ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ ΙΕΥΘΥΝΤΗΣ: Καθ. ΓΕΩΡΓΙΟΣ ΝΙΚΗΦΟΡΙ ΗΣ «ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΥΠΟΣΤΗΡΙΞΗΣ ΙΑΤΡΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕΣΩ ΙΚΤΥΩΝ ΠΕΠΟΙΘΗΣΗΣ ΓΙΑ ΤΗΝ ΠΡΟΓΝΩΣΗ ΑΣΘΕΝΩΝ ΜΕ ΚΡΑΝΙΟΕΓΚΕΦΑΛΙΚΕΣ ΚΑΚΩΣΕΙΣ» ΓΕΩΡΓΙΟΣ Χ. ΣΑΚΕΛΛΑΡΟΠΟΥΛΟΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΠΑΤΡΑ 000

2

3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗΝ ΙΑΤΡΙΚΗ ΦΥΣΙΚΗ ΙΕΥΘΥΝΤΗΣ: Καθ. ΓΕΩΡΓΙΟΣ ΝΙΚΗΦΟΡΙ ΗΣ «ΑΝΑΠΤΥΞΗ ΣΥΣΤΗΜΑΤΟΣ ΥΠΟΣΤΗΡΙΞΗΣ ΙΑΤΡΙΚΩΝ ΑΠΟΦΑΣΕΩΝ ΜΕΣΩ ΙΚΤΥΩΝ ΠΕΠΟΙΘΗΣΗΣ ΓΙΑ ΤΗΝ ΠΡΟΓΝΩΣΗ ΑΣΘΕΝΩΝ ΜΕ ΚΡΑΝΙΟΕΓΚΕΦΑΛΙΚΕΣ ΚΑΚΩΣΕΙΣ» ΓΕΩΡΓΙΟΣ Χ. ΣΑΚΕΛΛΑΡΟΠΟΥΛΟΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ ΠΑΤΡΑ 000

4 ΤΡΙΜΕΛΗΣ ΣΥΜΒΟΥΛΕΥΤΙΚΗ ΕΠΙΤΡΟΠΗ. Γεώργιος Νικηφορίδης, Καθηγητής () (Επιβλέπων Καθηγητής). Γεώργιος άσιος, Καθηγητής () (Μέλος Τριµελούς Επιτροπής) 3. Νικόλαος Παπαδάκης, Καθηγητής () (Μέλος Τριµελούς Επιτροπής) ΕΠΤΑΜΕΛΗΣ ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ. Γεώργιος Νικηφορίδης, Καθηγητής () (Επιβλέπων Καθηγητής). Γεώργιος άσιος, Καθηγητής () (Μέλος Τριµελούς Επιτροπής) 3. Νικόλαος Παπαδάκης, Καθηγητής () (Μέλος Τριµελούς Επιτροπής) 4. Παναγιώτης Πιντέλας, Καθηγητής (3) (Μέλος Επταµελούς Εξεταστικής Επιτροπής) 5. Αθανάσιος Τσακαλίδης, Καθηγητής (4) (Μέλος Επταµελούς Εξεταστικής Επιτροπής) 6. Αθανάσιος Σκόδρας, Αναπλ. Καθηγητής (5) (Μέλος Επταµελούς Εξεταστικής Επιτροπής) 7. Βασίλειος Αναστασόπουλος, Επικ. Καθηγητής (5) (Μέλος Επταµελούς Εξεταστικής Επιτροπής) () () (3) (4) (5) : Τµήµα Ιατρικής : Τµήµα Χηµικών Μηχανικών : Τµήµα Μαθηµατικών : Τµήµα Ηλεκτρολόγων Μηχανικών : Τµήµα Φυσικής

5 Στη µητέρα µου και στη µνήµη του πατέρα µου

6

7 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΕΙΣΑΓΩΓΗ...3 ΓΕΝΙΚΟ ΜΕΡΟΣ...7. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ...7. ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΑΠΟΦΑΣΕΩΝ ΣΤΗΝ ΙΑΤΡΙΚΗ ΓΡΑΦΙΚΑ ΜΟΝΤΕΛΑ ΓΡΑΦΗΜΑΤΑ ΑΝΕΞΑΡΤΗΣΙΑΣ ΛΟΓΑΡΙΘΜΙΚΑ-ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΙΚΤΥΑ ΚΑTΑ BAYES...07 ΕΙ ΙΚΟ ΜΕΡΟΣ ΕΜΠΕΙΡΟ ΣΥΣΤΗΜΑ ΓΙΑ ΠΡΟΓΝΩΣΗ ΑΣΘΕΝΩΝ ΜΕ ΚΕΚ ΣΥΜΠΕΡΑΣΜΑΤΑ ΠΕΡΙΛΗΨΗ SUMMARY ΠΑΡΑΡΤΗΜΑ: ΜΑΘΗΣΗ ΟΜΗΣ ΚΑΙ ΠΑΡΑΜΕΤΡΩΝ ΑΝΑΦΟΡΕΣ...85

8

9 ΕΙΣΑΓΩΓΗ Η καλή ιατρική πράξη στηρίζεται στη σωστή ιατρική απόφαση, και αυτή µε την σειρά της στηρίζεται στην εκµετάλλευση όλων των πληροφοριών που έχει ο γιατρός στη διάθεσή του. Στο παρελθόν, οι διαθέσιµες πληροφορίες ήσαν περιορισµένες και είχαν σχέση κυρίως µε τα στοιχεία της φυσικής εξέτασης (συµπτώµατα, σηµεία κ.λ.π.). και µε κάποια απλά εργαστηριακά ευρήµατα. Σήµερα τα πράγµατα έχουν αλλάξει, υπάρχει ένα µεγάλο πλήθος εργαστηριακών µεταβλητών, σηµάτων, εικόνων κ.λ.π. που θα πρέπει να ληφθούν υπόψη από το γιατρό συνδυαστικά. Η κατάσταση αυτή δηµιουργεί την αναγκαιότητα ενός νέου τύπου διαχείρισης της πληροφορίας καθώς επίσης πιο σύνθετες προσεγγίσεις στη λήψη της ιατρικής απόφασης που χρησιµοποιούν την µοντέρνα µεθοδολογία και τεχνολογία της πληροφορικής. Η ώθηση που έχει δώσει η πληροφορική στην κλινική έρευνα, µε τη σχεδίαση σχεσιακών βάσεων δεδοµένων και µε τα συστήµατα στατιστικής ανάλυσης, είναι καθοριστική. Εξελιγµένα εργαλεία στήριξης αποφάσεων άρχισαν να αναπτύσσονται στα ερευνητικά εργαστήρια και είναι σχεδόν βέβαιο ότι θα έχουν βαθιά επίδραση στον τρόπο εξάσκησης της Ιατρικής, στο µέλλον. Η παρούσα διατριβή ασχολείται µε την ανάπτυξη ενός έµπειρου συστήµατος, βασιζόµενου σε ίκτυο Πεποίθησης, στο χώρο της Ιατρικής και συγκεκριµένα στην πρόγνωση των ασθενών µε κρανιοεγκεφαλικές κακώσεις. Το σύστηµα αυτό βασίζεται τόσο σε κλινικά όσο και εργαστηριακά ευρήµατα και κάνει εκτίµηση της πορείας του ασθενή, σύµφωνα µε την Κλίµακα Έκβασης της Γλασκώβης. Με γνώµονα τις επιδόσεις ενός συστήµατος που επιτελεί κατηγοριοποίηση (classification) υπό καθεστώς αβεβαιότητας, θα µπορούσε κανείς να επιλέξει από τεχνικές που είναι γνωστό ότι είναι ιδιαίτερα επιτυχείς. Τα Νευρωνικά ίκτυα, για παράδειγµα, που θεωρητικά προσοµοιώνουν λειτουργίες του ανθρώπινου εγκεφάλου, θα ήταν προτιµητέα, µια που έχουν ως πλεονέκτηµα τη δυνατότητα της µάθησης από την εµπειρία που αποκτούν. Τα Νευρωνικά ίκτυα εκπαιδεύονται µε ένα ποσό πληροφορίας και την αξιοποιούν για να βελτιώσουν την επίδοσή τους στην πρόβλεψη νέων περιστατικών. Η υλοποίησή τους είναι σχετικά εύκολη ενώ τα ποσοστά επιτυχών προβλέψεών τους είναι υψηλά. Το µοντέλο όµως που ακολουθούν για την οικοδόµηση και λειτουργία τους, είναι ξένο προς την ιατρική σκέψη. Τα Νευρωνικά ίκτυα αντιµετωπίζονται από το χρήστη ως «µαύρα κουτιά». Επιτυγχάνουν µεν σωστές κατηγοριοποιήσεις, αλλά ο τρόπος είναι αδιαφανής ή πάντως όχι αντιληπτός από τον χρήστη. Ως αποτέλεσµα, δεν τυγχάνουν της εµπιστοσύνης του ιατρού-χρήστη και τελικώς δεν καταφέρνουν να γίνουν εργαλείο στην καθηµερινή κλινικί πρακτική του Μια άλλη διαδεδοµένη µεθοδολογία για αντίστοιχους στόχους κατηγοριοποίησης είναι τα συστήµατα που βασίζονται σε κανόνες (rule-based systems). Είναι συστήµατα (βλ. Κεφ. ) µε µεγάλη ιστορία στο χώρο της Τεχνητής Νοηµοσύνης και ευρεία χρήση σε συστήµατα διάγνωσης µηχανικών και ηλεκτρονικών σφαλµάτων. Σε αντίθεση µε τα Νευρωνικά ίκτυα, ο τρόπος διαχείρισης της πληροφορίας και η διαδικασία κατηγοριοποίησης είναι διαφανής στο χρήστη. Με την εφαρµογή µιας σειράς κανόνων, οι οποίοι εισάγονται από ειδικούς του πεδίου εφαρµογής του συτήµατος, καταφέρνουν και αυτά να έχουν υψηλές επιδόσεις. 3

