f[n] = f[n]z n = F (z). (9.2) n=0

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "f[n] = f[n]z n = F (z). (9.2) n=0"

Transcript

1 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija kompleksne varijable. Koeficijenti ravoja te kompleksne funkcije su upravo elementi nia {f[n]}. Sama vrijednost reda Z [ f[n] ] može biti konačna ili beskonačna. Skup vrijednosti kompleksne varijable a koje je red Z [ f[n] ] konačan naiva se područje konvergencije, dok se skup vrijednosti od a koje je red Z [ f[n] ] beskonačan naiva područje divergencije. Primjer 9.. Odredi Z transformaciju δ nia. Računamo prema definiciji 9.): Z [ f[n] ] = δ[n] n = 0 =. Primjer 9.. Odredi Z transformaciju jedinične stepenice s[n]. Jednična stepenica s[n] je definirana kao { 0, a n < 0 s[n] =, a n 0. Računamo prema definiciji 9.): Z [ s[n] ] = s[n] n = n = ) n =. Pri tome adnja jednakost vrijedi samo na području konvergencije dobivenog reda. Kako se radi o geometrijskom redu, područje konvergencije je odredeno s <, odnosno s >. Područje konvergencije je dio ravnine ivan jedninične kružnice slika 9..). Primjer 9.3. Odredi Z transformaciju diskretne eksponencijale. Diskretna eksponencijala je definirana kao { 0, a n < 0 f[n] = a n, a n 0. 55

2 Računamo prema definiciji 9.): Z [ f[n] ] = f[n] n = a n n = a ) n = a. Pri tome adnja jednakost vrijedi samo na području konvergencije dobivenog reda. Kako se radi o geometrijskom redu, područje konvergencije je odredeno s a <, odnosno s > a. Područje konvergencije je dio ravnine ivan kružnice polumjera a. Primjer 9.4. Odredi Z transformaciju jedinične kosine. Jedinična kosina je definirana kao { 0, a n < 0 f[n] = n, a n 0. Red definiran prema 9.) može se proivoljno mnogo puta derivirati i njegove derivacije ostaju konvergentne. Deriviranjem dobivamo odnosno d d Z[ f[n] ] = + f[n] d d n d d Z[ f[n] ] = + f[n]n n d d Z[ f[n] ] = nf[n] n. 9.3) Ira 9.3) nam poveuje Z transformaciju nia {f[n]} s Z transformacijom istog nia pomnoženog s n. Da bi odredili transformaciju jedninčne kosine promatramo jediničnu kosinu kao jediničnu stepenicu s[n] pomnoženu s n. Sada je Z [ f[n] ] = Z [ ns[n] ] = d d = ) = ). Područje konvergencije je opet dio ravnine ivan jedinične kružnice. Primjer 9.5. Pomoću definicije Z transformacije odredi trasformaciju nia { 0, a n < 0 f[n] = sinan), a n 0. Vrijedi Primjetite da funkciju f[n] možemo apisati i kao f[n] = sinan)s[n]. Z [ f[n] ] = Z [ sinan)s[n] ] = = = j = j sinan) n = e jan n j e ja ) n j sinan)s[n] n e jan e jan) n j e jan n e ja ) n 56

3 Dobivene sume konvergiraju a e ja = e ja = < i e ja = e ja = <, pa obje sume konvergiraju a >. Područje kovergencije Z transformacije funkcije f[n] = sinan)s[n] je područje kompleksne ravnine ivan jedinične kružnice slika 9..). područje konvergencije 0 -kompleksna ravnina Slika 9..: Područje konvergencije Za > možemo svaku od suma promatrati kao konvergentni geometrijski red. Tada je Z [ f[n] ] = j pa je konačno rješenje e ja ) n j e ja ) n = j e ja j e ja = e ja + e ja j e ja e ja + sina) = cosa) + = sina) cosa) + Z [ f[n] ] = sina), >. cosa) + Primjer 9.6. Koristeći rješenje prethodnog adatka odredi Z transformaciju nia f[n] = pomoću svojstva deriviranja slike Z transformacije { 0, a n < 0 n sinan), a n 0. Z [ nf[n] ] = d d Z[ f[n] ]. 57

