Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος
|
|
- Δάμαρις Ελευθερίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών
2 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i) = a i με το μεγαλύτερο i N {0}, όπου f(i) 0 R Ονομάζουμε ένα μη μηδενικό πολυώνυμο μονοστό, αν ο επικεφαλής του συντελεστής ισούται με 1 R Παραδείγματα 121 Έστω ο δακτύλιος των ακεραίων αριθμών (Z, +, ) και Z[x] ο αντίστοιχος δακτύλιος των πολυωνύμων μιας μεταβλητής υπεράνω τού Z Το πολυώνυμο f 1 (x) = 2 Z[x] έχει deg f 1 (x) = 0, το f 2 (x) = 2+x 3n Z[x], n N έχει deg f 2 (x) = 3n και το πολυώνυμο f 3 (x) = 1 + x + x x n, n N έχει deg f 3 (x) = n Ο επικεφαλής συντελεστής τού f 1 (x) είναι 2 Tα f 2 (x) και f 3 (x) είναι μονοστά πολυώνυμα Πρόταση 122 Αν ο δακτύλιος (R, +, ) είναι ακέραια περιοχή, τότε και ο δακτύλιος R[x] είναι ακέραια περιοχή και μάλιστα f(x), g(x) R[x] είναι deg f(x)g(x) = deg f(x) + deg g(x) Απόδειξη Αν ένα από τα δύο πολυώνυμα είναι το μηδενικό, τότε το γινόμενό τους είναι επίσης το μηδενικό πολυώνυμο και από την παραδοχή που κάναμε, βλ (**), σχετικά με τον βαθμό τού μηδενικού πολυνωύμου έπεται η ισότητα deg f(x)g(x) = deg f(x) + deg g(x) Αν ούτε το f(x) = a 0 +a 1 x+ +a n x n είναι το μηδενικό πολυώνυμο, ας πούμε ότι deg f(x) = n, ούτε το g(x) = b 0 +b 1 x+ +b m x m είναι το μηδενικό πολυώνυμο, ας πούμε ότι deg g(x) = m, τότε ο επικεφαλής συντελεστής τού γινομένου f(x)g(x) είναι ο a n b m 0 R, επειδή a n 0 R, b m 0 R και επειδή ο R είναι ακεραια περιοχή Συνεπώς, deg f(x)g(x) = n + m = deg f(x) + deg g(x) Παρατηρήσεις 121 Εππιλέον αν, (R, +, ) είναι οποιοσδήποτε μοναδιαίος δακτύλιος, f(x), g(x) R[x], deg(f(x) + g(x)) max{deg f(x), deg g(x)} 13 Ιδεώδη και Περιοχές κυρίων Ιδεωδών Έστω (R, +, ) ένας μοναδιαίος μεταθετικός δακτύλιος και I R ένα υποσύνολό του Υπενθυμίζουμε ότι Ορισμός 131 Το I R είναι ένα ιδεώδες τού (R, +, ) αν, το ζεύγος (I, +) είναι μια υποομάδα τού (R, +) και το I είναι κλειστό ως προς τον πολλαπλασιασμό με τα στοιχεία τού R, δηλαδή a I και r R, το στοιχείο ra ανήκει στο I 7 Ν Μ
3 1 Π Έ Επιπλέον υπενθυμίζουμε ότι ένα ιδεώδες I τού R ονομάζεται πεπερασμένως παραγόμενο αν, υπάρχει ένα πεπερασμένο υποσύνολο A = {a 1, a 2,, a t } τού R, ώστε κάθε στοιχείο a I να είναι ένας R γραμμικός συνδυασμός στοιχείων τού A, δηλαδή για κάθε a I να υπάρχουν r 1, r 2,, r t R (όχι απαραιτήτως μοναδικά) με a = t i=1 r ia i Στην περίπτωση αυτή γράφουμε I = a 1, a 2,, a t Υπενθυμίζουμε ακόμη ότι το ιδεώδες t a 1, a 2,, a t = { r i a i a i A, r i R, i = 1, 2,, t} i=1 είναι το μικρότερο (ως προς τη σχέση ) ιδεώδες τού R που περιέχει το A Ορισμός 132 Ένα ιδεώδες I τού R ονομάζεται κύριο, αν παράγεται από ένα μονοσύνολο τού R, δηλαδή αν υπάρχει a R με I = a Ένας δακτύλιος, τού οποίου κάθε ιδεώδες είναι κύριο ονομάζεται δακτύλιος