10 Έχει όµως αποδειχθεί ότι η φύση της ιατρικής πληροφορίας έχει ιδιαιτερότητες και η διαχείριση της µε µια σειρά από κανόνες είναι µε την εξαίρεση κάποιων περιπτώσεων αδύνατη. Πέρα από τη γενικά παραδεκτή πολυπλοκότητα των µηχανισµών οι οποίοι εµπλέκονται σε κάθε ιατρικό πρόβληµα, το καθεστώς αβεβαιότητας κάτω από το οποίο συλλέγεται η ιατρική πληροφορία, καθιστά τέτοιου είδους συστήµατα είτε µη αποτελεσµατικά, είτε ανελαστικά στις παραδοχές που υιοθετούν. Η επιλογή της συγκεκριµένης µεθοδολογίας, των ικτύων Πεποίθησης ή Bayesian Networks, δε βασίστηκε τόσο σε επιχειρήµατα επίδοσης σε όρους επιτυχών προβλέψεων όσο στο ότι είναι απόλυτα συµβατή µε τον τρόπο σκέψης του τελικού αποδέκτη και χρήστη ενός τέτοιου συστήµατος, δηλαδή του ιατρού. Κατά την διαδικασία της διάγνωσης, τα βήµατα της ιατρικής σκέψης, είναι τα ακόλουθα: Αρχικά, η εµπειρία του ιατρού, του δίνει µια έστω και ποιοτική εκτίµηση της σπανιότητας κάθε νόσου από την οποία ίσως πάσχει ο υπό εξέταση ασθενής. Με τα πρώτα δεδοµένα που λαµβάνει, ως κλινικά σηµεία και συµπτώµατα, διατυπώνει µια υπόθεση εργασίας, αναφορικά µε την πιθανή νόσο. Στη συνέχεια, τα υπόλοιπα δεδοµένα αξιοποιούνται από τον ιατρό, προκειµένου είτε να επιβεβαιώσει/απόρρίψει την υπόθεση εργασίας, είτε να διατυπώσει νέες υποθέσεις. Μέσα από τα δεδοµένα που λαµβάνει, η πεποίθηση που έχει για τη νόσο, τροποποιείται συνεχώς και αναζητά νέες εξετάσεις, κατά προτίµηση εκείνες που έχουν την µεγαλύτερη αξία πληροφορίας, που θα τον βοηθήσουν πιο εύκολα να φτάσει σε µια υψηλή πεποίθηση για την αληθεια ή το ψεύδος της υπόθεσής του. Στην καθηµερινή του κλινική πράξη, ο ιατρός κάνει χρήση εννοιών όπως «ευαισθησία», «ειδικότητα» και «προβλεπτική αξία» ενός τεστ. Ουσιαστικά, µεταχειρίζεται έναν µηχανισµό µε τον οποίο τα αποτελέσµατα των εξετάσεων που διατάσσει, συνδυάζονται µε τον καλύτερο τρόπο ώστε να τροποποιήσουν την πεποίθησή του. Αυτός ο µηχανισµός, ο κανόνας του Bayes, που ο ιατρός είναι εκπαιδευµένος να εφαρµόζει, αποτελεί το βασικό στοιχείο της µεθοδολογίας των ικτύων Πεποίθησης. Σε αντίθεση µε τις άλλες τεχνικές που αναφέρθηκαν παραπάνω, τα δίκτυα πεποίθησης διαχειρίζονται την αβεβαιότητα µε έναν σαφή και ρητό τρόπο. Λαµβάνουν υπ όψιν τους την εξάρτηση µεταξύ των µεταβλητών του προβλήµατος, και όχι µόνο προσφέρουν µια κατανοµή πιθανότητας στις διάφορες κατηγορίες αλλά και επιτρέπουν την εισαγωγή υποκειµενικής (αβέβαιας) πληροφορίας την οποία και συνυπολογίζουν. Είναι λοιπόν σαφές ότι ένα σύστηµα που εφαρµόζει την ίδια µε τον ιατρό µεθοδολογική προσέγγιση στο πρόβληµα, κερδίζει την εµπιστοσύνη του και µπορεί στα χέρια του όχι µόνο να αποτελέσει εργαλείο υποστηρικτικό του λειτουργήµατός του, αλλά και αφορµή για κωδικοποίηση της σκέψης του. Αν επιπλέον ένα τέτοιο σύστηµα µπορεί να αξιοποιήσει τη συσσωρευµένη πληροφορία που υπάρχει σε βάσεις δεδοµένων και να εκπαιδευτεί από αυτή, τότε θα µπορεί να λειτουργήσει και ως ένα σύστηµα µεταφοράς της εµπειρίας αυτής σε αποµακρυσµένα κλινικά περιβάλλοντα. Στο Γενικό Μέρος περιγράφεται η φύση της Ιατρικής πληροφορίας, δίνονται οι βασικές έννοιες της πιθανοκρατικής συλλογιστικής και αναπτύσσονται οι τεχνικές ανάλυσης αποφασεων στην Ιατρική. Το υπόλοιπο του Γενικού Μέρους έχει σαν 4

11 αντικείµενο την µοντελοποίηση της Ιατρικής πληροφορίας µε επικέντρωση στα γραφικά µοντέλα αναπαράστασης της πληροφορίας και ιδιαίτερα στα γραφικά λογαριθµικά-γραµµικά µοντέλα. Γίνεται µια προσπάθεια διαφορετικής προσέγγισης των πολυπαραγοντικών προβληµάτων που συναντώνται στην Ιατρική πράξη και που συνήθως αντιµετωπίζονται µε τις κλασσικές στατιστικές τεχνικές της Multivariate Analysis. Τα ίκτυα Πεποίθησης εισάγονται στο Γενικό Μέρος και αναλύονται στο Ειδικό Μέρος µέσω της µελέτης του συγκεκριµένου προβλήµατος,δηλαδή της πρόγνωσης ασθενών µε ΚΕΚ. Ξεχωριστά συστήµατα αναπτύχθηκαν αναφορικά µε τους ασθενείς των Εξωτερικων Ιατρείων και της Μονάδας Εντατικής Θεραπείας. Οι επιδόσεις τους, συγκρινόµενες τόσο µε αυτές έµπειρων ιατρών αλλά και άλλων τεχνικών αναφέρονται αναλυτικά. Η πρώτη µου επαφή µε το χώρο των ικτύων Πεποίθησης έγινε το Καλοκαίρι του 994, στο πλαίσιο της διπλωµατικής µου εργασίας για το Μεταπτυχιακό ίπλωµα Ειδίκευσης στην Ιατρική Φυσική. Σε αυτή µου την εξαετή (συνολικά) προσπάθεια, είχα τη βοήθεια πολλών, τόσο σε επιστηµονικό αλλά και ψυχολογικό επίπεδο. Οι καθηµερινές επαφές µε τον Επιβλέποντα Καθηγητή µου κ. Γεώργιο Νικηφορίδη αποτέλεσαν πηγή έµπνευσης, ιδίως τις δύσκολες εκείνες µέρες που όλοι οι υποψηφίοι διδάκτορες κάποτε περνούν, τότε που νοµίζουν ότι φτάνουν σε αδιέξοδο. Από το χώρο της Νευροχειρουργικής, έτυχα της αµέριστης συµπαράστασης όλων ανεξαίρετα των Ιατρών, και ιδίως του κου Κωνσταντίνου Κωνσταντογιάννη, του οποίου η συνδροµή στη διαδικασία συλλογής των δεδοµένων υπήρξε αποφασιστική. Ο Καθηγητής κ. Νικόλαος Παπαδάκης συνέβαλε καταλυτικά στην κατανόηση από µέρους µου εκείνων των εννοιών της Νευροχειρουργικής που ήταν απαραίτητες για την έρευνα αυτή. Η συνεισφορά του Καθηγητή κου Γεώργιου άσιου ήταν ιδιαίτερα σηµαντική, καθώς οι µαθηµατικές απαιτήσεις της έρευνας στα ίκτυα Πεποίθησης είναι υψηλές. Η έρευνα που διεξήχθη στο πλαίσιο αυτής της διδακτορικής διατριβής οδήγησε στη δηµοσίευση τριών πλήρων εργασιών σε διεθνή επιστηµονικά περιοδικά µε κριτές και µια πλήρη δηµοσίευση σε διεθνές Συνέδριο:. Sakellaropoulos G, Nikiforidis G, Comparison of prognostic performance of two expert systems based on Bayesian belief networks, Decision Support Systems, 7(4):43-44 (000).. Sakellaropoulos G, Nikiforidis G, Development of a Bayesian Network in te prognosis of ead injuries using grapical model selection tecniques, Metods of Information in Medicine, 38: 37-4 (999). 3. Nikiforidis G, Sakellaropoulos G, Expert system support using Bayesian Belief Networks in te prognosis of ead-injured patients of te ICU, Medical Informatics, 3(): -8 (998). 4. Sakellaropoulos G, Antonopoulos P, Papadakis N, Nikiforidis G, Belief networks in ead injury prognosis, Healt Telematics 95 Proceedings, pp (995). 5