4 Polaimo od svojstva deriviranja slike: Z [ nf[n] ] = d d Z[ f[n] ] = d d sina) cosa) + = sina) cosa) + ) sina) cosa) ) cosa) + ) = sina) cosa) + + cosa) cosa) + ). Nakon sredivanja dobivamo konačno rješenje Z [ n sinan) ] = ) sina) cosa) + ), >. Zadatak 9.. odredite Z transformacije Primjer 9.7. Koristeći svojstvo deriviranja slike i ponavajući transformacije Z [ s[n] ] = Z[n], Z[n ], Z[n 3 ] i Z [ a n] = a Z[na n ], Z[n a n ], Z[n 3 a n ]. Odredite Z transformaciju Z [ a n f[n] ] ako je ponato da je Z [ f[n] ] = F ). Vrijedi Z [ a n f[n] ] = a n f[n] n = Z [ f[n] ] = F ) = i f[n]/a) n f[n] n Uvodenjem supstitucije = /a ili jednostavnom usporedbom iraa) dobivamo Z [ a n f[n] ] = F /a). Primjer 9.8. Odredite Z transformaciju nia pomaknutog lijevo a jedan, tj. odredite Z [ f[n + ] ] ako je ponato da je Z [ f[n] ] = F ). Vrijedi Znamo da je Z [ f[n + ] ] = Z [ f[n + ] ] = f[n + ] n i Z [ f[n] ] = F ) = f[n + ] n = f[n + ] n+) = f[n] n. f[n + ] n+). Uvodenjem supstitucije n = n + uočavamo da nedostaje jedan član i to prvi) da bi dobili F ): Z [ f[n + ] ] = f[n + ] n+) = 58 n = f[n ] n.

5 Uvodimo član f[0] na slijedeći način: f[n ] n = f[0] f[0] + n = n = f[n ] n. Sada je Z [ f[n + ] ] = f[0] + n =0 f[n ] n = F ) f[0]. Zadatak 9.. Ako je ponato da je Z [ f[n] ] = F ) pokažite da vrijedi Z [ f[n + m] ] m = m F [] f[n] n m. Primjer 9.9. Odredite Z transformaciju nia pomaknutog desno, tj. odredite Z [ f[n m] ] ako je ponato da je Z [ f[n] ] = F ). Vrijedi Znamo da je Z [ f[n m] ] = Z [ f[n m] ] = n =0 f[n m] n i Z [ f[n] ] = F ) = f[n] n. + f[n m] n = m f[n m] n m). Uvodenjem supstitucije n = n m vidmo da moramo odbaciti prvih m članova broja bi dobili F ): Z [ f[n m] ] + = m f[n m] n m) = m = m n = m + n = m + f[n ] n + m f[n ] n. n =0 f[n ] n Drugi član preponajemo kao F ) dok u prvom vraćamo stari indeks sumacije n. Dobivamo: Z [ f[n m] ] m = m F ) + f[n m] n. Primijetite da je a kaualne funkcije f[n] = 0 a n < 0 pa dobiveni ira a Z transformaciju nia pomaknutog desno postaje Z [ f[n m] ] = m F ). Primjer 9.0. Odredi Z transformaciju nia f[n] = n + )a n. Z transformacija je linearna pa je stoga Z [ n + )a n] = Z [ na n] + Z [ a n]. 59