κυρίων ιδεωδών Ιδιαιτέρως, Ορισμός 133 Ένας μοναδιαίος μεταθετικός δακτύλιος (R, +, ) ονομάζεται περιοχή κυρίων ιδεωδών αν, είναι ακέραια περιοχή και κάθε ιδεώδες του είναι κύριο Συνήθως δηλώνουμε μια περιοχή κυρίων ιδεωδών, γράφοντας τη συντόμευση ΠΚΙ Ήδη γνωρίζουμε ότι Πρόταση 131 Ο δακτύλιος των ακεραίων αριθμών είναι ΠΚΙ Απόδειξη (Περιγραφή) Τα ιδεώδη τού Z συμπίπτουν ακριβώς με τις υποομάδες τού Z Κάθε υποομάδα τού Z είναι κυκλική και επομένως κάθε ιδεώδες τού Z είναι κύριο Στη παρούσα ενότητα θα αποδείξουμε ότι ο δακτύλιος πολυωνύμων μιας μεταβλητής υπεράνω ενός σώματος είναι ΠΚΙ και γι αυτό χρειαζόμαστε τη λεγόμενη Ευκλείδεια Διαίρεση Πολυωνύμων, την οποία διατυπώνουμε λίγο γενικότερα στο ακολουθο: Ν Μ 8
4 13 Ι Π Ι Λήμμα 131 (Ευκλείδεια Διαίρεση Πολυωνύμων) Έστω (R, +, ) ένας μοναδιαίος μεταθετικός δακτύλιος και f(x), g(x) δύο πολυώνυμα τού R[x], όπου ο επικεφαλής συντελεστής τού g(x) είναι αντιστρέψιμο στοιχείο τού R Υπάρχουν πολυώνυμα q(x) (το λεγόμενο πηλίκο) και r(x) (το λεγόμενο υπόλοιπο) τού R[x] με f(x) = q(x)g(x) + r(x), όπου deg r(x) < deg g(x) (*) Επιπλέον αν, o R είναι ακέραια περιοχή, τότε q(x) και r(x) είναι τα μοναδικά πολυώνυμα που ικανοποιούν την (*) Στην περίπτωση που ο R δεν είναι ακέραια περιοχή τα q(x), r(x) δεν είναι απαραιτήτως μοναδικά Παράδειγμα 131 Στον δακτύλιο Z 6 [x] θεωρούμε τα πολυώνυμα Παρατηρούμε ότι f(x) = [2]x 3 + [2]x + [2], και g(x) = [2]x 2 + [2] [2]x 3 + [2]x + [2] = q 1 (x)g(x) + r 1 (x), q 1 (x) = [3]x 2 + x, r 1 (x) = 2, deg r 1 = 0 < 2 = deg g(x) και [2]x 3 + [2]x + [2] = q 1 (x)g(x) + r 1 (x), q 2 (x) = x + [3], r 2 (x) = 2, deg r 2 = 0 < 2 = deg g(x) Θεώρημα 131 Ο δακτύλιος πολυωνύμων F[x] μιας μεταβλητής υπεράνω ενός σώματος F είναι ΠΚΙ Απόδειξη Σύμφωνα με την Πρόταση 122 ο δακτύλιος F[x] είναι ακέραια περιοχή Έστω I ένα ιδεώδες τού F[x] Αν I = {0 F[x] }, τότε I = 0 F[x] Αν I {0 F[x] }, τότε το I περιέχει και μη μηδενικά πολυώνυμα Μεταξύ αυτών των μη μηδενικών πολυωνύμων τού I θεωρούμε ένα g(x) I ελαχίστου βαθμού Θα δείξουμε ότι κάθε f(x) I είναι πολλαπλάσιο τού g(x) Πράγματι, εκτελώντας την Ευκλείδεια Διαίρεση τού f(x) δια τού g(x) έχουμε: f(x) = q(x)g(x) + r(x), deg r(x) < deg g(x) Παρατηρώντας ότι το πολυώνυμο r(x) = f(x) q(x)g(x) ανήκει στο I, (αφού τα f(x) και q(x)g(x) ανήκουν στο ιδεώδες I), συμπεραίνουμε ότι το r(x) οφείλει να ισούται με το μηδενικό πολυώνυμο, επειδή στην αντίθετη περίπτωση το πολυώνυμο g(x) I δεν είναι ένα ελαχίστου βαθμού μη μηδενικό πολυώνυμο τού I Ώστε, f(x) = q(x)g(x) και συνεπώς I = g(x) 9 Ν Μ