12 6

13 ΓΕΝΙΚΟ ΜΕΡΟΣ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ. Φύση της Ιατρικής πληροφορίας Η κλινική πληροφορία έχει ένα χαρακτήρα σαφώς διαφορετικό από αυτόν της πληροφορίας που χρησιµοποιείται στην Φυσική, την Χηµεία ή την Μηχανολογία. Αυτή η διαφορετικότητα είναι προϊόν πολλών λόγων και έχει να κάνει αφενός µε τα αντικείµενα της Ιατρικής επιστήµης και αφετέρου µε την τελείως διαφορετική δοµή της. Αυτό έχει µεγάλες συνέπειες στο τρόπο προσέγγισης και διαχείρισης της κλινικής πληροφορίας και είναι εν µέρει ο λόγος για τον οποίο αρκετοί ερευνητές θεωρούν την Ιατρική Πληροφορική κάτι το ξεχωριστό από την συµβατική Πληροφορική. Για να γίνουν πιο συγκεκριµένα τα παραπάνω ας εξετάσουµε αυτές που θεωρούνται επιστήµες βασικού επιπέδου, οι οποίες έχουν δοµηθεί µε αυστηρό τρόπο που αντανακλάται και στον µαθηµατικό φορµαλισµό που έχουν αναπτύξει. Στην ιεραρχική σχέση µεταξύ των επιστηµών η Φυσική βρίσκεται στη βάση. Η Φυσική χαρακτηρίζεται από ένα είδος απλότητας αλλά και γενίκευσης. Οι έννοιες και οι περιγραφές των αντικειµένων και των µηχανισµών της φυσικής, χρησιµοποιούνται απαραίτητα σε όλες τις εφαρµοσµένες επιστήµες συµπεριλαµβανοµένης και της Ιατρικής. Οι φυσικοί νόµοι και οι περιγραφές ορισµένων φυσικών διαδικασιών είναι ουσιαστικοί παράγοντες στην ανάλυση και εξήγηση των ιατρικών λειτουργιών. Είναι για παράδειγµα, απαραίτητο να γνωρίζουµε ορισµένες βασικές έννοιες της Μοριακής Φυσικής για να κατανοήσουµε γιατί το νερό είναι τόσο καλός διαλύτης ή πως µεταβολίζονται τα θρεπτικά µόρια. Η εφαρµογή των υπολογιστών για την λύση κάποιου προβλήµατος φυσικής µέσα στα ιατρικά πλαίσια δεν παρουσιάζει διαφορές σε σχέση µε τις υπολογιστικές εφαρµογές που συναντώνται στα εργαστήρια φυσικής και µηχανολογίας. Η χρήση των υπολογιστών στις διάφορες διαδικασίες βασικού επιπέδου (όπως είναι αυτές της Φυσικής ή Χηµείας) είναι παρόµοια και ανεξάρτητη της συγκεκριµένης εφαρµογής. Εάν εξετάζουµε τις διαλυτικές ιδιότητες του νερού δεν έχει σηµασία αν αυτές έχουν να κάνουν µε εφαρµογές στη Γεωλογία, στην Χηµεία ή στην Ιατρική. Οι διαδικασίες βασικού επιπέδου της φυσικής είναι ιδιαίτερα προσιτές στη µαθηµατική κωδικοποίηση, έτσι η χρήση των υπολογιστών σε αυτές τις εφαρµογές απαιτεί µόνο συµβατικό αριθµητικό προγραµµατισµό. Στην Ιατρική, όµως, υπάρχουν και άλλες διαδικασίες υψηλού επιπέδου, οι οποίες αναφέρονται σε σύνθετα αντικείµενα όπως οι οργανισµοί (φυσιολογικοί ή παθολογικοί). Όταν αναλύονται, περιγράφονται ή καταγράφονται ιδιότητες ή συµπεριφορές ανθρώπων χρησιµοποιούνται περιγραφές αντικειµένων πολύ υψηλού επιπέδου η συµπεριφορά των οποίων δεν έχει αντίστοιχο στο χώρο της φυσικής ή της µηχανολογίας. Αυτές οι περιγραφές είναι πολύ δύσκολο να κωδικοποιηθούν χρησιµοποιώντας µαθηµατικούς αλγορίθµους και λογισµικά πακέτα, τα οποία εφαρµόζονται τόσο καλά στα βασικά επίπεδα. Μέσα σε αυτά τα πλαίσια αναπτύσσεται µία νέα επιστηµονική κατεύθυνση που έχει το όνοµα Τεχνητή Νοηµοσύνη (Artificial Intelligence) και που έχει σαν βασικό στόχο την επίλυση 7

14 προβληµάτων υψηλού επιπέδου µε εφαρµογή µεθόδων και τεχνικών της πληροφορικής. Από τα προηγούµενα συνάγεται ότι η Ιατρική Πληροφορική περιέχει εφαρµογές που κινούνται µεταξύ της ανάλυσης µηχανισµών χαµηλού επιπέδου και της επεξεργασίας φαινοµένων εξαιρετικά υψηλού επιπέδου. Όταν µελετώνται ολιστικά ανθρώπινοι οργανισµοί (συµπεριλαµ-βανοµένων των στοιχείων της αντίληψης, της αυτοσυνείδησης και της συµπεριφοράς) αναδεικνύονται πολλά και σύνθετα προβλήµατα για τα οποία η συµβατική λογική και τα συµβατικά µαθηµατικά είναι δύσκολο να εφαρµοσθούν. Γενικά, τα χαρακτηριστικά των αντικειµένων βασικού επιπέδου είναι καθαρά ορισµένα και σαφώς διακριτά (για παράδειγµα η µάζα, το µήκος κ.λ.π.), ενώ εκείνα των αντικειµένων υψηλού επιπέδου είναι ασαφώς ορισµένα και όχι µε ακρίβεια διακριτά (για παράδειγµα δυσάρεστη γεύση, καλή κατάσταση κ.λ.π.). Όπως η περιγραφή των αντικειµένων υψηλού επιπέδου απαιτεί την ανάπτυξη νέων µεθόδων, έτσι και οι µέθοδοι στατιστικής συµπερασµατολογίας αυτών αντικειµένων είναι διαφορετικοί. Η φορµαλιστική λογική, ξεκινά µε την παραδοχή ότι σε µια δεδοµένη πρόταση πρέπει να είναι ή αληθής ή ψευδής. Αυτό το ουσιαστικότατο χαρακτηριστικό της συµβατικής λογικής είναι δύσκολο να διατηρηθεί στην ανάλυση αντικειµένων υψηλού επιπέδου όπου η απάντηση στα διάφορα ερωτήµατα δεν µπορεί να είναι µόνο να ή όχι. 8