6 Z transformacija drugog člana je ponata i tablica, Z [ a n] = a, dok Z transformaciju prvog člana odredimo u pomoć svojstva deriviranja slike, Z [ na n] = d d Konačno rješenje je tada a = a a) = a a). Z [ n + )a n] = a). Primjer 9.. Ako su f i g kaualne funkcije i ako je ponato da je Z [ f[n] ] = F ) i Z [ g[n] ] = G) odredi Z transformaciju konvolucije f g)[n] = i= f[i]g[n i]. Prema definiciji Z transformacija konvolucije je Z [ f g)[n] ] = n Zamjenom redoslijeda sumacija dobivamo Z [ f g)[n] ] = = n i=0 Z transformacija konvolucije je + i= + i= f[i]g[n i] = f[i] i G) = G) i=0 f[i]g[n i]. i= Z [ f g)[n] ] = F )G) f[i] n g[n i] f[i] i = F )G). 9.. Inverna Z transformacija Z transformacija definirana je kao Z [ f[n] ] = f[n] n = F ). 9.4) Invernu Z transformaciju koristimo pri odredivanju nia f[n] čiju Z transformaciju F ) ponajemo. Pišemo Z [ F ) ] = f[n]. 9.5) 60

7 9... Inverna Z transformacija racionalnih funkcija U primjeni su najvažnije racionalne funkcije oblika F ) = b k k + b k k + + b 0 a l l + a l l + + a ) Iravno preponavanje nia f[n] a bilo koju racionalnu funkciju oblika 9.6) nije praktično. Uobičajeno se racionalna funkcija F ) rastavlja na parcijalne ralomke. Jednom kada je ponat rastav funkcije F ) a odredivanje inverne Z transformacije koriste se tablice osnovnih funkcija. Prije rastava na parcijalne ralomke moramo odrediti polove racionalne funkcije F ). Tek kada su ponati polovi i njihova kratnost odreduje se rastav funkcije. Svaki parcijalni ralomak u rastavu će odgovarati Z transformaciji nekog elementarnog nia, dok traženi ni f[n] dobivamo kao broj tih elementarnih niova. Ako su stupanj brojnika i naivnika jednaki te ako su svi polovi medusobno raličiti i raličiti od nule rastav na parcijalne ralomke je oblika: F ) = b k k + b k k + + b 0 a k k + a k k = b k k + b k k + + b a 0 a k ) )... k ) = α 0 + α + + α k k Koeficijente u ovom rastavu odredujemo na sljedeći način: α 0 = F ) = b 0 =0 a 0 α i = i F ) =i = i b k k + b k k + + b 0 a k )... i )... k ), i 0 =i Za slučaj višestrukih polova raličitih od nule funkcija F ) ima rastav nešto drugačijeg oblika. Radi jednostavnosti pretpostavimo da je samo jedan od ukupno k polova raličitih od nule pol višestrukosti m i neka to bude baš. U tom slučaju je rastav oblika F ) = b k k + b k k + + b 0 a k k + a k k + + a 0 = b k k + b k k + + b 0 a k ) )... k ) = α 0 + α + α ) + + α m m ) m + + α m+ + + α k k m+ Općenito svaki pol i kratnosti m > urokuje pojavljivanje članova oblika i s višim potencijama sve do potencije m. Koeficijente α i u ovom rastavu odredujemo na sljedeći način: α 0 = F ) = b 0 =0 α i = m i)! F ) α i = i a 0 d m i dw m i =i ) m F ) m = i = w ), i =,..., m w=0 b k k + b k k + + b 0 a k )... i )... k ), =i i = m +,..., k 6