5 1 Π Έ Προσέξτε ότι αν ένας δακτύλιος R είναι ΠΚΙ, τότε δεν έπεται απαραιτήτως ότι και ο R[x] είναι ΠΚΙ Παράδειγμα 132 Ο δακτύλιος Z είναι ΠΚΙ, αλλά ο Z[x] δεν είναι ΠΚΙ Πράγματι, ας θεωρήσουμε το ιδεώδες που παράγεται από τα 2, x Z[x] 2, x = {f(x)2 + g(x)x f(x), g(x) Z[x]} Z[x] (*) Μια άλλη περιγραφή τού 2, x είναι ότι αποτελείται από τα πολυώνυμα τού Z[x] που έχουν τον σταθερό τους όρο άρτιο Ιδιαιτέρως το 2, x περιέχεται γνήσια εντός τού Z[x], αφού 1 / 2, x Υποθέτοντας ότι το ιδεώδες 2, x είναι κύριο, δηλαδή ότι υπάρχει l(x) Z[x] με l(x) = 2, x, θα καταλήξουμε σε άτοπο Πράγματι, αν ήταν έτσι θα είχαμε 2 l(x) και x l(x) Επομένως, 2 = α(x)l(x), x = β(x)l(x), α(x), β(x) Z[x] Στον Z[x] ο βαθμός τού γινομένου δύο πολυωνύμων ισούται με το άθροισμα των βαθμών τους και έτσι deg 2 = deg(α(x)l(x)) = deg α(x) + deg l(x) 0 = deg α(x) + deg l(x) Επομένως, τα a(x) και l(x) είναι ακέραιοι αριθμοί Αλλά τότε το l(x) = ±1, ±2 Επειδή 2, x Z[x] έπεται ότι l(x) ±1 και συνεπώς l(x) = ±2 Τώρα όμως, λόγω τής (*), έπεται ότι x = ±2β(x) Αυτό όμως είναι άτοπο, αφού ο συντελεστής τού x ισούται με 1, ενώ ο συντελεστής τού ±2β(x) είναι σε κάθε περίπτωση άρτιος Τίθεται λοιπόν το ερώτημα, πώς βρίσκουμε τον γεννήτορα κάποιου ιδεώδους πολυωνυμικού δακτυλίου υπεράνω ενός σώματος; Η απάντηση βρίσκεται στην έννοια τού μέγιστου κοινού διαιρέτη Έστω (R, +, ) ένας μεταθετικός μοναδιαίος δακτύλιος και a, b R Το στοιχείο a διαιρεί το στοιχείο b αν, υπάρχει c R με b = ac (Σύμβολο: a b) Τα στοιχεία a, c ονομάζονται διαιρέτες τού b Τα επόμενα είναι προφανή: (αʹ) a b b a (βʹ) a R, a 0 R (γʹ) 0 R a a = 0 R (δʹ) a R, a a (εʹ) a 1 R a αντιστρέψιμο στοιχείο τού R Ν Μ 10
6 13 Ι Π Ι Ορισμός 134 Έστω R μια ακέραια περιοχή και f(x), g(x) δύο πολυώνυμα τού R[x] Ονομάζουμε μέγιστο κοινό διαιρέτη των f(x), g(x) ένα πολυώνυμο d(x) R[x] με τις ακόλουθες ιδιότητες: (αʹ) d(x) f(x) και d(x) g(x), (βʹ) αν d (x) R[x] με d (x) f(x) και d (x) g(x), τότε d (x) d(x), (γʹ) τέλος απαιτούμε το d(x) να είναι μονοστό πολυώνυμο Συμβολίζουμε τον μέγιστο κοινό διαρέτη των f(x), g(x) με ΜΚΔ(f(x), g(x)) Παρατηρήσεις 131 Αν υπάρχει ο ΜΚΔ δύο πολυωνύμων f(x), g(x) R[x], όπου τουλάχιστον ένα από τα δύο είναι 0 R, τότε είναι μοναδικός Πράγματι, ας είναι d 1 (x) d 2 (x) δύο μέγιστοι κοινοί διαιρέτες των f(x), g(x) Προφανώς, d 1 (x) 0 R και d 2 (x) 0 R Τότε d 1 (x) d 2 (x) και d 2 (x) d 1 (x) και συνεπώς d 2 (x) = l(x)d 1 (x), d 1 (x) = λ(x)d 2 (x) (*), όπου l(x), λ(x) R[x] Επομένως, d 1 (x) = λ(x)d 2 (x)l(x)d 1 (x) και αφού ο R είναι ακέραια περιοχή έπεται deg d 1 = deg λ + deg l + deg d 1 deg λ + deg l = 0 deg λ = deg l = 0 Ώστε τα λ(x), l(x) είναι σταθερά μη μηδενικά πολυώνυμα τού R[x], δηλαδή μη μηδενικά στοιχεία τού R Ας πούμε λ(x) = λ R, l(x) = l R Τώρα, από την (*) έπεται ότι ο επικεφαλής συντελεστής τού d 1 (x) (επειδή το d 2 (x) είναι μονοστό) ισούται με λ Αλλά και το d 1 (x) είναι επίσης μονοστό και γι αυτό λ = 1 και συνεπώς d 1 (x) = d 2 (x) Πρόταση 132 Έστω ότι το F είναι ένα σώμα και f(x), g(x) είναι δύο πολυώνυμα τού F[x] με g(x) 0 R Τότε υπάρχει ο