Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης"

Transcript

1 Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών

2

3 26 5. Κανονική Μορφή Fitting Εστω A M n n (K) ένας πίνακας. ακόλουθου Θεωρήµατος : Σκοπός µας στην παρούσα παράγραφο είναι η απόδειξη του Θεώρηµα 5.1. Εστω A M n n (K) ένας πίνακας. Τότε ο A είναι όµοιος µε έναν πίνακα της µορφής B = N όπου ο P είναι αντιστρέψιµος και ο N είναι µηδενοδύναµος. P Η παραπάνω µορφή καλείται µορφή Fitting του πίνακα A. Εστω E ένας K-διανυσµατικός χώρος πεπερασµένης διάστασης υπεράνω του σώµατος K, και f : E E µια γραµµική απεικόνιση. Συµβολίζουµε µε f k = f f f (k-ϕορές) την σύνθεση της f µε τον εαυτό της k-ϕορές, k 1. Υπενθυµίζουµε ότι η f καλείται µηδενοδύναµη αν f k = Αποσύνθεση Fitting. Για να αποδείξουµε το Θεώρηµα 5.1 χρειαζόµαστε πρώτα κάποια προεργασία. Πρόταση 5.2. (1) Υπάρχει µια (αύξουσα) ακολουθία υπόχωρων του E: { 0} Ker(f) Ker(f 2 ) Ker(f k ) Ker(f k+1 ) E (5.1) και ϕυσικός αριθµός µ 0 έτσι ώστε : Ker(f µ ) = Ker(f µ+1 ) = Ker(f µ+2 ) =. (2) Υπάρχει µια (ϕθίνουσα) ακολουθία υποχώρων του E: { 0} Im(f k+1 ) Im(f k ) Im(f 2 ) Im(f) E (5.2) και ϕυσικός αριθµός λ 0 έτσι ώστε : Im(f λ ) = Im(f λ+1 ) = Im(f λ+2 ) =. Απόδειξη. (1) είχνουµε πρώτα ότι Ker(f k ) Ker(f k+1 ), k 0 Εστω x Ker(f k ), δηλαδή f k ( x) = 0. Τότε f(f k ( x)) = 0 και άρα (f f k )( x) = f k+1 ( x) = 0. Άρα x Ker(f k+1 ( x) = 0 και εποµένως Ker(f k ) Ker(f k+1 ). Ετσι έχουµε την ακολουθία υπόχωρων (5.1). Τότε όµως ϑα έχουµε και dim K Ker(f k ) dim K Ker(f k+1 ), k 0 Τότε η ακολουθία υπόχωρων (5.1) επάγει την αύξουσα ακολουθία ϕυσικών αριθµών 0 dim K Ker(f) dim K Ker(f 2 ) dim K Ker(f k ) dim K Ker(f k+1 ) dim K E Επειδή dim K E <, έπεται το σύνολο ϕυσικών αριθµών { dim K Ker(f k ), k 0 } είναι πεπερασµένο. Άρα υπάρχει ϕυσικός µ 0 έτσι ώστε : dim K Ker(f µ ) = dim K Ker(f µ+1 ) = dim K Ker(f µ+2 ) =. Επειδή από την ακολουθία (5.1) έχουµε Ker(f µ ) Ker(f µ+1 ) Ker(f µ+2 ), έπεται ότι : (2) είχνουµε πρώτα ότι Ker(f µ ) = Ker(f µ+1 ) = Ker(f µ+2 ) = Im(f k+1 ) Im(f k ), k 0