8 Kako je ira a koeficijente veane u višestruki pol dosta kompliciran obično te koeficijente računamo na slijedeći način. Najprije odredimo koeficijent α m koji je vean u najveću potenciju, α m = F ). = Osim njega odredimo i sve ostale koeficijente veane u jednostruke polove. Sada je potrebno odrediti još preostalih m koeficijenata u višestruki pol. Kako rastav funkcije F ) vrijedi a svaki tako vrijedi i a neki odabrani j raličit od nule i raličit od polova funkcije F ). Ako odaberemo m raličitih brojeva j koji su usto raličiti od nule i polova funkcije F ) dobivamo sustav od m jednadžbi j F j ) = α 0 + α + α j j ) + + α m j ) m + j j + α m+ + + α k, j =,..., m j j k m+ Rješenja ovog sustava jednadžbi su upravo traženi koeficijenti α,...,α m. U slučaju jednostrukog ili višestrukog pola u nuli postupak je sličan opisanom a višestruki pol raličit od nule, samo što umjesto članova rastava oblika j i ) j imamo članove oblika j, gdje potencije j idu od do m. Pri tome valja primijetiti da sada više nije moguće jednostavno iračunati slobodni član rastava α 0. Svaki pol doprinosi rastavu kako je prikaano u tablici 9.. dok se koeficijenti rastava odreduju prema iraima danim u tablici 9... Osim koeficijenata u tablici 9.. u rastavu se nalai još jedan slobodan koeficijent. jednostruki pol raličit od nule α m-struki pol raličit od nule α + α ) + + α m m ) m j m j jednostruki pol jednak nuli α m-struki pol jednak nuli α + α + + α m Tablica 9..: Doprinos pola rastavu na parcijalne ralomke m Primjer 9.. Odredi ni f[n] čija je Z transformacija Z [ f[n] ] = a cosb) ) a cosb) + a. Funkcija F ) ima dva pola. Ako su polovi medusobno raličiti očekujemo rastav oblika F ) = α 0 + α + α. 6

9 jednostruki pol raličit od nule α = F ) m-struki pol raličit od nule α = m i)! = d m i dw m i ) m F ) jednostruki pol jednak nuli α = F ) =0 d m i m-struki pol jednak nuli α i = m m i)! d m i F ) ) m w=0 Tablica 9..: Koeficijenti u rastavu na parcijalne ralomke = w ) w=0 Najprije odredujemo polove:, = a cosb) ± 4a cos b) 4a = a cosb) ± ja sinb) = ae ±jb Kako smo dobili dva raličita korijena rastav je oblika kojeg smo pretpostavili. Odredujemo koeficijente rastava α 0, α i α : α 0 = F ) = 0 0 a cosb) ) =0 0 a0 cosb) + a = 0 α = aejb F ) = aejb a cosb) ) ae jb ) ae jb ) =ae jb =ae jb = aejb a cosb) ae jb ae jb = ejb ejb + e jb ) e jb e jb = α = ae jb F ) = ae jb a cosb) ) ae jb ) ae jb ) =ae jb = ae jb a cosb) ae jb ae jb = e jb ejb + e jb ) e jb e jb = Uvrštavamo dobivene α 0, α i α u rastav i dobivamo F ) = a cosb) ) a cosb) + a = 0 + ae jb + ae jb. Sada odredimo traženi ni f[n] = aejb ) n + ae jb ) n = a n cosbn), n 0 =ae jb Primjer 9.3. Odredi invernu Z transformaciju [ Z m a) m ] a m = i m = 3 koristeći ponatu relaciju a transformaciju konvolucije Z [ f g)[n] ] = F )G) ako je ponato da je [ ] Z = a n. a 63

10 Računajmo prvo invernu transformaciju a m = : [ Z ] [ ] a) = Z = a n a n a a n n = a i a n i = a n = n + )a n i=0 Kod računanja inverne transformacije a m = koristimo prethodno dobiveni reultat a m = : [ Z 3 ] [ a) 3 = Z ] a a) = a n n + )a n n n = a i n + i)a n i = a n n + i) i=0 = a n n + ) i=0 nn + ) ) = i=0 n + )n + ) a n.! Zadatak 9.3. Primjer 9.4. Pokaži da vrijedi [ Z m ] a) m = n + )n + )... n + m ) a n. m )! Odredi invernu Z transformaciju [ Z 3 + ] polove: Potrebno je odrediti rastav na parcijalne ralomke. Prvo tražimo = 0 ) + 3) = 0 Zadana racionalna funkcija ima jedan dvostruki pol, = i jedan jednostruki pol 3 = 3. Rastav na parcijalne ralomke je oblika F ) = α 0 + α + α ) + α Odredujemo koeficijente α 0, α i α 3 prema iraima i tablice 9..: α 0 = F ) =0 = = ) α = ) + 3) = = = 9 + 3) 0 α 3 = ) + 3) = = ) = 75 Odredili smo α 0 i α i α 3 te je još potrebno odrediti koeficijent α. Umjesto iraa i tablice 9.. odabrati ćemo neki raličit od nule i raličit od polova, = i 3 = 3. Odaberimo npr. = : F ) = = + α )