15 . Σχέση µεταξύ δεδοµένων και υποθέσεων Μία παρατήρηση ενός συµβάντος προκαλεί µία υπόθεση εργασίας όταν φυσικά έχει κάποια άµεση σχέση µε την υπόθεση. Ποια είναι όµως τα χαρακτηριστικά αυτής της σχέσης; Ένα παράδειγµα µπορεί να δείξει ότι µια τόσο απλή σχέση δεν είναι αρκετή για να εξηγήσει το ξεκίνηµα αυτής της διαδικασίας. Εξετάζουµε την υπόθεση ότι ένας ασθενής είναι έγκυος που βασίζεται στην παρατήρηση ότι ο ασθενής είναι γυναίκα. Προφανώς όλοι οι ασθενείς σε κατάσταση εγκυµοσύνης είναι γυναίκες, αλλά εάν εµφανισθεί ένας ασθενής ο οποίος είναι γυναίκα δεν ενεργοποιείται άµεσα η υπόθεση ότι αυτή είναι έγκυος. Κατά συνέπεια το θηλυκό γένος είναι ένας πολύ ευαίσθητος δείκτης εγκυµοσύνης (η πιθανότητα ένας ασθενής σε κατάσταση εγκυµοσύνης να είναι γυναίκα ισούται µε 00%) αλλά δεν έχει µεγάλη προβλεπτική αξία (οι περισσότερες γυναίκες δεν είναι σε κατάσταση εγκυµοσύνης). Η έννοια της ευαισθησίας ως η πιθανότητα παρατήρησης ενός δεδοµένου όταν ο εξεταζόµενος έχει µία συγκεκριµένη ασθένεια είναι πολύ σηµαντική, αλλά δεν εξηγεί από µόνη της την δηµιουργία µιας υπόθεσης κατά την διαδικασία της ιατρικής διάγνωσης. Εναλλακτικά, η σχέση µεταξύ παρατήρησης ενός συµβάντος και µιας υπόθεσης εργασίας µπορεί να στηρίζεται στο ότι η παρατήρηση του συµβάντος γίνεται σπάνια εάν δεν επαληθεύεται η υπόθεση. Έστω ότι ένα συγκεκριµένο αποτέλεσµα δεν επαληθεύεται ποτέ, αν ο ασθενής δεν έχει µία συγκεκριµένη ασθένεια. Σ αυτές τις περιπτώσεις τα tests ονοµάζονται παθογνωµονικά. Όχι µόνο υποδεικνύουν µία διαγνωστική υπόθεση, αλλά ταυτόχρονα αποδεικνύουν ότι αυτή είναι ορθή. υστυχώς τα παθογνωµονικά tests είναι σπάνια στην ιατρική. Εκείνο που συµβαίνει συνήθως είναι να γίνεται µία παρατήρηση πολύ συχνά όταν υπάρχει µία ασθένεια ή µία κατηγορία ασθενειών, αλλά η αντιστοίχηση ασθένειας και παρατήρησης δεν είναι απόλυτη. Για παράδειγµα, µόνο ένας µικρός αριθµός νοσηµάτων, που δεν ανήκουν στις λοιµώξεις, αυξάνει τον αριθµό των λευκών αιµοσφαιρίων. Βεβαίως η λευχαιµία όπως και η επίδραση ορισµένων φαρµάκων µπορεί να αυξήσει τον αριθµό των λευκών αιµοσφαιρίων, αλλά οι περισσότεροι ασθενείς που δεν έχουν λοίµωξη θα έχουν κανονικό αριθµό λευκών αιµοσφαιρίων. Κατά συνέπεια η αύξηση των λευκών δεν αποδεικνύει την ύπαρξη λοίµωξης αλλά στηρίζει την υπόθεση για την ύπαρξή της. Η έννοια που περιγράφει αυτή την σχέση, µεταξύ υπόθεσης και παρατήρησης, λέγεται ειδικότητα. Μία παρατήρηση είναι πολύ υψηλής ειδικότητας για µια ασθένεια εάν απουσιάζει σε ασθενείς που δεν έχουν αυτή την ασθένεια, ενώ η παθογνωµονική παρατήρηση έχει ειδικότητα 00%. Οι έννοιες της ευαισθησίας και της ειδικότητας ξεκαθαρίζουν αρκετά την υποθετικοσυµπερασµατική προσέγγιση. Παρόλα αυτά,ακόµη και έµπειροι γιατροί, ορισµένες φορές αποτυγχάνουν να τις χρησιµοποιήσουν σωστά. Έτσι ακόµα και αν έχει γίνει µια πολύ ειδική για την ασθένεια παρατήρηση, µπορεί ο ασθενής να πάσχει από άλλη ασθένεια. Ακριβώς σε τέτοιες περιπτώσεις γίνονται συχνά σφάλµατα που απορρέουν από την λεγόµενη κοινή αντίληψη. Για να εξηγηθούν αυτές οι συχνές παρεξηγήσεις, πρέπει να εισαχθούν δύο επιπρόσθετες έννοιες : ο επιπολασµός και η προβλεπτική τιµή Ο επιπολασµός µιας ασθένειας είναι η συχνότητα ή καλύτερα η πιθανότητα της ασθένειας στον εξεταζόµενο πληθυσµό. Έστω ότι µία ασθένεια έχει επιπολασµό 5% στο γενικό πληθυσµό, υπάρχει περίπτωση σε ένα επιλεγµένο υποπληθυσµό της ο επιπολασµός να είναι πολύ υψηλότερος. Για παράδειγµα, ο καρκίνος του µαστού στο 9

16 γενικό στο γενικό πληθυσµό είναι 0.3%, αλλά ο επιπολασµός της ίδιας ασθένειας στον γυναικείο υποπληθυσµό που έχει ηλικία µεταξύ 40 και 50 ετών είναι περίπου 5 φορές µεγαλύτερος και φθάνει το 4.5%. Προφανώς ο στόχος της διάγνωσης είναι, ξεκινώντας από τον επιπολασµό που έχει ο ασθενής, για µια συγκεκριµένη ασθένεια, στο πληθυσµό (κατηγορία, οµάδα) κατατάχθηκε αρχικά, να γίνει κάποια εξέταση και ανάλογα µε το αποτέλεσµά της (θετικό ή αρνητικό) να καταταχθεί σε ένα νέο υποπληθυσµό στον οποίο ο επιπολασµός θα είναι σαφώς διαφορετικός. Έτσι η πιθανότητα ένα οποιοδήποτε άτοµο του πληθυσµού των Ηνωµένων Πολιτειών να έχει καρκίνο του πνεύµονος είναι µικρή (γιατί ο επιπολασµός αυτής της ασθένειας είναι µικρός), αλλά γίνεται πολύ υψηλότερη αν η ακτινογραφία θώρακος δείξει µία σκιά που µοιάζει µε όγκο. Αν το ίδιο άτοµο ανήκει στον υποπληθυσµό των καπνιστών, τότε ο επιπολασµός του καρκίνου του πνεύµονος θα είναι µεγαλύτερος. Σ αυτή την περίπτωση η ίδια ακτινογραφία θώρακος, θα ανεβάσει ακόµα υψηλότερα την πιθανότητα να έχει το εξεταζόµενο άτοµο καρκίνο του πνεύµονος. Προβλεπτική τιµή ενός test καλείται, απλώς, η πιθανότητα της ασθένειας (posttest probability) µετά την γνωστοποίηση του αποτελέσµατος του test. Όπως προαναφέρθηκε αν το αποτέλεσµα του test είναι θετικό η προβλεπτική τιµή θα είναι µεγαλύτερη του επιπολασµού. Εάν το test είναι αρνητικό η εµφάνιση της ασθένειας έχει µία πιθανότητα µικρότερη του επιπολασµού. Για κάθε test και κάθε ασθένεια υπάρχει µία προβλεπτική τιµή εάν το test είναι θετικό και άλλη εάν το test είναι αρνητικό. Οι συµβολισµοί που χρησιµοποιούνται είναι αντίστοιχα PV + για προβλεπτική τιµή µε θετικό test και PV- για αρνητικό test. Η προβλεπτική αξία ενός θετικού test εξαρτάται από την ευαισθησία και την ειδικότητά του όπως επίσης και από τον επιπολασµό της αναζητούµενης ασθένειας. Ο τύπος που περιγράφει αυτή την εξάρτηση είναι : PV + = ( ευαισθησια) ( επιπολασµος) ( ευαισθησια) ( επιπολασµος) + ( ευαισθησια)( - επιπολασµος) Υπάρχει ένας παρόµοιος τύπος για τον ορισµό της PV-, σαν συνάρτηση της ευαισθησίας, της ειδικότητας και του επιπολασµού. Και οι δύο αυτοί τύποι συνάγονται από τα βασικά στοιχεία της θεωρίας πιθανοτήτων. Να σηµειωθεί ότι ένα θετικό test µε πολλή υψηλή ευαισθησία και ειδικότητα µπορεί να οδηγήσει σε µία σχετικά χαµηλή πιθανότητα για την ασθένεια (χαµηλή PV + ), εάν ο επιπολασµός της ασθένειας είναι χαµηλός. Είναι ακριβώς αυτή η σχέση της προβλεπτικής τιµής µε την ευαισθησία, την ειδικότητα και τον επιπολασµό που δεν είναι εύκολα κατανοητή από τους γιατρούς οι οποίοι σε ορισµένες θεωρούν τα συµπεράσµατά της παράδοξα (πράγµα που αποδεικνύει ότι συχνά η κοινή αντίληψη οδηγεί σε εσφαλµένα συµπεράσµατα, όταν δεν στηρίζεται σε σταθερές αρχές και κανόνες). Η ευαισθησία του test και ο επιπολασµός της ασθένειας µπορούν να αγνοηθούν µόνο όταν το test είναι παθογνωµονικό ( δηλαδή όταν έχει ειδικότητα 00% που σηµαίνει PV + ίσο µε 00%). Ο τύπος προσδιορισµού του PV + είναι ένας από τους πολλούς τύπους που προέρχονται από το θεώρηµα του Bayes το οποίο στηρίζει ένα µεγάλο αριθµό προσεγγίσεων στη λήψη ιατρικών αποφάσεων. 0

17 .. Κατάταξη των αποτελεσµάτων ενός test ως µη φυσιολογικά Πολλές βιολογικές µετρητέες που αναφέρονται σε ένα πληθυσµό υγιών ατόµων εκφράζονται σαν συνεχείς µεταβλητές και παίρνουν διαφορετικές τιµές για τα διάφορα υγιή άτοµα. Τις πιο πολλές φορές η κατανοµή των τιµών τους είναι κατά προσέγγιση κανονική (Gaussian). Έτσι το 95% του πληθυσµού παίρνει τιµές που ανήκουν στο διάστηµα που έχει κέντρο τη µέση τιµή µ της µετρητέας και άκρα αντίστοιχα µ-σ και µ+σ (όπου σ είναι η τυπική απόκλιση της κατανοµής). Περίπου το.5% του υγιούς πληθυσµού θα έχει τιµές που είναι µικρότερες από το κάτω άκρο του προαναφερόµενου διαστήµατος ενώ ένα άλλο.5% θα έχει τιµές υψηλότερες από το άνω άκρο. Από την άλλη πλευρά, και ο πληθυσµός των ατόµων που έχουν µία συγκεκριµένη ασθένεια εµφανίζει συνήθως µία κανονική κατανοµή για τις τιµές της ίδιας µετρητέας. Εάν η βιολογική µετρητέα δεν σχετίζεται µε την ασθένεια οι δύο κατανοµές θα είναι περίπου οι ίδιες. Στην αντίθετη περίπτωση (δηλαδή η µετρητέα επηρεάζεται από την ασθένεια) θα είναι διαφορετικές (δηλαδή θα έχουν διαφορετική µέση τιµή και διαφορετική τυπική απόκλιση) αλλά θα έχουν µερική επικάλυψη (Σχήµα.). Ψευδώς θετικά Ψευδώς αρνητικά φυσιολογικοί µη φυσιολογικοί Αριθµός ατόµων Φυσιολογικός πληθυσµός Όριο διαχωρισµού Πληθυσµός ασθενών Αποτέλεσµα τον test Σχήµα. Το ερώτηµα που τίθεται, είναι πότε το αποτέλεσµα ενός test, που αναφέρεται σε µία µετρητέα, θα θεωρείται και θα κατατάσσεται σαν µη-φυσιολογικό; Στις περισσότερες εργαστηριακές εξετάσεις, µαζί µε την εκτίµηση της εργαστηριακής µετρητέας δίνεται και το διάστηµα των φυσιολογικών της τιµών. το οποίο ορίζεται σαν µ± σ (δηλαδή οι φυσιολογικές τιµές απέχουν από την µέση τιµή της µετρητέας το πολύ δύο τυπικές αποκλίσεις). Έτσι αν το αποτέλεσµα του test είναι έξω από το διάστηµα φυσιολογικών τιµών θεωρείται µη-φυσιολογικό και το test θετικό. Εάν το αποτέλεσµα περιέχεται στο διάστηµα των φυσιολογικών τιµών, το test θεωρείται αρνητικό. Για παράδειγµα, η µέση συγκέντρωση χοληστερίνης στο αίµα είναι