4 Εστω x Im(f k+1 ), δηλαδή υπάρχει y E έτσι ώστε : f k+1 ( y) = x. Τότε f k+1 ( y) = (f k f)( y) = f k (f( y)) = x, και άρα x Im(f k ). Ετσι Im(f k+1 ) Im(f k ). Ετσι έχουµε την ακολουθία υπόχωρων (5.2). Τότε όµως ϑα έχουµε και dim K Im(f k+1 ) dim K Im(f k ), k 0 Τότε η ακολουθία υπόχωρων (5.2) επάγει την αύξουσα ακολουθία ϕυσικών αριθµών 0 dim K Im(f k+1 ) dim K Im(f k ) dim K Im(f 2 ) dim K Im(f) dim K E Επειδή dim K E <, έπεται το σύνολο ϕυσικών αριθµών { dim K Im(f k ), k 0 } είναι πεπερασµένο. Άρα υπάρχει ϕυσικός λ 0 έτσι ώστε : = dim K Im(f λ+2 ) = dim K Im(f λ+1 ) = dim K Im(f λ ). Επειδή από τη ακολουθία (5.2) έχουµε Im(f λ+2 ) Im(f λ+1 ) Im(f λ ), έπεται ότι : = Im(f λ+2 ) = Im(f λ+1 ) = Im(f λ ) 27 Λήµµα 5.3. Με τους συµβολισµούς της Πρότασης 5.2, έστω m := max{µ, λ}. 1. f(ker(f m ) Ker(f m ) και άρα η f : E E επάγει µια γραµµική απεικόνιση : f 1 : Ker(f m ) Ker(f m ), f 1 ( x) = f( x) Επιπλέον η f 1 είναι µηδενοδύναµη, δηλαδή f1 r = 0, για κάποιον r f(im(f m ) Im(f m ) και άρα η f : E E επάγει µια γραµµική απεικόνιση : Επιπλέον η f 2 είναι ισοµορφισµός. f 2 : Im(f m ) Im(f m ), f 2 ( x) = f( x) Απόδειξη. (1) Για το 1. ϑα έχουµε : (α) Εστω x Ker(f m ), δηλαδή f m ( x) = 0. Τότε f(f m ( x)) = f( 0) = 0 και άρα f m+1 ( x) = 0, δηλαδή x Ker(f m+1 ). Οµως επειδή m µ, έχουµε Ker(f m+1 ) = Ker(f m ) και άρα x Ker(f m. Εποµένως f(ker(f m )) Ker(f m ). Προφανώς τότε η f επάγει µια γραµµική απεικόνιση f 1 : Ker(f m ) Ker(f m ), ορίζοντας f 1 ( x) = f( x), x Ker(f m ). (ϐ) Εστω x Ker(f m ), δηλαδή f m ( x) = 0. Τότε f1 m+1 ( x = f m+1 ( x) = f(f m ( 0) = f( 0) = 0. Άρα ϑέτοντας r = m + 1 έχουµε f1 r( x) = 0, x Ker(f m ) και εποµένως f1 r = 0, δηλαδή η f 1 είναι µηδενοδύναµη. (2) Για το 2. ϑα έχουµε : (α) Εστω x f(im(f m )), δηλαδή υπάρχει y Im(f m ) έτσι ώστε : f( y) = x. Επειδή y Im(f m ) έπεται ότι υπάρχει z E έτσι ώστε : f m ( z) = y. Τότε x = f( y) = f(f m ( z)) = f m+1 ( z και άρα x Im(f m+1 ). Επειδή m λ, έπεται ότι ϑα έχουµε Im(f m+1 ) = Im(f m ) και άρα x Im(f m. Εποµένως f(im(f m )) Im(f m ). Προφανώς τότε η f επάγει µια γραµµική απεικόνιση f 1 : Im(f m ) Im(f m ), ορίζοντας f 2 ( x) = f( x), x Im(f m ). (ϐ) Εστω y Im(f m ). Επειδή Im(f m ) = Im(f m+1 ), έπεται ότι y Im(f m+1 ) και άρα υπάρχει x E έτσι ώστε : f m+1 ( x) = y. Τότε : y = f m+1 ( x) = f(f m ( x) και ϑέτοντας z := f m ( x) Im(f m ) ϑα έχουµε y = f( z) = f 2 ( z). Αυτό σηµαίνει ότι η f 2 είναι επιµορφισµός. Επειδή dim K Im(f m ) dim K E <, έπεται ότι η f 2 είναι ισοµορφισµός. Θεώρηµα 5.4. Εστω E ένας K-διανυσµατικός χώρος πεπερασµένης διάστασης υπεράνω του σώµατος K. Αν f : E E είναι µια γραµµική απεικόνιση, τότε υπάρχει m 1 έτσι ώστε : E = Ker(f m ) Im(f m ) Απόδειξη. Εστω m = max{µ, λ} όπως στην Πρόταση 5.2 ή στο Λήµµα 5.3.