11 5 4 = α α = 9 50 Konačni rastav na parcijalne ralomke je F ) = ) , pa je tražena inverna Z transformacija f[n] = δ[n] 9 50 n n + )n )n, n 0 što nakon grupiranja postaje f[n] = 9 δ[n] + 0 n + 77 ) n )n, n 0. Primjer 9.5. Odredi invernu Z transformaciju [ ] + Z. ) Opet je potrebno odrediti rastav na parcijalne ralomke. Zadana racionalna funkcija ima jedan dvostruki pol, = 0 i jedan jednostruki pol 3 = te je rastav oblika F ) = + ) = α 0 + α + α + α 3. Zbog dvostrukog pola u nuli ne možemo jednostavno odrediti slobodni koeficijent α 0 u ravoju funkcije na parcijalne ralomke. Na jednostavan način je mguće odrediti samo koeficijente α i α 3 : α = F ) =0 = + ) = 0 + =0 0 = α 3 = F ) = + = ) = + = = Da bi odredili preostale koeficijente ravoja α 0 i α odabiremo dvije raličite vrijednost koje su u to raličite od polova adane racionalne funkcije. Neka to budu vrijednosti i. Sada rješavamo sustav jednadžbi: + F ) = ) ) = α 0 + α ) + F ) = + ) = α 0 + α + 0 = α 0 α 3 = α 0 + α α 0 = α = Odredili smo sve koeficijente te je konačni rastav F ) = + ) = +. 65

12 f[n] Slika 9..: Periodički ni n Invernu Z transformaciju sada jednostavno očitamo i tablica f[n] = δ[n] δ[n ] δ[n ] + n, n 0. Primjer 9.6. Odredi analitički ira a periodički ni adan slikom 9... Ni f[n] možemo prikaati kao ni impulsa f[n] = δ[n] + δ[n ] + δ[n 4] +... Zbog periodičnosti možemo odrediti ira a ovaj ni u Z domeni: F ) = = n =. Odredivanje analitičkog iraa a ni f[n] sada se svodi na odredivanje inverne Z transformacije. Rastav racionalne funkcije F ) na parcijalne ralomke je oblika F ) = = α 0 + α + α +. Odredujemo koeficijente rastava: α 0 = ) + ) = 0 =0 α = ) + ) = = α = + ) + ) = = Konačan rastav je F ) = pa je traženi analitički ira a ni f[n] + +, f[n] = n + ) n, n Inverna Z transformacija dijeljenjem Z transformacija je definirana kao Z [ f[n] ] = f[n] n = F ) 9.7) 66

13 što možemo raspisati na način F ) = f[0] + f[] + f[] ) Ukoliko je potrebno pronaći invernu Z transformaciju neke racionalne funkcije oblika 9.6) možemo se koristiti djeljenjem polinoma. Naime, djeljenjem brojnika racionalne funkcije s naivnikom dobivamo polinom oblika 9.8) koji predstavlja upravo naš traženi ni. Najveći nedostatak ove metode jest u tome što ne dobivamo opći ira a diskretni ni, već računamo taj ni član po član počevši od prvoga. Primjer 9.7. Dijeljenjem odredi prvih pet članova nia f[n] a adanu racionalnu funkciju F ) = Da bi odredili prvih pet članova nia potrebno je podijeliti brojinik s naivnikom te iračunati prvih pet članova reultata: ) : ) = Kao reultat dobivamo F ) = te su prvih pet članova nia f[n] f[0] =, f[] = 3, f[] =, f[3] = 5 i f[4] = 85. Ovaj reultat obično apisujemo kao f[n] = δ[n] + 3δ[n ] + δ[n ] + 5δ[n 3] + 85δ[n 4]