18 00mg/dl, εάν η τυπική απόκλιση ης χοληστερίνης στον υγιή πληθυσµό είναι 5mg/dl τότε το διάστηµα φυσιολογικών τιµών για την χοληστερίνη θα είναι 00 ± 50, δηλαδή 50 έως 50. Είναι προφανές από όσα ειπώθηκαν ότι τα άκρα του διαστήµατος των φυσιολογικών τιµών ορίζονται µε στατιστικά κριτήρια που δεν έχουν βιολογική σηµασία. Ένα ιδανικό test θα έδινε µία κατανοµή αποτελεσµάτων (της µετρητέας) για τους ασθενείς, η οποία δεν θα είχε καµία επικάλυψη µε την αντίστοιχη κατανοµή αποτελεσµάτων των υγιών ατόµων. Έτσι εάν επελέγετο ένα κατάλληλο όριο (cut off) για τις φυσιολογικές τιµές, το test θα ήταν αρνητικό για όλους τους φυσιολογικούς και θετικό για όλους τους ασθενείς. Πολύ λίγα tests ανήκουν σ αυτή την κατηγορία. Συνήθως για τον χαρακτηρισµό ενός test σαν µη-φυσιολογικό χρησιµοποιείται το κριτήριο των τυπικών αποκλίσεων από την µέση τιµή του υγιούς πληθυσµού και έτσι ένα.5% των υγιών ατόµων θα δώσει θετικό test (αυτό χαρακτηρίζεται σαν σφάλµα τύπου α του test ). Από την άλλη πλευρά, επειδή συνήθως η κατανοµή των αποτελεσµάτων του test των ασθενών έχει µία επικάλυψη µε αυτή των υγιών, και µάλιστα περιέχει τιµές οι οποίες ανήκουν στο διάστηµα των φυσιολογικών τιµών, είναι προφανές ότι ορισµένοι ασθενείς θα δώσουν αρνητικό test (σφάλµα τύπου β). Συµπερασµατικά, όπως φαίνεται και από το σχήµα (.), θα υπάρχει ένα ποσοστό φυσιολογικών ατόµων που θα δώσει θετικό test και ένα ποσοστό ασθενών που θα δώσει αρνητικό test. Προφανώς όσο µικρότερα είναι αυτά τα ποσοστά τόσο καλύτερο είναι το test. Ο γιατρός πρέπει να είναι γνώστης ορισµένων όρων που εκφράζουν αυτή την κατάσταση: Αληθώς θετικά (Α.Θ) είναι τα θετικά tests που προέρχονται από τον πληθυσµό των εχόντων την ασθένεια (δηλαδή τα tests που σωστά ταξινοµούν τον εξεταζόµενο στην κατηγορία των εχόντων την συγκεκριµένη ασθένεια) Αληθώς Αρνητικά (Α.Α) είναι τα αρνητικά tests που προέρχονται από τον πληθυσµό των µη εχόντων την ασθένεια (δηλαδή τα tests που σωστά ταξινοµούν τον εξεταζόµενο στην κατηγορία των µη εχόντων την συγκεκριµένη ασθένεια. Ψευδώς θετικά (Ψ.Θ) είναι τα θετικά tests που προέρχονται από τον πληθυσµό των µη εχόντων ασθένεια (δηλαδή τα tests που εσφαλµένα ταξινοµούν τον εξεταζόµενο στην κατηγορία των εχόντων την συγκεκριµένη ασθένεια) Ψευδώς Αρνητικά (Ψ.Α) είναι τα αρνητικά tests που προέρχονται από τον πληθυσµό εκείνων που έχουν την ασθένεια (δηλαδή εσφαλµένα ταξινοµούν τον ασθενή στην κατηγορία των µη εχόντων την συγκεκριµένη ασθένεια). Στο σχήµα. φαίνεται ότι µεταβάλλοντας το άνω άκρο του διαστήµατος των φυσιολογικών τιµών θα αλλάξουν ουσιαστικά τα προαναφερόµενα ποσοστά. Καθώς το άνω όριο των φυσιολογικών τιµών µετακινείται προς υψηλότερες τιµές, αυξάνεται ο αριθµός των ψευδώς αρνητικών (Ψ.Α) και µειώνεται ο αριθµός των ψευδώς θετικών.

19 Όταν καθοριστεί το ανώτατο φυσιολογικό όριο αυτόµατα προσδιορίζεται και η επίδοση (performance) του test, δηλαδή η ικανότητά του να διακρίνει µεταξύ ασθενούς και µη ασθενούς. Η ποσοτικοποίηση της επίδοσης δίνεται µε ένα πίνακα συνάφειας σαν αυτό του Πίνακα..Στον πίνακα δίνονται συνοπτικά οι αριθµοί που αντιστοιχούν στις προηγούµενες 4 οµάδες αποτελεσµάτων (Α.Θ, Α.Α, Ψ.Θ, Ψ.Α). Παρατηρείται ότι το άθροισµα της πρώτης στήλης δίνει το συνολικό αριθµό των µη ασθενών, (Ψ.Θ+Α.Α) Το άθροισµα της πρώτης σειράς, (Α.Θ + Ψ.Θ), είναι ο συνολικός αριθµός των εξετασθέντων που έδωσαν θετικό test. Παροµοίως, (Ψ.Α+Α.Α), είναι ο αριθµός των εξετασθέντων που έδωσαν αρνητικό test. Αποτέλεσµα του test Ασθενείς Όχι Ασθενείς Σύνολο Θετικό test Αρνητικό test Α.Θ Ψ.Α Ψ.Θ Α.Α Α.Θ+Ψ.Θ Ψ.Α+Α.Α (Α.Θ)+(Ψ.Α) (Ψ.Θ)+(Α.Α) ΠΙΝΑΚΑΣ.: Πίνακας συνάφειας x που εκφράζει την επίδοση ενός test. Το ιδανικό test δεν έχει ούτε Ψευδώς Αρνητικά (Ψ.Α) ούτε Ψευδώς Θετικά (Ψ.Θ) αποτελέσµατα. Στην πραγµατικότητα αυτό δεν επαληθεύεται σχεδόν ποτέ και έτσι ο έλεγχος µιας διαγνωστικής υπόθεσης, που αναφέρεται σε µία συγκεκριµένη ασθένεια, γίνεται µε test, που περιέχουν σφάλµατα. Η συνοπτική εικόνα της επίδοσης των εναλλακτικών tests δίνεται µε τους προαναφερόµενους πίνακες συνάφειας x. Έτσι ο γιατρός διευκολύνεται στην επιλογή του, η οποία βεβαίως λαµβάνει υπ όψη και άλλους παράγοντες όπως το κόστος και ο χρόνος του test, τον επιπολασµό της υποτιθέµενης ασθένειας (όπως θα αναλυθεί αργότερα) κ.λ.π... Παράµετροι της επίδοσης ενός ιατρικού test Οι παράµετροι της επίδοσης ενός test, όπως διαφαίνεται από την προηγούµενη ενότητα, είναι δύο ειδών : παράµετροι συµφωνίας και παράµετροι ασυµφωνίας µε την πραγµατικότητα. Στην ουσία οι παράµετροι συµφωνίας ταυτίζονται µε την έννοια της ευαισθησίας και της ειδικότητας οι οποίες µπορούν να ορισθούν τώρα χρησιµοποιώντας τον όρο της δεσµευµένης πιθανότητας και τους προηγούµενους πίνακες συνάφειας x. Η ευαισθησία που καλείται και ποσοστό των αληθώς θετικών (Π.Α.Θ) είναι η πιθανότητα ένας που έχει την ασθένεια να δώσει θετικό test. Χρησιµοποιώντας την συµβολογία της δεσµευµένης πιθανότητας, η ευαισθησία εκφράζεται σαν την πιθανότητα το test να βγει θετικό, δεδοµένου ότι ο εξεταζόµενος είναι ασθενής. P T + A = P θετικο Test ο εξεταζοµενος ειναι ασθενης Ένας εναλλακτικός τρόπος έκφρασης της ίδιας ιδιότητας του test, είναι να δοθεί το (Π.Α.Θ) σαν το κλάσµα των ασθενών µε θετικό test δια του συνόλου των ασθενών: αριθµος των ασθενων µε θετικο test Π.Α.Θ = συνολοκος αριθµος ασθενων 3