5 28 (1) είχνουµε πρώτα ότι : Ker(f m ) Im(f m ) = { 0}. Εστω x Ker(f m ) Im(f m ). Τότε f m ( x) = 0 και υπάρχει y E έτσι ώστε f m ( y) = x. Τότε f 2m ( y) = f m (f m ( y)) = f m ( x) = 0 και άρα y Ker(f 2m ). Επειδή Ker(f 2m ) = Ker(f m ), έπεται ότι y Ker(f m ) και άρα x = f m ( y) = 0. Εποµένως Ker(f m ) Im(f m ) = { 0}. (2) είχνουµε ότι : E = Ker(f m ) + Im(f m ). Εστω x E. Τότε f m ( x) Im(f m ). Επειδή Im(f m ) = Im(f 2m ) έπεται ότι f m ( x) Im(f 2m ) και άρα υπάρχει y E έτσι ώστε : f m ( x) = f 2m ( y). Τότε : f m ( x) = f 2m ( y) = f m (f m ( y)) και άρα f m ( x f m ( y)) = 0. Θέτοντας z := x f m ( y) έπεται ότι z Ker(f m ) και x = z + f m ( y, z Ker(f m ), f m ( y) Im(f m ) Η τελευταία σχέση δείχνει ότι : E = Ker(f m ) + Im(f m ). Από τα (1) και (2) έχουµε ότι E = Ker(f m ) Im(f m ). Θεώρηµα 5.5. Εστω E ένας K-διανυσµατικός χώρος πεπερασµένης διάστασης υπεράνω του σώµατος K. Αν f : E E είναι µια γραµµική απεικόνιση, τότε υπάρχει ϐάση B του E έτσι ώστε ο πίνακας της f στην ϐάση B να είναι της µορφής : M B B (f) = N όπου ο P είναι αντιστρέψιµος και ο N είναι µηδενοδύναµος. Απόδειξη. Εστω ο ϕυσικός αριθµός m όπως στο παραπάνω Θεώρηµα 5.3. Τότε ϑα έχουµε E = Ker(f m ) Im(f m ). Από την άλλη πλευρά από την Πρόταση 5.2 η f επάγει έναν ισοµορφισµό και µια µηδενοδύναµη γραµµική απεικόνιση P f 2 : Im(f m ) Im(f m ), f 2 = f Im(f m ) f 1 : Ker(f m ) Ker(f m, f 1 = f Ker(f m ) Εστω B 1 µια ϐάση του υπόχωρου Ker(f m ) και B 2 µια ϐάση του υπόχωρου Im(f m ). Τότε ο πίνακας P := M B 2 B 2 (f 2 ) της f 2 στην ϐάση B 2 ϑα είναι αντιστρέψιµος (επειδή η f 2 είναι ισοµορφσιµός) και ο πίνακας N := M B 1 B 1 (f 1 ) της f 1 στην ϐάση B 1 ϑα είναι µηδενοδύναµος (επειδή η f 1 είναι µηδενοδύναµη. Επειδή το άθροισµα Ker(f m ) + Im(f m ) είναι ευθύ και µας δίνει τον χώρο E, έπεται ότι το σύνολο B = B 1 B 2 είναι µια ϐάση του E. Τότε προφανώς f(b 2 ) Im(f m ) και f(b 1 ) Ker(f m ) και τότε ο πίνακας της f στην ϐάση B ϑα είναι της µορφής M B B (f) = N όπου ο P είναι αντιστρέψιµος και ο N είναι µηδενοδύναµος. P 5.2. Κανονική Μορφή Fitting. Είµαστε τώρα σε ϑέση να αποδείξουµε το Θεώρηµα 5.1. Απόδειξη του Θεωρήµατος 5.1: Θεωρούµε την γραµµική αεπικόνιση f A : K n K n, f A (X) = A X

6 29 Από το Θεώρηµα 5.4 έπεται ότι υπάρχει ϐάση B του K n έτσι ώστε ο πίνακας της f A στην ϐάση B να είναι της µορφής : M B B (f A) = N Επειδή ο πίνακας της f A στην κανονική ϐάση του K n είναι ο A έπεται ότι ο πίνακας A είναι όµοιος µε τον παραπάνω πίνακα. P 5.3. Ευθύ Αθροισµα Γραµµικών Απεικονίσεων και Πινάκων. Εστω E ένας K-διανυσµατικός χώρος υπεράνω του σώµατος K. Υποθέτουµε ότι E = V W και έστω f : V V και g : W W δύο γραµµικές απεικονίσεις. Ορισµός 5.6. Το ευθύ άθροισµα f g των γραµµικών απεικονίσεων f και g ορίζεται να είναι η απεικόνιση f g : E = V W E = V W, (f g)( v + w) = f( v) + g( w) Είναι εύκολο να δει κανείς ότι η f g είναι µια γραµµική απεικόνιση. Εστω A M n n (K) και B M m m (K) δύο τετραγωνικοί πίνακες, ενδεχοµένως διαφορετικού µεγέθους. Ορισµός 5.7. Το ευθύ άθροισµα A B των A M n n (K) και B M m m (K) ορίζεται να είναι ο (n + m) (n + m) πίνακας A B = A B Παράδειγµα 5.8. Εστω E ένας διανυσµατικός χώρος πεπερασµένης διάστασης και υποθέτουµε ότι E = V W, για κάποιους υπόχωρους V, W του E. Εστω f : V V και g : W W δύο γραµµικές απεικονίσεις. Αν B V είναι µαι ϐάση του V και B W είναι µια ϐάση του W, τότε όπως γνωρίζουµε το σύνολο B = B V B W είναι µια ϐάση του E. Εύκολα ϐλέπουµε ότι ϑέτοντας B = M B V B V (f) και C = M B W B (g), έχουµε : W MB B (f g) = B C = B C Παράδειγµα 5.9. Εστω E ένας διανυσµατικός χώρος πεπερασµένης διάστασης και υποθέτουµε ότι E = V W, για κάποιους υπόχωρους V, W του E. Εστω f : E E µια γραµµική απεικόνιση. Υποθέτουµε ότι : f(v) V και f(w) W. Τότε ορίζονται οι περιορισµοί της f στους υπόχωρους V και W: Προφανώς ϑα έχουµε : f V : V V, f W : W W, f = f V f W f V ( v) = f( v) f W ( w) = f( w)