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

OPIS LINEARNIH DISKRETNIH SUSTAVA. 5. Opis linearnih diskretnih sustava pomoću jednadžbi diferencija. Nedjeljko Perić i Ivan Petrović

OPIS LINEARNIH DISKRETNIH SUSTAVA. 5. Opis linearnih diskretnih sustava pomoću jednadžbi diferencija. Nedjeljko Perić i Ivan Petrović OPIS LINEARNIH DISKRENIH SUSAVA 5. Opis linearnih diskretnih sustava pomoću jednadžbi diferencija * raži se odnos imeđu ulanih i ilanih slijedova impulsa - Za kontinuirane sustave 6 diferencijalne jednadžbe

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Hijavata 1 Predgovor Pismeni ispit iz matematike 3 obuhvata

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

UVOD. Ovi nastavni materijali namijenjeni su studentima

UVOD. Ovi nastavni materijali namijenjeni su studentima UVOD Ovi nastavni materijali namijenjeni su studentima u svrhu lakšeg praćenja i boljeg razumijevanja predavanja iz kolegija matematika. Ovi materijali čine suštinu nastavnog gradiva pa, uz obaveznu literaturu,

Διαβάστε περισσότερα

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije

2 REALNE FUNKCIJE JEDNE REALNE VARIJABLE Elementarne funkcije Primjeri ekonomskih funkcija Limes funkcije Sadržaj REALNE FUNKCIJE JEDNE REALNE VARIJABLE 7. Elementarne funkcije....................... 7. Primjeri ekonomskih funkcija.................. 78.3 Limes funkcije........................... 8.4 Neprekidnost

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

5. Aproksimacija i interpolacija

5. Aproksimacija i interpolacija APROKSIMACIJA I INTERPOLACIJA 56 5. Aproksimacija i interpolacija 5.. Opći problem aproksimacije Što je problem aproksimacije? Ako su poznate neke informacije o funkciji f, definiranoj na nekom skupu X

Διαβάστε περισσότερα

Funkcije Materijali za nastavu iz Matematike 1

Funkcije Materijali za nastavu iz Matematike 1 Funkcije Materijali za nastavu iz Matematike 1 Kristina Krulić Himmelreich i Ksenija Smoljak 2012/13 1 / 76 Definicija funkcije Funkcija iz skupa X u skup Y je svako pravilo f po kojemu se elementu x X

Διαβάστε περισσότερα

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable

1 DIFERENCIJALNI RAČUN Granična vrijednost i neprekidnost funkcije Derivacija realne funkcije jedne varijable Sadržaj 1 DIFERENCIJALNI RAČUN 3 1.1 Granična vrijednost i neprekidnost funkcije........... 3 1.2 Derivacija realne funkcije jedne varijable............ 4 1.2.1 Pravila deriviranja....................

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

I. dio. Zadaci za ponavljanje

I. dio. Zadaci za ponavljanje I. dio Zadaci za ponavljanje ZADACI ZA PONAVLJANJE. BROJEVI: Prirodni, cijeli, racionalni i realni brojevi. Izgradnja skupova N, Z, Q, R.. Odredi najveću zajedničku mjeru M(846, 46).. Napiši broj u sustavu

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem Dirichletov princip Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem obliku glasi ovako: Dirichletov princip: Ako n + 1 predmet rasporedimo kako

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković

VJEŽBE IZ MATEMATIKE 2. Ivana Baranović Miroslav Jerković VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Poglavlje Integral. Neodreženi integral Neka je zadana funkcija f : (a, b) R: Funkcija F : (a, b) R za koju je F () = f() za svaki (a, b) naziva se

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Operatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić

Operatori na normiranim prostorima vježbe 2015/2016. Tomislav Berić Operatori na normiranim prostorima vježbe 2015/2016 Tomislav Berić tberic@math.hr Sadržaj 1 Operatori na Hilbertovim prostorima 1 1.1 Normalni operatori..................................... 3 1.2 Unitarni

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima.