20 ηλαδή χρησιµοποιώντας τον πίνακα. έχουµε ότι : A.Θ Π.Α.Θ = Α.Θ + Ψ.Α Με ανάλογο τρόπο η ειδικότητα που καλείται και ποσοστό αληθώς αρνητικών (Π.Α.Α), ορίζεται σαν η πιθανότητα ένας που δεν έχει την ασθένεια να δώσει αρνητικό test. Με την συµβολογία της δεσµευµένης πιθανότητας, η ειδικότητα εκφράζεται σαν την πιθανότητα το test να είναι αρνητικό δεδοµένόυ ότι ο εξεταζόµενος δεν είναι ασθενής. ( ) P T = P A Αρνητικο Test ο εξεταζοµενος δεν ειναι ασθενης Εναλλακτικά το ποσοστό των αληθώς αρνητικών δίνεται µε το κλάσµα: ( AA. ) Π.Α.Α = ( AA. ) + ( Ψ. A)..3 Συνεκτίµηση της ευαισθησίας και της ειδικότητας στην επιλογή του κατάλληλου test. Ανακεφαλαιώνοντας είναι σαφές ότι οι τιµές της ευαισθησίας και της ειδικότητας, ενός test συνεχούς µεταβλητής, εξαρτάται από το εκάστοτε καθοριζόµενο όριο διαχωρισµού µεταξύ φυσιολογικού και µη φυσιολογικού. Η αύξηση της τιµής αυτού που καθορίζουµε σαν ανώτατο φυσιολογικό όριο, θα µειώσει τον αριθµό των ψευδώς θετικών και ταυτόχρονα θα αυξήσει τον αριθµό των ψευδώς αρνητικών tests. Με αυτό τον τρόπο το test γίνεται περισσότερο ειδικό και λιγότερο ευαίσθητο. Παροµοίως η µείωση της τιµής του ανωτάτου φυσιολογικού ορίου αυξάνει τον αριθµό των ψευδώς θετικών και µειώνει τον αριθµό των ψευδώς αρνητικών, δηλαδή αυξάνει αυξάνει την ευαισθησία και µειώνει την ειδικότητα. Είναι φανερό από τα παραπάνω ότι η ευαισθησία και η ειδικότητα δεν είναι αποκλειστικά χαρακτηριστικά του test, αλλά εξαρτώνται και από το κριτήριο που τίθεται για την διάκριση του τι θεωρείται µη φυσιολογικό αποτέλεσµα (θετικό test). Κατά συνέπεια ο καλύτερος τρόπος για να χαρακτηρισθεί, αποκλειστικά και µόνο, η επίδοση ενός test είναι να δοθούν οι τιµές της ευαισθησίας και ειδικότητας του σαν συνάρτηση των τιµών που µπορεί να πάρει το ανώτατο φυσιολογικό όριο (cut off). Η τυπική γραφική παράσταση αυτής της συνάρτησης δίνεται χρησιµοποιώντας το καρτεσιανό σύστηµα αξόνων και βάζοντας στον κάθετο άξονα την ευαισθησία και στον οριζόντιο την µεταβλητή x = (-ειδικότητα). Η x ισούται µε το ποσοστό των αληθώς θετικών δια του ποσοστού των ψευδώς θετικών και η τιµή της µεταβάλλεται άµεσα µε την µεταβολή της τιµής του ανώτατου φυσιολογικού ορίου. Η προκύπτουσα καµπύλη είναι γνωστή ως καµπύλη ROC (Receiver Operating Caracteristic). Κάθε σηµείο επί της καµπύλης ROC δίνει την ευαισθησία και την ειδικότητα του test για ένα συγκεκριµένο ανώτατο φυσιολογικό όριο. Εάν ένας γιατρός θέλει να επιλέξει µεταξύ διαφόρων tests για τον έλεγχο µιας διαγνωστικής υπόθεσης που αφορά µία συγκεκριµένη ασθένεια ή κατηγορία ασθενειών, θα µπορούσε να συγκρίνει τις ROC καµπύλες που αντιστοιχούν στα υποψήφια tests. 4

Βιοστατιστική Ι. Δείκτες αξιολόγησης διαγνωστικών μεθόδων Θετική-Αρνητική Διαγνωστική Αξία ROC καμπύλες

Βιοστατιστική Ι. Δείκτες αξιολόγησης διαγνωστικών μεθόδων Θετική-Αρνητική Διαγνωστική Αξία ROC καμπύλες Βιοστατιστική Ι Δείκτες αξιολόγησης διαγνωστικών μεθόδων Θετική-Αρνητική Διαγνωστική Αξία ROC καμπύλες Διαγνωστικές εξετάσεις Κλινικές ή εργαστηριακές Αναγνώριση ατόμου ως πάσχον από ένα νόσημα πολλές

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Βασικές αρχές της θεωρίας των πιθανοτήτων και η εφαρµογή τους στην εκτίµηση των ασφαλιστικών κινδύνων

Βασικές αρχές της θεωρίας των πιθανοτήτων και η εφαρµογή τους στην εκτίµηση των ασφαλιστικών κινδύνων Βασικές αρχές της θεωρίας των πιθανοτήτων και η εφαρµογή τους στην εκτίµηση των ασφαλιστικών κινδύνων Αθηνά Λινού Αναπληρώτρια Καθηγήτρια Ιατρική Σχολή, Πανεπιστήµιο Αθηνών Βασικές αρχές της θεωρίας των

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ

Διαβάστε περισσότερα

ιαγνωστικός Συλλογισµός και Λήψη Ιατρικής Απόφασης

ιαγνωστικός Συλλογισµός και Λήψη Ιατρικής Απόφασης ιαγνωστικός Συλλογισµός και Λήψη Ιατρικής Απόφασης ρ. Βασίλης Σπυρόπουλος Τµήµα Τεχνολογίας Ιατρικών Οργάνων Σχολή Τεχνολογικών Εφαρµογών Tεχνολογικό Εκπαιδευτικό Ιδρυµα Αθήνας 1 Η αφετηρία του διαγνωστικού

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ

Διαβάστε περισσότερα

Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.

Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων. ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για

Διαβάστε περισσότερα

Β Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής

Διαβάστε περισσότερα

Κεφάλαιο 13. Αβεβαιότητα. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου

Κεφάλαιο 13. Αβεβαιότητα. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κεφάλαιο 13 Αβεβαιότητα Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Κυριότερες πηγές αβεβαιότητας: Αβέβαιη Γνώση Ανακριβή δεδοµένα (imprecise data).

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο )

Ενότητα 1: Εισαγωγή. ΤΕΙ Στερεάς Ελλάδας. Τμήμα Φυσικοθεραπείας. Προπτυχιακό Πρόγραμμα. Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 1: Εισαγωγή Δρ. Χρήστος Γενιτσαρόπουλος Λαμία, 2017 1.1. Σκοπός και

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΑΠΘ Εργαστήριο Πληροφορικής στη Γεωργία ΠΛΗΡΟΦΟΡΙΚΗ Ι

ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΑΠΘ Εργαστήριο Πληροφορικής στη Γεωργία ΠΛΗΡΟΦΟΡΙΚΗ Ι ΓΕΩΠΟΝΙΚΗ ΣΧΟΛΗ ΑΠΘ Εργαστήριο Πληροφορικής στη Γεωργία ΠΛΗΡΟΦΟΡΙΚΗ Ι Συστήματα Υποστήριξης Αποφάσεων Τα Συστήματα Υποστήριξης Αποφάσεων (Σ.Υ.Α. - Decision Support Systems, D.S.S.) ορίζονται ως συστήματα

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης

Ενότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων

Διαβάστε περισσότερα

Χρήσεις του Η/Υ και Βάσεις Βιολογικών Δεδομένων

Χρήσεις του Η/Υ και Βάσεις Βιολογικών Δεδομένων Χρήσεις του Η/Υ και Βάσεις Βιολογικών Δεδομένων 3. Δεδομένα και Στατιστική Επεξεργασία Χριστόφορος Νικολάου Τμήμα Βιολογίας, Πανεπιστήμιο Κρήτης computational-genomics-uoc.weebly.com Χριστόφορος Νικολαου,

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Η έννοια πρόβληµα Ανάλυση προβλήµατος Με τον όρο πρόβληµα εννοούµε µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή ούτε προφανής. Μερικά προβλήµατα είναι τα εξής:

Διαβάστε περισσότερα

ΔΙΑΓΝΩΣΤΙΚΈΣ ΔΟΚΙΜΑΣΊΕΣ

ΔΙΑΓΝΩΣΤΙΚΈΣ ΔΟΚΙΜΑΣΊΕΣ ΔΙΑΓΝΩΣΤΙΚΈΣ ΔΟΚΙΜΑΣΊΕΣ Εμμανουήλ Σμυρνάκης Λέκτορας Πρωτοβάθμιας Φροντίδας Υγείας Ιατρικής Σχολής ΑΠΘ smyrnak@auth.gr Θέματα Διαγνωστικές Δοκιμασίες Μέτρα Εγκυρότητας Ευαισθησία Ειδικότητα Θετική και