ΜΚΔ(f(x), g(x)) = d(x) και μάλιστα f(x), g(x) = d(x) από όπου έπεται ότι ο ΜΚΔ(f(x), g(x)) = d(x) είναι τής μορφής d(x) = α(x)f(x) + β(x)g(x), α(x), β(x) F[x] Απόδειξη Το ιδεώδες f(x), g(x) που παράγεται από τα f(x), g(x) είναι μη μηδενικό και επειδή ο F[x] είναι ΠΚΙ, βλ Θεώρημα 131, υπάρχει κάποιο μη μηδενικό πολυώνυμο d(x) F[x] με d(x) = f(x), g(x) (*) Επιπλέον, μπορούμε να δεχθούμε χωρίς περιορισμό τής γενικότητας ότι το d(x) είναι μονοστό πολυώνυμο, αφού το ιδεώδες d(x) ισούται με το ιδεώδες a 1 d(x), όπου a 1 είναι ο επικεφαλής συντελεστής τού d(x) Παρατηρούμε ότι d(x) = α(x)f(x) + β(x)g(x)(**), αφού λόγω τής (*), d(x) f(x), g(x) Έχουμε f(x) d(x) και g(x) d(x) και συνεπώς d(x) f(x) και d(x) g(x) Αν d (x) F[x] με d (x) f(x) και d (x) g(x), τότε λόγω τής (**) έπεται ότι d (x) d(x) Επομένως, το πολυώνυμο d(x) είναι ο ΜΚΔ των f(x), g(x) 11 Ν Μ
7 1 Π Έ Προσδιορισμός ΜΚΔ δύο πολυωνύμων, όπου τουλάχιστον ένα δεν είναι το μηδενικό Έστω f(x), g(x) F[x] με g(x) 0 Εκτελούμε τη διαίρεση τού f(x) δια τού g(x) Αν το υπόλοιπο r 1 (x) τής διαίρεσης ισούται με μηδέν, τότε θα δείξουμε ότι ο ΜΚΔ(f(x), g(x))= a 1 g(x), όπου a είναι ο επικεφαλής συντελεστής τού g(x) Αν το r 1 (x) 0, τότε διαιρούμε το g(x) δια τού r 1 (x) Αν το υπόλοιπο r 2 (x) τής διαίρεσης ισούται με μηδέν, τότε θα δείξουμε ότι ο ΜΚΔ(f(x), g(x))= a 1 1 r 1(x), όπου a 1 είναι ο επικεφαλής συντελεστής τού r 1 (x) Αν το r 2 (x) 0, τότε διαιρούμε το r 1 (x) δια τού r 2 (x) Αν το υπόλοιπο r 3 (x) τής διαίρεσης ισούται με μηδέν, τότε θα δείξουμε ότι ο ΜΚΔ(f(x), g(x))= a 1 2 r 2(x), όπου a 2 είναι ο επικεφαλής συντελεστής τού r 2 (x) Συνεχίζουμε αυτήν τη διαδικασία διαιρώντας κάθε μη μηδενικό υπόλοιπο με το αμέσως προηγούμενο μη μηδενικό υπόλοιπο, μέχρις ότου να προκύψει μηδενικό υπόλοιπο Αυτό είναι βέβαιο ότι θα συμβεί, αφού deg g(x) > deg r 1 (x) > deg r 2 (x) > και ούτω καθεξής Στην αμέσως επόμενη σειρά ισοτήτων, βλ (*), παρουσιάζουμε ακριβώς αυτήν τη διαδικασία f = q 1 g + r 1 deg(r 1 ) < deg(g) g = q 2 r 1 + r 2 deg(r 2 ) < deg(r 1 ) r 1 = q 3 r 2 + r 3 deg(r 3 ) < deg(r 2 ) r n 2 = q n r n 1 + r n deg(r n ) < deg(r n 1 ) r n 1 = q n+1 r n + r n+1 deg(r n+1 ) < deg(r n ) r n = q n+2 r n+1 Θα δείξουμε ότι το a 1 n+1 r n+1(x), όπου a n+1 είναι ο επικεφαλής συντελεστής τού r n+1 (x) είναι ο ΜΚΔ(f(x), g(x)) Αρχίζοντας από την τελευταία ισότητα, παρατηρούμε ότι r n+1 r n και τώρα χρησιμοποιώντας την προτελευταία ισότητα έχουμε ότι r n+1 r n 1 Ανεβαίνοντας βήμα βήμα προς την πρώτη ισότητα, έχουμε διαδοχικά ότι r n+1 r n 2, r n+1 r n 3, r n+1 r 3, r n+1 r 2, r n+1 r 1, r n+1 g, r n+1 f Συνεπώς το πολυώνυμο a 1 n+1 r n+1(x) διαιρεί και αυτό τα f(x) και g(x) Αν τώρα ένα πολυώνυμο s(x) διαιρεί τα f(x) και g(x), τότε από την πρώτη ισότητα των σχέσεων (*), έπεται ότι s r 1 Κατόπιν από τη