7 30 Θεώρηµα Εστω f : E E µια γραµµική απεικόνιση, όπου dim K E <. Τότε η f µπορεί να γραφεί ώς ευθύ άθροισµα f = g h κατάλληλων γραµµικών απεικονίσεων g : V V και h: W W, όπου V, W είναι υπόχωροι του E, και όπου : (1) η γραµµική απεικόνιση g : V V είναι ισοµορφισµός. (2) η γραµµική απεικόνιση h : W W είναι µηδενοδύναµη, δηλ. h m = 0, για κάποιο m 1. Απόδειξη. Θεωρούµε τον ϕυσικό αριθµό m του Θεωρήµατος 5.4, και ϑέτουµε : Τότε από το Θεώρηµα 5.4 ϑα έχουµε : V := Im(f m ) και W := Im(f m ) E = V W Από το Λήµµα 5.3 έπεται ότι f(v) V και η επαγόµενη γραµµική απεικόνιση f V : V V είναι ισο- µορφισµός, και f(w) W και η επαγόµενη γραµµική απεικόνιση f W : W W είναι µηδενοδύναµη. Θέτοντας g = f V και h = f W, µε χρήση του Παραδείγµατος 5.9 ϑα έχουµε το Ϲητούµενο. Θεώρηµα Εστω A M n n (K) ένας τετραγωνικός πίνακας. Τότε ο A είναι όµοιος µε έναν πίνακα D ο οποίος ώς ευθύ άθροισµα πινάκων : D = B C όπου B M k k (K), C M r r (K), όπου k + r = n, και : (1) ο πίνακας B είναι αντιστρέψιµος. (2) ο πίνακας C είναι µηδενοδύναµος, δηλ. C m = 0, για κάποιο m 1. Απόδειξη. Εφαρµόζουµε το Θεώρηµα 5.10 για την γραµµική απεικόνιση f A : K n K n, Υπάρχουν υπόχωροι V και W του K n έτσι ώστε : K n = V V f A (X) = A X και f A (V) V και f A (W) W. Με χρήση του Παραδείγµατος 5.8 και του Θεωρήµατος 5.11, αν B 1 είναι µια ϐάση του V και B 2 είναι µια ϐάση του W, τότε ϑέτοντας B = B 1 B 2, ϑα έχουµε µια ϐάση του K n στην οποία ο πίνακας D της f A ϑα είναι το ευθύ άθροισµα B C πινάκων, όπου B είναι ένας αντιστρέψιµος k k πίνακας, ο C είναι ένας µηδενοδύναµος r r πίνακας, και k + r = n. Εποµένως ο πίνακας A είναι όµοιος µε τον πίνακα D = B C.

8 Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας

9 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης «Γραμμική Άλγεβρα ΙΙ». Έκδοση: 1.0. Ιωάννινα Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 4.0 [1] ή μεταγενέστερη. [1]

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος

Γραµµικη Αλγεβρα ΙΙ. Εκπαιδευτικο Υλικο Μαθηµατος Γραµµικη Αλγεβρα ΙΙ Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 011-01 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laiihtml

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών

Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα

Διαβάστε περισσότερα

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις

Κεφάλαιο 8 1. Γραµµικές Απεικονίσεις Σελίδα 1 από 9 Κεφάλαιο 8 1 Γραµµικές Απεικονίσεις Τα αντικείµενα µελέτης της γραµµικής άλγεβρας είναι σύνολα διανυσµάτων που χαρακτηρίζονται µε την αλγεβρική δοµή των διανυσµατικών χώρων. Όπως λοιπόν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 8: ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογικά στοιχεία καρκίνου του πνεύμονα Ο καρκίνος

Διαβάστε περισσότερα

(E) Το περιεχόμενο. Προγράμματος. διαφορετικά

(E) Το περιεχόμενο. Προγράμματος. διαφορετικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 12: Ηλεκτρικός Ισολογισμόςς Πλοίου Δημήτριος Νικόλαος Παγώνης Τμήμα Ναυπηγών

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα :Δημοσιονομική πολιτική. Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα :Δημοσιονομική πολιτική. Καραμάνης Κωνσταντίνος Μακροοικονομική Χρηματοοικονομική των,δημοσιονομική Επιχειρήσεων, πολιτική, Ενότητα : Βέλτιστη ΤΜΗΜΑ Κεφαλαιακή ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΚΑΙ ΗΠΕΙΡΟΥ- ΛΟΓΙΣΤΙΚΗΣ,

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα : Εισαγωγή βασικές οικονομικές έννοιες. Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα : Εισαγωγή βασικές οικονομικές έννοιες. Καραμάνης Κωνσταντίνος Μακροοικονομική, Χρηματοοικονομική Ενότητα των Επιχειρήσεων, :Εισαγωγή Ενότητα βασικές : έννοιες, Βέλτιστη ΤΜΗΜΑ Κεφαλαιακή ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ-Ανοικτά

Διαβάστε περισσότερα

Αρχιτεκτονική υπολογιστών

Αρχιτεκτονική υπολογιστών 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αρχιτεκτονική υπολογιστών Ενότητα 12 : Δομή και Λειτουργία της CPU 2/2 Φώτης Βαρζιώτης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα

Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα Ενότητα: Παραχώρηση (Franchising) Αν. Καθηγητής Μπακούρος Ιωάννης e-mail: ylb@uowm.gr,

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 6: Αντιστάθμιση γραμμών μεταφοράς με σύγχρονους αντισταθμιστές Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Διοίκηση Τουριστικών Μονάδων

Διοίκηση Τουριστικών Μονάδων Διοίκηση Τουριστικών Μονάδων Ενότητα 4: Ξενοδοχειακή Βιομηχανία. Γιανναράκης Γρηγόρης ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΓΡΕΒΕΝΑ) ΔΙΟΙΚΗΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή στην Επιστήμη και Τεχνολογία των Υπηρεσιών Εργαστήριο: XQuery - 2 Όνομα Καθηγητή: Χρήστος Νικολάου Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης

Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης Μάρκετινγκ Επιχειρήσεων Λιανικής Πώλησης Ενότητα 4: Συλλογή Εμπορευμάτων Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

(E) Κώδικας. Το περιεχόμενο. Προγράμματος. διαφορετικά

(E) Κώδικας. Το περιεχόμενο. Προγράμματος. διαφορετικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 1: Ο Νόμος του ΟΗΜ και ο Χρωματικός Κώδικας Δημήτριος Νικόλαος Παγώνης Τμήμα

Διαβάστε περισσότερα

Εισαγωγή στην Κλασική Αρχαιολογία ΙΙ (5ος - 4ος αι. π.χ.) Ιφιγένεια Λεβέντη

Εισαγωγή στην Κλασική Αρχαιολογία ΙΙ (5ος - 4ος αι. π.χ.) Ιφιγένεια Λεβέντη Εισαγωγή στην Κλασική Αρχαιολογία ΙΙ (5ος - 4ος αι. π.χ.) Ιφιγένεια Λεβέντη Τμήμα: Ιστορίας, Αρχαιολογίας και Κοινωνικής Ανθρωπολογίας Πανεπιστήμιο Θεσσαλίας 12. Γλύπτες του 4 ου αι. π.χ. Σκόπας, Ευφράνωρ,

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα

Αλγεβρικες οµες Ι. Θεωρητικα Θεµατα Αλγεβρικες οµες Ι Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 4 εκεµβρίου 2012

Διαβάστε περισσότερα

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο

Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Διεθνείς Επενδύσεις & Διεθνές Εμπόριο Ενότητα 3: Θεωρία του Διεθνούς Εμπορίου Θεωρητικές προσεγγίσεις Γεώργιος Μιχαλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΒΑΘΜΟΛΟΓΙΑ ΘΕΜΑΤΩΝ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΒΑΘΜΟΛΟΓΙΑ ΘΕΜΑΤΩΝ ΣΕΛΙ Α 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΣΕΠΤΕΜΒΡΙΟΣ 2009 ΠΑΡΑΚΑΛΕΙΣΘΕ ΝΑ ΣΥΜΠΛΗΡΩΣΕΤΕ ΤΑ ΚΑΤΩΤΕΡΩ ΜΕ ΚΕΦΑΛΑΙΑ ΓΡΑΜΜΑΤΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΟΝΟΜΑ ΠΑΤΡΟΣ.. ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ: ΟΜΑ Α ΘΕΜΑΤΩΝ Β ΠΑΡΑΚΑΛΕΙΣΘΕ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ

Διαβάστε περισσότερα

Υγιεινή. Πρωτεΐνες. Λεοτσινίδης Μιχάλης Καθηγητής Υγιεινής Ιατρική Σχολή Πανεπιστήμιο Πατρών

Υγιεινή. Πρωτεΐνες. Λεοτσινίδης Μιχάλης Καθηγητής Υγιεινής Ιατρική Σχολή Πανεπιστήμιο Πατρών Υγιεινή Πρωτεΐνες Λεοτσινίδης Μιχάλης Καθηγητής Υγιεινής Ιατρική Σχολή Πανεπιστήμιο Πατρών Αποτελούνται από αμινοξέα ενωμένα με πεπτιδικούς δεσμούς. Μέση σύσταση: Ν: 16 % C: 50 % H: 7 % O: 22 % S: 0,5-3%

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 2: Βασικές αρχές λειτουργίας και χρήσης του υπολογιστή Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Πολυμεσικές Εφαρμογές

Πολυμεσικές Εφαρμογές Πολυμεσικές Εφαρμογές Ενότητα 7: ΒΙΝΤΕΟ Γεώργιος Στυλιαράς Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών ΕΙΣΑΓΩΓΙΚΑ Αναλογικό και ψηφιακό

Διαβάστε περισσότερα

Βρογχοσκόπηση. Ενότητα 3: Διαγνωστικές εξετάσεις. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Βρογχοσκόπηση. Ενότητα 3: Διαγνωστικές εξετάσεις. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Βρογχοσκόπηση Ενότητα 3: Διαγνωστικές εξετάσεις Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Βρογχοσκόπηση (καλωσόρισμα) Εύκαμπτο βρογχοσκόπιο Επιθεώρηση βρογχικού δέντρου