Διαβάστε περισσότερα

"The Project ARXIMIDIS ΙΙ is co-funded by the European Social Fund and National Resources EPEAEK ΙΙ "

The Project ARXIMIDIS ΙΙ is co-funded by the European Social Fund and National Resources EPEAEK ΙΙ Αρχιµήδης ΙΙ Ενίσχυση Ερευνητικών Οµάδων του ΤΕΙ Κρήτης Τίτλος Υποέργου: Εφαρµογές Τεχνητής Νοηµοσύνης στην Τεχνολογία Λογισµικού και στην Ιατρική Επιστηµονικός Υπεύθυνος: ρ Εµµανουήλ Μαρακάκης ραστηριότητα

Διαβάστε περισσότερα

Συστηματικός ερυθηματώδης λύκος: το πρότυπο των αυτόάνοσων ρευματικών νοσημάτων

Συστηματικός ερυθηματώδης λύκος: το πρότυπο των αυτόάνοσων ρευματικών νοσημάτων Συστηματικός ερυθηματώδης λύκος: το πρότυπο των αυτόάνοσων ρευματικών νοσημάτων Φ.Ν. Σκοπούλη Καθηγήτρια τον Χαροκόπειου Πανεπιστημίου Αθηνών συστηματικός ερυθηματώδης λύκος θεωρείται η κορωνίδα των αυτοάνοσων

Διαβάστε περισσότερα

ΛΟΗ Β. PDF created with pdffactory trial version

ΛΟΗ Β. PDF created with pdffactory trial version Αξιολόγηση προσδιορισμών Αναλυτική επίδοση προσδιορισμού Επιλογή μεθόδου προσδιορισμού βάσει αναλυτικών χαρακτηριστικών και ελέγχου ποιότητας των μετρήσεων Διαγνωστική αξία ανάλυσης Επιλογή δοκιμασίας

Διαβάστε περισσότερα

ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική

ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών

Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Κεφάλαιο 5 Κριτήρια απόρριψης απόμακρων τιμών Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται δύο κριτήρια απόρριψης απομακρυσμένων από τη μέση τιμή πειραματικών μετρήσεων ενός φυσικού μεγέθους και συγκεκριμένα

Διαβάστε περισσότερα

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.

Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα. Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι

Διαβάστε περισσότερα

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ

Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Β06Σ03 ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΗΝ ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΗ Ενότητα 2: Επαγωγική-περιγραφική στατιστική, παραµετρικές

Διαβάστε περισσότερα

ΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ

ΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ ΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ ΠΑΡΟΥΣΙΑΣΗ 5 Η (Θ) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΑΙ ΠΡΟΕΤΟΙΜΑΣΙΑ ΤΗΣ ΕΠΙΔΗΜΙΟΛΟΓΙΚΗΣ ΕΡΕΥΝΑΣ 1 ΣΧΕΔΙΑΣΜΟΣ ΠΕΡΙΓΡΑΦΙΚΗΣ ΕΠΙΔΗΜΙΟΛΟΓΙΚΗΣ ΕΡΕΥΝΑΣ 2 Παρατηρήσεις (Observations) Δομικά στοιχεία

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Γνωριµία και ερµηνεία των πιθανοτήτων Χρήση σε πρακτικά προβλήµατα και σε θέµατα στατιστικής συµπερασµατολογίας. Προσθετικός και πολλαπλασιαστικός κανόνας των πιθανοτήτων Έννοια της

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 7 Από τα κάτωθι Θέµατα καλείστε να λύσετε το ο που περιλαµβάνει ερωτήµατα από όλη την ύλη

Διαβάστε περισσότερα

Αξιοπιστία προληπτικών εργαστηριακών εξετάσεων. Γ. Κολιάκος Καθηγητής Βιοχημείας

Αξιοπιστία προληπτικών εργαστηριακών εξετάσεων. Γ. Κολιάκος Καθηγητής Βιοχημείας Αξιοπιστία προληπτικών εργαστηριακών εξετάσεων Γ. Κολιάκος Καθηγητής Βιοχημείας Η τέχνη της διάγνωσης ο κλινικός γιατρός «υποκειμενικά δεδομένα» Ιστορικό κλινική εξέταση Διαφορική διάγνωση Υπόθεση Τεκμηρίωση

Διαβάστε περισσότερα

4.3. Γραµµικοί ταξινοµητές

4.3. Γραµµικοί ταξινοµητές Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης

LOGO. Εξόρυξη Δεδομένων. Δειγματοληψία. Πίνακες συνάφειας. Καμπύλες ROC και AUC. Σύγκριση Μεθόδων Εξόρυξης Εξόρυξη Δεδομένων Δειγματοληψία Πίνακες συνάφειας Καμπύλες ROC και AUC Σύγκριση Μεθόδων Εξόρυξης Πασχάλης Θρήσκος PhD Λάρισα 2016-2017 pthriskos@mnec.gr LOGO Συμπερισματολογία - Τι σημαίνει ; Πληθυσμός

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Αβεβαιότητα Με τον όρο αβεβαιότητα (uncertainty) εννοείται η έλλειψη ακριβούς

Διαβάστε περισσότερα

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).

Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro

Διαβάστε περισσότερα

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1

Στ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

στατιστική θεωρεία της δειγµατοληψίας

στατιστική θεωρεία της δειγµατοληψίας στατιστική θεωρεία της δειγµατοληψίας ΕΙΓΜΑΤΟΛΗΨΙΑ : Εισαγωγή δειγµατοληψία Τα στοιχεία που απαιτούνται τόσο για την ανάλυση των µεταφορικών συστηµάτων και όσο και για την ανάπτυξη των συγκοινωνιακών µοντέλων

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Περιεχόµενα. Πληροφοριακά Συστήµατα: Κατηγορίες και Κύκλος Ζωής. Π.Σ. ιαχείρισης Πράξεων. Π.Σ. ιοίκησης. Κατηγορίες Π.Σ. Ο κύκλος ζωής Π.Σ.

Περιεχόµενα. Πληροφοριακά Συστήµατα: Κατηγορίες και Κύκλος Ζωής. Π.Σ. ιαχείρισης Πράξεων. Π.Σ. ιοίκησης. Κατηγορίες Π.Σ. Ο κύκλος ζωής Π.Σ. Πληροφοριακά Συστήµατα: Κατηγορίες και Κύκλος Ζωής Περιεχόµενα Κατηγορίες Π.Σ. ιαχείρισης Πράξεων ιοίκησης Υποστήριξης Αποφάσεων Έµπειρα Συστήµατα Ατόµων και Οµάδων Ο κύκλος ζωής Π.Σ. Ορισµός Φάσεις Χρήστες

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Εισαγωγή Μεθοδολογία της Έρευνας ΕΙΚΟΝΑ 1-1 Μεθοδολογία της έρευνας.

ΚΕΦΑΛΑΙΟ Εισαγωγή Μεθοδολογία της Έρευνας ΕΙΚΟΝΑ 1-1 Μεθοδολογία της έρευνας. ΚΕΦΑΛΑΙΟ 1 Εισαγωγή Η Μεθοδολογία της Έρευνας (research methodology) είναι η επιστήμη που αφορά τη μεθοδολογία πραγματοποίησης μελετών με συστηματικό, επιστημονικό και λογικό τρόπο, με σκοπό την παραγωγή

Διαβάστε περισσότερα

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή. ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.

Διαβάστε περισσότερα

ΕΕΟ 11. Η χρήση στατιστικών εργαλείων στην εκτιμητική

ΕΕΟ 11. Η χρήση στατιστικών εργαλείων στην εκτιμητική ΕΕΟ 11 Η χρήση στατιστικών εργαλείων στην εκτιμητική 1. Εισαγωγή 2. Προϋποθέσεις χρήσης των Αυτοματοποιημένων Εκτιμητικών Μοντέλων (ΑΕΜ) 3. Περιορισμοί στη χρήση των ΑΕΜ εφόσον έχουν πληρωθεί οι προϋποθέσεις

Διαβάστε περισσότερα

Β.δ Επιλογή των κατάλληλων εμπειρικών ερευνητικών μεθόδων

Β.δ Επιλογή των κατάλληλων εμπειρικών ερευνητικών μεθόδων Β.δ Επιλογή των κατάλληλων εμπειρικών ερευνητικών μεθόδων Νίκος Ναγόπουλος Για τη διεξαγωγή της κοινωνικής έρευνας χρησιμοποιούνται ποσοτικές ή/και ποιοτικές μέθοδοι που έχουν τις δικές τους τεχνικές και

Διαβάστε περισσότερα

Γεώργιος Φίλιππας 23/8/2015

Γεώργιος Φίλιππας 23/8/2015 MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΕΙ ΠΕΙΡΑΙΑ ΤΤ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Σκοπός της άσκησης 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Σκοπός αυτής της άσκησης είναι η εξοικείωση των σπουδαστών με τα σφάλματα που

Διαβάστε περισσότερα

Εργασία στο εκπαιδευτικό λογισµικό Function Probe

Εργασία στο εκπαιδευτικό λογισµικό Function Probe Γιάννης Π. Πλατάρος -1-20/10/2003 ΚΑΤΑΣΚΕΥΗ ΑΝΑΛΥΤΙΚΗΣ ΕΚΦΡΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ ΣΕ ΙΑΤΡΙΚΟ ΠΡΟΒΛΗΜΑ Εργασία στο εκπαιδευτικό λογισµικό Function Probe Περίληψη: ίνεται στους µαθητές η διαπραγµάτευση ενός προβλήµατος

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

Εισαγωγή στη διαγνωστική έρευνα

Εισαγωγή στη διαγνωστική έρευνα DEPARTMENT OF HYGIENE AND EPIDEMIOLOGY Εισαγωγή στη διαγνωστική έρευνα Κώστας Τσιλίδης, ktsilidi@cc.uoi.gr http://users.uoi.gr/ktsilidi/teaching Ιωαννίδης: κεφάλαιο 3 Ahlbom: κεφάλαιο 3, 4 Guyatt: κεφάλαιο

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης σελίδας Κεφ. 1

Ερωτήσεις κατανόησης σελίδας Κεφ. 1 Ερωτήσεις κατανόησης σελίδας 50 5 Κεφ.. Ο όγκος του διπλανού ορθογωνίου παραλληλεπιπέδου εκφράζεται µε τη συνάρτηση V() = ( )( ). Το πεδίο ορισµού της συνάρτησης αυτής είναι το διάστηµα : A. [0, + ] B.