δεύτερη ισότητα των (*) έπεται ότι s r 2 και συνεχίζοντας κατ αυτόν τον τρόπο καταλήγουμε ότι s r n+1 Συνεπώς, το s(x) διαιρεί και το a 1 n+1 r n+1(x) Ώστε a 1 n+1 r n+1(x) =ΜΚΔ(f(x), g(x)) Παρατήρηση 131 Προσέξτε ότι η προηγούμενη κατασκευή τού μέγιστου κοινού διαιρέτη δύο πολυωνύμων F[x] εκτελείται εντός τού F[x] Συνεπώς ο ΜΚΔ(f(x), g(x)) των f(x), g(x) F[x] παραμένει ο ίδιος αν θεωρήσουμε τα f(x), g(x) ως στοιχεία ενός «ευρύτερου» πολυωνυμικού δακτυλίου K[x], όπου K σώμα με F K Ν Μ 12 (*)
8 14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς πρώτα ως πολυώνυμα τού F[x], δηλαδή ΜΚΔ(f(x), g(x))= 1, τότε ΜΚΔ(f(x), g(x))= 1 και ως πολυώνυμα τού K[x], όπου K υπέρσωμα τού F 14 Ομομορφισμοί και Πηλικοδάκτυλιοι Ομομορφισμοί Έστω R και S δύο μοναδιαίοι μεταθετικοί δακτύλιοι Υπενθυμίζουμε ότι Ορισμός 141 Ένας ομομορφισμός δακτυλίων από τον δακτύλιο R στον δακτύλιο S είναι μια απεικόνιση ϕ : R S που ικανοποιεί τα (αʹ) a, b R, ϕ(a + b) = ϕ(a) + ϕ(b), (βʹ) a, b R, ϕ(ab) = ϕ(a)ϕ(b), (γʹ) ϕ(1 R ) = 1 S Ονομάζουμε πυρήνα τού ομομορφισμού ϕ : R S, το σύνολο Kerϕ = {r R ϕ(r) = 0 S } Γνωρίζουμε ότι Λήμμα 141 Ο πυρήνας Kerϕ οποιουδήποτε ομομορφισμού ϕ : R S είναι ένα ιδεώδες τού R Υπενθυμίζουμε ότι ένας ομομορφισμός ϕ : R S ονομάζεται (αʹ) μονομορφισμός αν, ο ομομορφισμός ϕ είναι μια «1-1» απεικόνιση, (βʹ) επιμορφισμός αν, ο ομομορφισμός ϕ είναι μια «επί» απεικόνιση, (γʹ) ισομορφισμός αν, ο ομομορφισμός ϕ είναι μια «1-1» και «επί» απεικόνιση, Είναι γνωστά τα εξής: Λήμμα 142 (α ) Ένας ομομορφισμός δακτυλίων ϕ : R S είναι μονομορφισμός, αν και μόνο αν, Kerϕ = {0 R } (β ) Αν ϕ : R S είναι ένας ισομορφισμός,τότε και η αντίστροφη απεικόνιση ϕ 1 : S R, s ϕ 1 (s) = r όταν ϕ(r) = s, είναι επίσης ένας ισομορφισμός δακτυλίων 13 Ν Μ
9 Ανοικτά Ακαδημαϊκά Μαθήματα Πανεπιστήμιο Ιωαννίνων Τέλος Ενότητας
10 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Ιωαννίνων» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους Σημειώματα Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Ιωαννίνων, Διδάσκων : Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος «Αλγεβρικές Δομές ΙΙ Ιδεώδη και Περιοχές κυρίων Ιδεωδών» Έκδοση: 10 Ιωάννινα 2014 Διαθέσιμο από τη δικτυακή διεύθυνση: Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή, Διεθνής Έκδοση 40 [1] ή μεταγενέστερη [1]
1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:
13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)
Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος
Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ο Δακτύλιος Πολυωνύμων μιας Μεταβλητής Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 12 Ο Δ Π Μ δακτύλιο με τις πράξεις τού R και
Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος
Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ομομορφισμοί και Πηλικοδάκτυλιοι Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 14 Ο Π Ιδιαιτέρως, αν τα f(x), g(x) είναι σχετικώς
Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα. Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος
Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Δακτύλιοι, Ακέραιες Περιοχές, Σώματα Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών Κεφάλαιο 1 Προκαταρκτικές Έννοιες 1.1 Δακτύλιοι,
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Ευθέα Γινόμενα Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Ευθέα Γινόμενα Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Ευθέα Γινόμενα Ομάδων Για την περαιτέρω ανάπτυξη τής θεωρίας θα χρειαστούμε
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επιλύσιμες Ομάδες. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επιλύσιμες Ομάδες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 4 Επιλύσιμες Ομάδες 41 Προκαταρκτικές Έννοιες 411 Ορισμός και Παραδείγματα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - II Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 52 9 Η Κανονική Μορφή Jordan - II
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ισοµετρίες Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 78 12 Ισοµετρίες 121 Χαρακτηρισµός Ισοµετριών Εστω
ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα
ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που
Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.
Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό
Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν
Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I
Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 7 Βάσεις Groebner Ι Τετάρτη 21 Μαϊου 2014 7.1 Ιδεώδη μονονύμων Εχουμε ήδη δει οτι
Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού
Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος II Πολυώνυμα μίας μεταβλητής 17 Κεφάλαιο 3 Πολυώνυμα τρίτου βαθμού 3.1 Μάθημα
Υπολογιστική άλγεβρα Ενότητα 6: Ο αλγόριθμος της διαίρεσης
Υπολογιστική άλγεβρα Ενότητα 6: Ο αλγόριθμος της διαίρεσης Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος III Πολυώνυμα πολλών μεταβλητών 33 Κεφάλαιο 6 Ο αλγόριθμος της διαίρεσης Τετάρτη
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Χαρακτηριστικό Πολυώνυµο Γινοµένου Πινάκων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 4 Μέρος 1. Η οµή Ενός
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Το Θεώρηµα των Cayley-Hamilton Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 15 3. Το Θεώρηµα των Cayley-Hamilton
Νίκος Μαρμαρίδης. Σημειώσεις στη. Θεωρία Δακτυλίων
Νίκος Μαρμαρίδης Σημειώσεις στη Θεωρία Δακτυλίων Ιωάννινα 2014 Περιεχόμενα 1 Αρχικές Έννοιες Δακτυλίων 1 1.1 Δακτύλιοι................................... 1 1.2 Ομομορφισμοί Δακτυλίων..........................