U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Sažetak vjerojatnost Skup ishoda U teoriji vjerojatnosti razmatraju se događaji koji se mogu, ali ne moraju dogoditi. Takvi se događaji zovu slučajnim događajima. Jednostavne događaje u nekom pokusu zvat

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1

Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 Uvod u numeričku matematiku Nositeljica kolegija: izv. prof. Nermina Mujaković 1 Asistentica: Sanda Bujačić 1 1 Odjel za matematiku Sveučilište u Rijeci Numerička integracija O problemima integriranja

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija Funkcije Pojam unkcije Funkcija, preslikavanje, pridruživanje, transormacija Primjer.: a) Odredite površinu kvadrata kojem je stranica 5cm. b) Odredite površinu pravokutnika sa stranicama duljine 7 i 5.

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Parcijalne diferencijalne jednadžbe Skripta radna verzija

Parcijalne diferencijalne jednadžbe Skripta radna verzija Parcijalne diferencijalne jednadžbe Skripta radna verzija Saša Krešić-Jurić Odjel za matematiku Prirodoslovno-matematički fakultet Split 214 Napomena: poglavlje 6 nije korigirano Sadržaj 1 Uvodna razmatranja

Διαβάστε περισσότερα

1. Skupovi Algebra skupova

1. Skupovi Algebra skupova 1. Skupovi 1.1. Algebra skupova Temeljne definicije i oznake. Pod pojmom skupa razumijevamo bilo koju množinu elemenata. Npr.: (a) skup svih prirodnih brojeva N = {1, 2, 3,...} ; (b) skup svih cijelih

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

Svojstva signala i Fourierove transformacije

Svojstva signala i Fourierove transformacije Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za elektroničke sustave i obradbu informacija Svojstva signala i Fourierove transformacije Signali i sustavi (FER-2) - Laboratorijska vježba

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU. IZVEDBENI PLAN akademska godina 2012./2013. zimski semestar

FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA U ZAGREBU. IZVEDBENI PLAN akademska godina 2012./2013. zimski semestar Naziv kolegija: Matematika sa statističkom analizom Naziv studija: Studij farmacije i medicinske biokemije Godina i semestar studija: Prva, zimski semestar FARMACEUTSKO-BIOKEMIJSKI FAKULTET SVEUČILIŠTA

Διαβάστε περισσότερα

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE

SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE SVEUČILIŠTE U RIJECI POMORSKI FAKULTET PRIMJENA MATEMATIČKIH ALATA U ELEKTROTEHNICI SKRIPTA ZA VJEŽBE Sadržaj DVOSTRUKI INTEGRALI TROSTRUKI INTEGRALI 3 VEKTORSKA ANALIZA 4 KRIVULJNI INTEGRALI 34 5 PLOŠNI

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto?

Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Matematika 1 za kemičare Kako prevoditi s jezika kemije na jezik matematike i obrnuto? Franka Miriam Brückler Igor Pažanin Zagreb, 2012. Sadržaj 1 Uvod 7 1.1 Varijable i konstante............................

Διαβάστε περισσότερα

Automatsko upravljanje 2016/2017

Automatsko upravljanje 2016/2017 Automatsko upravljanje 2016/2017 Prof.dr.sc. Nedjeljko Perić, Prof.dr.sc. Zoran Vukić Prof.dr.sc. Mato Baotić, Izv.prof.dr.sc. Nikola Mišković Zavod za automatiku i računalno inženjerstvo Fakultet elektrotehnike

Διαβάστε περισσότερα