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

Περιγραφική Ανάλυση ποσοτικών μεταβλητών

Περιγραφική Ανάλυση ποσοτικών μεταβλητών Περιγραφική Ανάλυση ποσοτικών μεταβλητών Στο data file Worldsales.sav (αρχείο υποθετικών πωλήσεων ανά ήπειρο και προϊόν) Analyze Descriptive Statistics Frequencies Επιλογή μεταβλητής Revenue Πατάμε στο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS)

Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) Γεωγραφικά Πληροφοριακά Συστήµατα (Geographical Information Systems GIS) ρ. ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ xalkias@hua.gr Χ. Χαλκιάς - Εισαγωγή στα GIS 1 Ορισµοί ΓΠΣ Ένα γεωγραφικό πληροφοριακό σύστηµα Geographic Information

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 07 & ΔΙΑΛΕΞΗ 08 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 016-017 ΕΙΣΑΓΩΓΗ ΣΤΗΝ

Διαβάστε περισσότερα

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής

Κύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των

Διαβάστε περισσότερα

Οικονόμου Παναγιώτης.

Οικονόμου Παναγιώτης. Οικονόμου Παναγιώτης panawths@gmail.com poikonomou@teilam.gr Οικονόμου Παναγιώτης 1 Παπαγεωργίου. 2 Αθήνα-Ελλάδα χρόνου 460 π.χ.? Ένας νεαρός άνδρας σκεπτόμενος το ενδεχόμενο γάμου, ζητά από τον Σωκράτη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΑΓΓΕΙΟΧΕΙΡΟΥΡΓΙΚΗ ΚΛΙΝΙΚΗ Δ/ΝΤΗΣ: ΚΑΘΗΓΗΤΗΣ Α.Ν. ΚΑΤΣΑΜΟΥΡΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΑΓΓΕΙΟΧΕΙΡΟΥΡΓΙΚΗ ΚΛΙΝΙΚΗ Δ/ΝΤΗΣ: ΚΑΘΗΓΗΤΗΣ Α.Ν. ΚΑΤΣΑΜΟΥΡΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΑΓΓΕΙΟΧΕΙΡΟΥΡΓΙΚΗ ΚΛΙΝΙΚΗ Δ/ΝΤΗΣ: ΚΑΘΗΓΗΤΗΣ Α.Ν. ΚΑΤΣΑΜΟΥΡΗΣ ΚΛΙΝΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΕΞΕΛΙΞΗΣ ΤΗΣ ΑΙΜΟΔΥΝΑΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΩΝ ΑΝΕΥΡΥΣΜΑΤΩΝ

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Δημήτριος Κουτσούρης, Καθηγητής ΕΜΠ Ηλιοπούλου Δήμητρα, Δρ. Βιοϊατρικής Τεχνολογίας, Ηλεκτρολόγος Μηχ. και Μηχ. Υπολογιστών, ΕΜΠ

Δημήτριος Κουτσούρης, Καθηγητής ΕΜΠ Ηλιοπούλου Δήμητρα, Δρ. Βιοϊατρικής Τεχνολογίας, Ηλεκτρολόγος Μηχ. και Μηχ. Υπολογιστών, ΕΜΠ Ο ΡΟΛΟΣ ΤΗΣ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΣΤΗΝ ΕΞΑΤΟΜΙΚΕΥΜΕΝΗ ΔΙΑΧΕΙΡΙΣΗ ΓΥΝΑΙΚΩΝ ΜΕ ΠΑΘΟΛΟΓΙΚΟ ΤΕΣΤ ΠΑΠΑΝΙΚΟΛΑΟΥ Δημήτριος Κουτσούρης, Καθηγητής ΕΜΠ Ηλιοπούλου Δήμητρα, Δρ. Βιοϊατρικής Τεχνολογίας, Ηλεκτρολόγος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Τρία συνηθισµένα λάθη που κάνουν µαθητές της Γ Λυκείου σε ασκήσεις του ιαφορικού Λογισµού ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ3 e-mail@p-thedrpuls.gr Πρόλογος Στην εργασία αυτή επισηµαίνονται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 1

Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 1 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 1 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 2 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 3 Μάιος 02. Αναγνωστόπουλος - Παν. Αθηνών 4 Μάιος 02. Αναγνωστόπουλος - Παν.

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου

τρόπος για να εμπεδωθεί η θεωρία. Για την επίλυση των παραδειγμάτων χρησιμοποιούνται στατιστικά πακέτα, ώστε να είναι δυνατή η ανάλυση μεγάλου όγκου ΠΡΟΛΟΓΟΣ Η γραμμική παλινδρόμηση χρησιμοποιείται για την μελέτη των σχέσεων μεταξύ μετρήσιμων μεταβλητών. Γενικότερα, η γραμμική στατιστική συμπερασματολογία αποτελεί ένα ευρύ πεδίο της στατιστικής ανάλυσης

Διαβάστε περισσότερα

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Σ ΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΜΗΝΕΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Μ ΑΪΟΥ 2002 2004 Δ ΕΥΤΕΡΟ ΜΕΡΟΣ Π ΕΡΙΛΗΨΗ: Η μελέτη αυτή έχει σκοπό να παρουσιάσει και να ερμηνεύσει τα ευρήματα που προέκυψαν από τη στατιστική

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

Αιτιολόγηση με αβεβαιότητα

Αιτιολόγηση με αβεβαιότητα Αιτιολόγηση με αβεβαιότητα Στα προβλήματα του πραγματικού κόσμου οι αποφάσεις συνήθως λαμβάνονται υπό αβεβαιότητα (uncertainty), δηλαδή έλλειψη επαρκούς πληροφορίας. Οι κυριότερες πηγές αβεβαιότητας είναι:

Διαβάστε περισσότερα

οµή δικτύου ΣΧΗΜΑ 8.1

οµή δικτύου ΣΧΗΜΑ 8.1 8. ίκτυα Kohonen Το µοντέλο αυτό των δικτύων προτάθηκε το 1984 από τον Kοhonen, και αφορά διαδικασία εκµάθησης χωρίς επίβλεψη, δηλαδή δεν δίδεται καµία εξωτερική επέµβαση σχετικά µε τους στόχους που πρέπει

Διαβάστε περισσότερα

Συγγραφή και κριτική ανάλυση επιδημιολογικής εργασίας

Συγγραφή και κριτική ανάλυση επιδημιολογικής εργασίας Εργαστήριο Υγιεινής Επιδημιολογίας και Ιατρικής Στατιστικής Ιατρική Σχολή, Πανεπιστήμιο Αθηνών Συγγραφή και κριτική ανάλυση επιδημιολογικής εργασίας Δ. Παρασκευής Εργαστήριο Υγιεινής Επιδημιολογίας και

Διαβάστε περισσότερα

6. Στατιστικές μέθοδοι εκπαίδευσης

6. Στατιστικές μέθοδοι εκπαίδευσης 6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS)

Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών. (Geographical Information Systems GIS) Τι είναι τα Συστήµατα Γεωγραφικών Πληροφοριών (Geographical Information Systems GIS) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ, ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΧΑΛΚΙΑΣ ΧΡΙΣΤΟΣ Εισαγωγή στα GIS 1 Ορισµοί ΣΓΠ Ένα σύστηµα γεωγραφικών πληροφοριών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

Στερεότυπα και προκαταλήψεις. Το σύνολο των χαρακτηριστικών που πιστεύεται ότι καθορίζουν µια οµάδα ανθρώπων ονοµάζονται στερεότυπα.

Στερεότυπα και προκαταλήψεις. Το σύνολο των χαρακτηριστικών που πιστεύεται ότι καθορίζουν µια οµάδα ανθρώπων ονοµάζονται στερεότυπα. Στερεότυπα και προκαταλήψεις. Το σύνολο των χαρακτηριστικών που πιστεύεται ότι καθορίζουν µια οµάδα ανθρώπων ονοµάζονται στερεότυπα. Βάση των στερεοτύπων συχνά κρίνουµε τα άτοµα που ανήκουν σε µια οµάδα

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Κυρτές Συναρτήσεις και Ανισώσεις Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο e-mail: zenon7@otenetgr Ιούλιος-Αύγουστος 2004 Περίληψη Το σχολικό ϐιβλίο της Γ Λυκείου ορίζει σαν κυρτή (αντ κοίλη)

Διαβάστε περισσότερα