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ταυτόχρονη ιαγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 31 6. Ταυτόχρονη ιαγωνοποίηση 6.1. Ταυτόχρονη
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Χαρακτηρισµοί Πεπερασµένων Κυκλικών Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 233 4. Χαρακτηρισµοί
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Εφαρµογές της Κανονικής Μορφής Jordan Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 46 8 Εφαρµογές της Κανονικής
Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)
6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Κανονική Μορφή Fitting Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 26 5. Κανονική Μορφή Fitting Εστω A M n
Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή
s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.
Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων
Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο
Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο
Α Δ Ι. Παρασκευή 17 Ιανουαρίου 2014
Α Δ Ι Α - Φ 10 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 17 Ιανουαρίου
Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού
Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 4 Πολυώνυμα τετάρτου και μεγαλυτέρου βαθμού 4.1 Εξίσωση τετάρτου
ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)
ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια
Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι
Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος I Εναρξη μαθήματος 5 7 Υπολογιστική Άλγεβρα (439) ) Ευάγγελος
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι
ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους
(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =
ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επεκτάσεις Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 Επεκτάσεις Ομάδων 6.1 Προκαταρκτικές Έννοιες Σύμφωνα με το Θεώρημα 4.2.4
< a 42 >=< a 54 > < a 28 >=< a 36 >
Ασκήσεις Βασικής Άλγεβρας και Λύσεις τους 4 Δεκεμβρίου 2013 1 Ασκήσεις και Λύσεις. 2013-14 1. (αʹ Εστω m, n δύο φυσικοί αριθμοί, τέτοιοι ώστε M K (m, n + 5 = MK (m + 5, n = 1. Αποδείξτε ότι MK (mn, m +
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Βαθµίδα Πίνακα. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Βαθµίδα Πίνακα Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 8 Βαθµιδα Πινακα Στο παρόν Κεφάλαιο ϑα µελετήσουµε την ϐαθµίδα ενός πίνακα
(a, b) (c, d) = (a + c, b + d) (a, b) (c, d) = (ac, ad + bc)
ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Χειμερινό Εξάμηνο 2016 Ασκήσεις 1. Δείξτε ότι ο a 1 διαιρεί τον a n 1 για κάθε a Z και κάθε n N. 2. Δίνονται οι ακέραιοι a = 126 και b = 434. (α Υπολογίστε το µκδ(a, b. (β Βρείτε x, y Z
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην
a b b < a > < b > < a >.
Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε
Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.
Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1
G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.
Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και
Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οι Οµάδες τάξης pq, p, q: πρώτοι αριθµοί Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 246 6. Οι Οµάδες τάξης
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Σταθµητοί Χώροι και Ευκλείδειοι Χώροι Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 59 Μέρος 2. Ευκλείδειοι
Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )
Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις
Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Το Θεώρημα Jordan Hölder Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Το Θεώρημα Jordan Hölder 31 Προκαταρκτικές Έννοιες 311 Υποορθόθετες
Αλγεβρικές Δομές Ι. 1 Ομάδα I
Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση
Ηλεκτρονικοί Υπολογιστές I
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Ελαστικότητα και εφαρμογές Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)
Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης
Ε Μέχρι 31 Μαρτίου 2015.
Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες
Α Δ Ι. Παρασκευή 25 Οκτωβρίου Ασκηση 1. Στο σύνολο των πραγματικών αριθμών R ορίζουμε μια σχέση R R R ως εξής:
Α Δ Ι Α - Φ 1 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 25 Οκτωβρίου 2013 Ασκηση
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές
Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε
Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Α Δ Ι. Παρασκευή 24 Ιανουαρίου 2014
Α Δ Ι Α - Φ 11 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 24 Ιανουαρίου
(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac
Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας
Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9
140/140 Άλγεβρα Ι(Μ) Λύσεις Ασκήσεων-Φυλλαδίο 9 Τσάνγκο Ιωσήφ 24 Απριλίου 2017 1. Εχω ότι R δακτύλιος, S υποδακτύλιος και I ιδεώδες του R. (Σχόλιο:Το πλήθος των απαντήσεων μου είναι ίδιο με αυτό των ερωτήσεων,
Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες
Γραμμική Άλγεβρα Ενότητα 4: Ορίζουσες Ευάγγελος Ράπτης Τμήμα Πληροφορικής 23 Μάθημα 23 Παρασκευή 30 Νοεμβρίου 2012 23.1 Ορίζουσες 1. Οι ορίζουσες εκτός των άλλων εφαρμογών, βοηθούν και στην εύρεση λύσεων
Περιεχόμενα Εισαγωγή στα πεπερασμένα σώματα
Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 3 1.1 Μάθημα 1..................................... 3 1.1.1 Στοιχεία αλγεβρικής θεωρίας....................... 4 1.2 Μάθημα 2.....................................
Βασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Ε Μέχρι 18 Μαΐου 2015.
Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson
ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobso Στο κεφάλαιο αυτό μελετάμε δακτυλίους του Art χρησιμοποιώντας το ριζικό του Jacobso. Ως εφαρμογή αποδεικνύουμε ότι κάθε δακτύλιος του Art είναι και της Noether. 4.1. Δακτύλιοι
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 1: Συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Μικροβιολογία & Υγιεινή Τροφίμων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μικροβιολογία & Υγιεινή Τροφίμων Μικροοργανισμοί που ελέγχονται ανά είδος τροφίμου Διδάσκοντες: Καθ. Χρυσάνθη Παπαδοπούλου, Λέκτορας Ηρακλής Σακκάς Άδειες
Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
4.2 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ
14 4 ΕΥΚΛΕΙΔΕΙΑ ΔΙΑΙΡΕΣΗ Ας υποθέσουμε ότι θέλουμε να βρούμε το πηλίκο και το υπόλοιπο της διαίρεσης του με τον Σύμφωνα με το γνωστό αλγόριθμο της διαίρεσης, το πηλίκο θα είναι ένας ακέραιος κ, τέτοιος,
Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)
11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα
Ιστορία των Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Αφηρημένη Άλγεβρα Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9.6: Θεωρία δακτυλίων:
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 9
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 11 Ιανουαρίου 2013 Ασκηση
Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες
Γραμμική Άλγεβρα Ενότητα 2: Εισαγωγικές έννοιες Ευάγγελος Ράπτης Τμήμα Πληροφορικής Μέρος I Εναρξη μαθήματος Γραμμική άλγεβρα Ι Ευάγγελος Ράπτης 1 Τα παρακάτω κείμενα, γράφονται και ενημερώνονται καθημερινά
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Σημάτων. Άσκηση 3η. Στυλιανού Ιωάννης. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Σημάτων Άσκηση 3η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το
ΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες
ΚΕΦΑΛΑΙΟ 3 Πολυωνυμικοί-Κυκλικοί Κώδικες Στα προηγούμενα ασχοληθήκαμε με τους γραμμικούς κώδικες και είδαμε πώς η δομή ενός γραμμικού κώδικα, ως διανυσματικού χώρου, καθιστά τις διαδικασίες κωδικοποίησης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ. Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης
Τίτλος Μαθήματος: Ηλεκτρονικοί Υπολογιστές IΙΙ Ενότητα: Παράγωγοι και ολοκληρώματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Τμήμα: Οικονομικών Επιστημών Ολοκληρώματα με το πρόγραμμα Maima Αθανάσιος
Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),
Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου
9 Πολυώνυμα Διαίρεση πολυωνύμων
4ο Κεφάλαιο 9 Πολυώνυμα Διαίρεση πολυωνύμων Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισμοί Μονώνυμο του x ονομάζουμε κάθε παράσταση της μορφής ν αx όπου α R, * ν N και x μια μεταβλητή που μπορεί να πάρει οποιαδήποτε
Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΝΩΜΑΛΑ ΣΗΜΕΙΑ, ΠΟΛΟΙ ΚΑΙ ΤΟ ΘΕΩΡΗΜΑ ΤΩΝ ΟΛΟΚΛΗΡΩΤΙΚΩΝ ΥΠΟΛΟΙΠΩΝ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014
Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 15: Επίλυση διοφαντικών εξισώσεων πολυωνύμων Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες
ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *