΜΑ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΤΗΣ ΓΗΣ

ΣΥΜΜΕΤΟΧΗ ΤΟΥ 3 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟ ΠΕΙΡΑΜΑ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΤΗΣ ΓΗΣ ΣΥΜΜΕΤΟΧΗ ΤΟΥ 3 ου ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟ ΠΕΙΡΑΜΑ ΓΙΑ ΤΗΝ ΜΕΤΡΗΣΗ ΤΗΣ ΠΕΡΙΦΕΡΕΙΑΣ ΤΗΣ ΓΗΣ Ο Ερατοσθένης καταγόταν από την Κυρήνεια και γύρω στο 260 π.χ. πήγε στην Αθήνα για να σπουδάσει φιλοσοφία. Την εποχή

Διαβάστε περισσότερα

Ουσίες και Χημικές Οντότητες Μια διδακτική προσέγγιση

Ουσίες και Χημικές Οντότητες Μια διδακτική προσέγγιση Ουσίες και Χημικές Οντότητες Μια διδακτική προσέγγιση Γενικά Οδηγίες για τον εκπαιδευτικό Η Χημεία είναι η επιστήμη που ασχολείται με τη μελέτη της σύστασης των ουσιών καθώς και με τις μεταβολές τους κατά

Διαβάστε περισσότερα

Λούντβιχ Βιτγκενστάιν

Λούντβιχ Βιτγκενστάιν Λούντβιχ Βιτγκενστάιν Ο τάφος του Βίτγκεντάιν στο Κέιμπριτζ κοσμείται από το ομοίωμα μιας ανεμόσκαλας: «Οι προτάσεις μου αποτελούν διευκρινίσεις, όταν αυτός που με καταλαβαίνει, τελικά τις αναγνωρίσει

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 20/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΛΥΚΕΙΑΚΩΝ ΤΑΞΕΩΝ ΣΤΥΡΩΝ 0/6/0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη

1.6.3 Ιατρικές και βιολογικές θεωρίες στον Πλάτωνα και στον Αριστοτέλη Η αρχαία ελληνική ιατρική µετά τον Ιπποκράτη 1 2 Περιεχόµενα Πρόλογος...5 Εισαγωγή: Οι Απαρχές της Ελληνικής Επιστήµης...8 Κεφάλαιο 1: Η Αρχαία Ελληνική Επιστήµη...24 1.1 Οι φυσικές θεωρίες των Προσωκρατικών φιλοσόφων...25 1.1.1 H πρώιµη ιωνική φιλοσοφική

Διαβάστε περισσότερα

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΜΣ «ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΚΑΙ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ» Παραδείγματα Variation Μεταπτυχιακός Φοιτητής:

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

26.02.14 ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 26.02.14 Χ. Χαραλάμπους 14 ο πρόβλημα (βρίσκεται στο Μουσείο Καλών Τεχνών της Μόσχας από το 1893 μ.χ.) «μετάφραση των συμβόλων: Εάν σου πουν: μία κομμένη πυραμίδα με ύψος 6, με βάση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ Η Κλασική Μηχανική σηµματοδοτεί την πρώτη µμεγάλη επανάσταση της ανθρώπινης σκέ- ψης στην πορεία της για την ερµμηνεία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 1.1 ΙΣΤΟΡΙΚΗ ΕΠΙΣΚΟΠΗΣΗ

ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 1.1 ΙΣΤΟΡΙΚΗ ΕΠΙΣΚΟΠΗΣΗ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ ΕΙΣΑΓΩΓΗ 1 ΕΙΣΑΓΩΓΗ «Πιστεύω ότι η μελέτη του Σύμπαντος πρέπει να τοποθετηθεί στην πρώτη θέση ανάμεσα σε όλα τα φυσικά φαινόμενα που μπορούν να κατανοηθούν, γιατί έρχεται πριν απ' όλα τ'

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Εισαγωγικά στην αρχαία Ελληνική ιστοριογραφία

ΕΙΣΑΓΩΓΗ. Εισαγωγικά στην αρχαία Ελληνική ιστοριογραφία ΕΙΣΑΓΩΓΗ Εισαγωγικά στην αρχαία Ελληνική ιστοριογραφία Ενδεικτικοί διδακτικοί στόχοι Οι διδακτικοί στόχοι για τη διδασκαλία της εισαγωγής προσδιορίζονται στο βιβλίο για τον καθηγητή, Αρχαίοι Έλληνες Ιστοριογράφοι,

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΣΤΑ ΑΡΧΑΙΟΤΗΤΑ ΘΑΛΗΣ!

ΓΕΩΜΕΤΡΙΑ ΣΤΑ ΑΡΧΑΙΟΤΗΤΑ ΘΑΛΗΣ! ΓΕΩΜΕΤΡΙΑ ΣΤΑ ΑΡΧΑΙΟΤΗΤΑ ΘΑΛΗΣ! Ο Θαλής ο Μιλήσιος, ήταν προσωκρατικός φιλόσοφος. Του αποδίδεται το έργο Ναυτική Αστρολογία, αλλά θεωρείται μάλλον αμφίβολο αν το έγραψε ο ίδιος. Για την ανασύσταση της

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογίας-Κλιματολογίας. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογίας-Κλιματολογίας. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 5. ΑΝΕΜΟΙ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 1 5. ΑΝΕΜΟΙ Αέριες μάζες κινούνται από περιοχές υψηλότερης προς περιοχές χαμηλότερης

Διαβάστε περισσότερα

Α ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ ΙΣΤΟΡΙΑΣ ΚΑΙ ΦΙΛΟΣΟΦΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Αφιερωμένο στη συμπλήρωση 2200 χρόνων από το θάνατο του Αρχιμήδη)

Α ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ ΙΣΤΟΡΙΑΣ ΚΑΙ ΦΙΛΟΣΟΦΙΑΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ (Αφιερωμένο στη συμπλήρωση 2200 χρόνων από το θάνατο του Αρχιμήδη) ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡEΙΑ ΟΜΑΔΑ ΔΙΕΠΙΣΤΗΜΟΝΙΚΗΣ ΕΡΕΥΝΑΣ ΟΜΙΛΟΣ ΓΙΑ ΤΗΝ ΙΣΤΟΡΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΣΕΜΙΝΑΡΙΟ ΑΡΧΑΙΩΝ ΕΛΛΗΝΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΥ Ε.Μ. ΠΟΛΥΤΕΧΝΕΙΟΥ Α ΠΑΝΕΛΛΗΝΙΟ ΣΥΝΕΔΡΙΟ ΙΣΤΟΡΙΑΣ ΚΑΙ ΦΙΛΟΣΟΦΙΑΣ

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Άσκηση 1 Ένα κεντρικό βιβλιοπωλείο ειδικεύεται στα λογοτεχνικά βιβλία και τα βιβλία τέχνης. Προκειμένου να προωθήσει μια νέα συλλογή λογοτεχνικών βιβλίων και βιβλίων τέχνης, η διεύθυνση του βιβλιοπωλείου

Διαβάστε περισσότερα

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë

ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë ΚΕΦΑΛΑΙΟ 1 ΔÔ Û Ì Î È ÔÈ ÎÈÓ ÛÂÈ ÙË Ë Tα βασικά σημεία του μαθήματος Η Γη είναι ένα ουράνιο σώμα, που κινείται συνεχώς στο διάστημα. Το σχήμα της είναι γεωειδές, δηλαδή είναι ελαφρά συμπιεσμένο στις κορυφές

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Η ιστορία του φωτός σαν παραμύθι

Η ιστορία του φωτός σαν παραμύθι Η ιστορία του φωτός σαν παραμύθι περιγραφή της δράσης Χρήστος Γκοτζαρίδης Φυσικός ΕΙΣΑΓΩΓΙΚΟΣ ΤΟΜΕΑΣ ΚΑΙ ΠΡΟΚΑΤΑΡΤΙΚΗ ΦΑΣΗ Μικρή Περιγραφή: Οι μαθητές θα παρακολουθήσουν μία ιστορία, για την εξέλιξη των

Διαβάστε περισσότερα

Εφαρμογές του Πυθαγορείου θεωρήματος- Υπολογισμοί στο Δένδρο του Πυθαγόρα. Σ.Πατσιομίτου 1

Εφαρμογές του Πυθαγορείου θεωρήματος- Υπολογισμοί στο Δένδρο του Πυθαγόρα. Σ.Πατσιομίτου 1 1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Εφαρμογές του Πυθαγορείου θεωρήματος- Υπολογισμοί στο Δένδρο του Πυθαγόρα Σ.Πατσιομίτου 1 Το Πυθαγόρειο θεώρημα που περιέχεται στα περισσότερα σχολικά εγχειρίδια

Διαβάστε περισσότερα

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ 1 1.4 ΠΥΘΑΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΩΡΙΑ 1. Πυθαγόρειο θεώρηµα : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο της υποτείνουσας είναι ίσο µε το άθροισµα των τετραγώνων των καθέτων πλευρών. γ α α = β + γ β. Αντίστροφο Πυθαγορείου

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

< > Ο ΚΕΝΟΣ ΧΩΡΟΣ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΦΑΙΝΟΜΕΝΟ, ΤΟΥ ΟΠΟΙΟΥ Η ΕΞΗΓΗΣΗ ΑΠΟΔΕΙΚΝΥΕΙ ΕΝΑ ΠΑΓΚΟΣΜΙΟ ΠΝΕΥΜΑ

< > Ο ΚΕΝΟΣ ΧΩΡΟΣ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΦΑΙΝΟΜΕΝΟ, ΤΟΥ ΟΠΟΙΟΥ Η ΕΞΗΓΗΣΗ ΑΠΟΔΕΙΚΝΥΕΙ ΕΝΑ ΠΑΓΚΟΣΜΙΟ ΠΝΕΥΜΑ Κ. Γ. ΝΙΚΟΛΟΥΔΑΚΗΣ 1 < > Ο ΚΕΝΟΣ ΧΩΡΟΣ ΕΙΝΑΙ ΤΟ ΦΥΣΙΚΟ ΦΑΙΝΟΜΕΝΟ, ΤΟΥ ΟΠΟΙΟΥ Η ΕΞΗΓΗΣΗ ΑΠΟΔΕΙΚΝΥΕΙ ΕΝΑ ΠΑΓΚΟΣΜΙΟ ΠΝΕΥΜΑ Επαναλαμβάνουμε την έκπληξή μας για τα τεράστια συμπλέγματα γαλαξιών, τις πιο μακρινές

Διαβάστε περισσότερα