Διαβάστε περισσότερα

ΒΥΖΑΝΤΙΝΗ ΙΣΤΟΡΙΑ. Διάλεξη 1 Βυζαντινή Ιστορία: Ορολογία Περιοδολογήσεις - Iδεολογικοποίηση. Νικόλαος Γ. Χαραλαμπόπουλος Τμήμα Φιλολογίας

ΒΥΖΑΝΤΙΝΗ ΙΣΤΟΡΙΑ. Διάλεξη 1 Βυζαντινή Ιστορία: Ορολογία Περιοδολογήσεις - Iδεολογικοποίηση. Νικόλαος Γ. Χαραλαμπόπουλος Τμήμα Φιλολογίας ΒΥΖΑΝΤΙΝΗ ΙΣΤΟΡΙΑ Διάλεξη 1 Βυζαντινή Ιστορία: Ορολογία Περιοδολογήσεις - Iδεολογικοποίηση Νικόλαος Γ. Χαραλαμπόπουλος Τμήμα Φιλολογίας Σκοποί ενότητας Με την εισαγωγική διάλεξη επιδιώκεται η εισαγωγή

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 2: Προγραμματισμός Ανθρώπινου Δυναμικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Εισαγωγή στην Κλασική Αρχαιολογία ΙΙ (5ος - 4ος αι. π.χ.) Ιφιγένεια Λεβέντη

Εισαγωγή στην Κλασική Αρχαιολογία ΙΙ (5ος - 4ος αι. π.χ.) Ιφιγένεια Λεβέντη Εισαγωγή στην Κλασική Αρχαιολογία ΙΙ (5ος - 4ος αι. π.χ.) Ιφιγένεια Λεβέντη Τμήμα: Ιστορίας, Αρχαιολογίας και Κοινωνικής Ανθρωπολογίας Πανεπιστήμιο Θεσσαλίας 9. Ναοί του 4 ου αι. π.χ. στην ηπειρωτική Ελλάδα

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Τεχνικό Σχέδιο Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Διάλεξη 1η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ Εισαγωγή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Διοικητική των επιχειρήσεων

Διοικητική των επιχειρήσεων Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Διοικητική των επιχειρήσεων Ενότητα 13 :Ιστορία της Διοικητικής Σκέψης Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Πυελική μάζα. Ενότητα 3: Πύελος Παθολογία πυέλου

Πυελική μάζα. Ενότητα 3: Πύελος Παθολογία πυέλου Πυελική μάζα Ενότητα 3: Πύελος Παθολογία πυέλου Γεώργιος Α. Ανδρουτσόπουλος Επίκουρος Καθηγητής Ιατρική Σχολή Μαιευτικής - Γυναικολογίας Πανεπιστημίου Πατρών Σκοποί ενότητας Παρουσίαση Πυελικής Μάζας Πρόπτωση

Διαβάστε περισσότερα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα

= (1, 0,1, 0) είναι γραµµικά ανεξάρτητα ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θέµα α) (µ) Θεωρούµε ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ 7 Ιουλίου 3 (διάρκεια: 3 ώρες

Διαβάστε περισσότερα

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ:

n. Έστω αποτελείται από όλους τους πίνακες που αντιμετατίθενται με ένα συγκεκριμένο μη μηδενικό nxn πίνακα Τ: Η ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ καθώς είναι από τα σημαντικότερα κομμάτια της Άλγεβρας με τις περισσότερες εφαρμογές ΔΕΝ πρέπει να αποστηθίζεται και κυρίως ΔΕΝ πρέπει να γίνεται αντιπαθητική. Για τη σωστή εκμάθηση

Διαβάστε περισσότερα

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.)

Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ανανεώσιμες Πηγές Ενέργειας (Α.Π.Ε.) Ενότητα 5: Γεωθερμία Σπύρος Τσιώλης Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Μέθοδοι Βελτιστοποίησης

Μέθοδοι Βελτιστοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μέθοδοι Βελτιστοποίησης Ενότητα # 5: Ασκήσεις Αθανάσιος Σπυριδάκος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 11: Ιοανταλλαγή. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογία

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 11: Ιοανταλλαγή. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογία ΥΔΡΟΧΗΜΕΙΑ Ενότητα 11: Ιοανταλλαγή Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογία Σκοποί ενότητας Κατανόηση του φαινομένου της ιοντικής ανταλλαγής Περιεχόμενα ενότητας 1) Ρόφηση 2) Απορρόφηση

Διαβάστε περισσότερα

Ιστορία των Θετικών Επιστημών

Ιστορία των Θετικών Επιστημών Ιστορία των Θετικών Επιστημών Ενότητα 13: Η Επιστημολογία από το 1800 έως το 1950 Ευθύμιος Ντάλλας Πανεπιστήμιο Θεσσαλίας Τμήμα: Ιστορίας, Αρχαιολογίας, Κοινωνικής Ανθρωπολογίας Σκοποί Ενότητας Η γνώση

Διαβάστε περισσότερα

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία

Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Αλληλεπίδραση Ανθρώπου- Υπολογιστή & Ευχρηστία Ενότητα 3: Ο Υπολογιστής Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ).

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. Εποµένως η f είναι κοίλη στο διάστηµα (, 1] και κυρτή στο [ 1, + ). 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ Α. Βλέπε σχολικό βιβλίο σελίδα 194, το θεώρηµα ενδιάµεσων τιµών. Β. Βλέπε τον ορισµό στη σελίδα 279 του σχολικού βιβλίου. Γ. Βλέπε

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Εισαγωγή στα Λειτουργικά

Εισαγωγή στα Λειτουργικά Εισαγωγή στα Λειτουργικά Συστήματα Ενότητα 9: Αρχεία ΙΙ Γεώργιος Φ. Φραγκούλης Τμήμα Ηλεκτρολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

ροµολόγηση πακέτων σε δίκτυα υπολογιστών

ροµολόγηση πακέτων σε δίκτυα υπολογιστών ροµολόγηση πακέτων σε δίκτυα υπολογιστών Συµπληρωµατικές σηµειώσεις για το µάθηµα Αλγόριθµοι Επικοινωνιών Ακαδηµαϊκό έτος 2011-2012 1 Εισαγωγή Οι παρακάτω σηµειώσεις παρουσιάζουν την ανάλυση του άπληστου

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÏÑÏÓÇÌÏ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (θεώρ Frmat) σχολικό βιβλίο, σελ 6-6 Α Θεωρία (ορισµός) σχολικό βιβλίο, σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Δημιουργία ανοικτών μαθημάτων- ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ- ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΑΚΑΔΗΜΙΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΝΗΜΕΡΩΣΗ ΕΞΩΤΕΡΙΚΩΝ ΣΥΝΕΡΓΑΤΩΝ- ΠΝΕΥΜΑΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ

Δημιουργία ανοικτών μαθημάτων- ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ- ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΑΚΑΔΗΜΙΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΝΗΜΕΡΩΣΗ ΕΞΩΤΕΡΙΚΩΝ ΣΥΝΕΡΓΑΤΩΝ- ΠΝΕΥΜΑΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ Δημιουργία ανοικτών μαθημάτων- ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ- ΕΚΚΛΗΣΙΑΣΤΙΚΗ ΑΚΑΔΗΜΙΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΝΗΜΕΡΩΣΗ ΕΞΩΤΕΡΙΚΩΝ ΣΥΝΕΡΓΑΤΩΝ- ΠΝΕΥΜΑΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ ΠΕΡΙΕΧΟΜΕΝΑ 1. ΠΝΕΥΜΑΤΙΚΑ ΔΙΚΑΙΩΜΑΤΑ 2. ΑΔΕΙΕΣ Creative

Διαβάστε περισσότερα

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ

Υψηλές Τάσεις. Ενότητα 4: Υγρά Μονωτικά Υλικά. Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υψηλές Τάσεις Ενότητα 4: Υγρά Μονωτικά Υλικά Κωνσταντίνος Ψωμόπουλος Τμήμα Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διοίκηση ανθρωπίνων Πόρων. Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Διοίκηση ανθρωπίνων Πόρων Ενότητα 4: Εντοπισμός και προσέλκυση προσωπικού Δρ. Καταραχιά Ανδρονίκη Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών»)

Δραστηριότητα για τους µαθητές µε το κόσκινο του Ερατοσθένη:.. (και άσκηση 10 σελ. 219 «Η φύση και η δύναµη των µαθηµατικών») Πρώτοι αριθµοί: Τι µας λέει στο βιβλίο (σελ.25-26): 1. Μου αρέσουν οι πρώτοι αριθµοί, γι αυτό αρίθµησα µε πρώτους τα κεφάλαια. Οι πρώτοι αριθµοί είναι αυτό που αποµένει όταν αφαιρέσεις όλα τα στερεότυπα

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι

ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕ ΜΗΧΑΝΟΓΡΑΦΗΜΕΝΗ ΛΟΓΙΣΤΙΚΗ Ι ΚΑΘΗΓΗΤΗΣ ΔΑΠΗΣ ΔΗΜΗΤΡΙΟΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 3: Μελέτες Φωτισμού Εσωτερικών Χώρων Mέθοδος Favie-Οικονομόπουλος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ

3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ 20 3. ΠΑΡΑΜΕΤΡΟΙ ΚΑΤΑΝΟΜΩΝ ΟΡΙΣΜΟΣ ΤΗΣ ΜΕΣΗΣ ΤΙΜΗΣ Μια πολύ σηµαντική έννοια στη θεωρία πιθανοτήτων και τη στατιστική είναι η έννοια της µαθηµατικής ελπίδας ή αναµενόµενης τιµής ή µέσης τιµής µιας τυχαίας

Διαβάστε περισσότερα

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών 1 Σκοπός Η εξοικείωση των φοιτητών με την πειραματική

Διαβάστε περισσότερα

Οδηγίες Οργάνωσης Μαθήματος στην Ιδρυματική πλατφόρμα του open e class. Σύνταξη: MY-AOC

Οδηγίες Οργάνωσης Μαθήματος στην Ιδρυματική πλατφόρμα του open e class. Σύνταξη: MY-AOC Οδηγίες Οργάνωσης Μαθήματος στην Ιδρυματική πλατφόρμα του open e class Σύνταξη: MY-AOC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons. Οργάνωση Μαθήματος 3 Η πλήρης οργάνωση ενός

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Εργαστήριο

Αρχιτεκτονική Υπολογιστών Εργαστήριο Αρχιτεκτονική Υπολογιστών Εργαστήριο Ενότητα: ΠΑΡΑΔΕΙΓΜΑ ΑΠΟΣΦΑΛΜΑΤΩΣΗΣ Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι

Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι Ενότητα 1: Εισαγωγή Βασικές Έννοιες για τις Ε.Η.Ε. Σταύρος Καμινάρης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μικροοικονομική. Ενότητα 10: Μονοπωλιακός Ανταγωνισμός. Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μικροοικονομική Ενότητα 10: Μονοπωλιακός Ανταγωνισμός Σόρμας Αστέριος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 1: Εισαγωγή στη Βιοϊατρική Τεχνολογία Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail:

Διαβάστε περισσότερα

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ. 2 η θεματική ενότητα: Χημικοί δεσμοί και μοριακές ιδιότητες

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ. 2 η θεματική ενότητα: Χημικοί δεσμοί και μοριακές ιδιότητες ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ 2 η θεματική ενότητα: Χημικοί δεσμοί και μοριακές ιδιότητες Σχολή: Περιβάλλοντος Τμήμα: Επιστήμης Τροφίμων και Διατροφής Εκπαιδευτής: Χαράλαμπος Καραντώνης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ ΤΟ ΟΛΟΚΛΗΡΩΜΑ ΕΙΣΑΓΩΓΗ Ο κύριος στόχος αυτού του κεφαλαίου είναι να δείξουµε ότι η ολοκλήρωση είναι η αντίστροφη πράξη της παραγώγισης και να δώσουµε τις βασικές µεθόδους υπολογισµού των ολοκληρωµάτων

Διαβάστε περισσότερα

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα.

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. 2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. Για εκπαιδευτικό υλικό, όπως εικόνες, διαγράμματα,

Διαβάστε περισσότερα

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Επιχειρησιακές Επικοινωνίες

Επιχειρησιακές Επικοινωνίες ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Επιχειρησιακές Επικοινωνίες Ενότητα # 4: Ακροατήρια-Κοινά-Στόχοι Πρόδρομος Γιαννάς Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 12: Δημοπρασίες ανερχόμενων και κατερχόμενων προσφορών Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 1 Διάλεξη 1. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 1 Διάλεξη 1 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Κοινωνιολογία της Υγείας

Κοινωνιολογία της Υγείας Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Κοινωνιολογία της Υγείας Ενότητα 10 : Κοινωνιολογία του Σώματος Μέρος Γ Μαίρη Γκούβα 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Νοσηλευτικής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Πλήρης οδηγός δημιουργίας ενός Ανοικτού Ακαδημαϊκού Μαθήματος. Μονάδα Υλοποίησης Ανοικτών Ακαδημαϊκών Μαθημάτων ΕΜΠ

Πλήρης οδηγός δημιουργίας ενός Ανοικτού Ακαδημαϊκού Μαθήματος. Μονάδα Υλοποίησης Ανοικτών Ακαδημαϊκών Μαθημάτων ΕΜΠ Πλήρης οδηγός δημιουργίας ενός Ανοικτού Ακαδημαϊκού Μαθήματος AO Μονάδα Υλοποίησης Ανοικτών Ακαδημαϊκών Μαθημάτων ΕΜΠ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε

Διαβάστε περισσότερα

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής

Μικροοικονομία. Ενότητα 1: Εισαγωγικές έννοιες. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Μικροοικονομία Ενότητα 1: Εισαγωγικές έννοιες Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ

ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Ηλεκτρονικό Εμπόριο. Ενότητα 1: Εισαγωγικές Έννοιες. Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Ηλεκτρονικό Εμπόριο. Ενότητα 1: Εισαγωγικές Έννοιες. Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Ηλεκτρονικό Εμπόριο Ενότητα 1: Εισαγωγικές Έννοιες Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Ιστορία του Αραβοϊσλαμικού Πολιτισμού

Ιστορία του Αραβοϊσλαμικού Πολιτισμού Ιστορία του Αραβοϊσλαμικού Πολιτισμού Ενότητα 3: Ιστορική Ανασκόπηση των Ισλαμικών Αυτοκρατοριών Δημήτριος Σταματόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα