f[n] = f[n]z n = F (z). (9.2) n=0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "f[n] = f[n]z n = F (z). (9.2) n=0"

Transcript

1 9. Z transformacija 9.. Z transformacija Z transformacija nia brojeva {f[n]} a koje vrijedi je Z [ f[n] ] = f[n] = 0, n < 0 9.) f[n] n = F ). 9.) Ovom transformacijom niu brojeva {f[n]} pridružuje se funkcija kompleksne varijable. Koeficijenti ravoja te kompleksne funkcije su upravo elementi nia {f[n]}. Sama vrijednost reda Z [ f[n] ] može biti konačna ili beskonačna. Skup vrijednosti kompleksne varijable a koje je red Z [ f[n] ] konačan naiva se područje konvergencije, dok se skup vrijednosti od a koje je red Z [ f[n] ] beskonačan naiva područje divergencije. Primjer 9.. Odredi Z transformaciju δ nia. Računamo prema definiciji 9.): Z [ f[n] ] = δ[n] n = 0 =. Primjer 9.. Odredi Z transformaciju jedinične stepenice s[n]. Jednična stepenica s[n] je definirana kao { 0, a n < 0 s[n] =, a n 0. Računamo prema definiciji 9.): Z [ s[n] ] = s[n] n = n = ) n =. Pri tome adnja jednakost vrijedi samo na području konvergencije dobivenog reda. Kako se radi o geometrijskom redu, područje konvergencije je odredeno s <, odnosno s >. Područje konvergencije je dio ravnine ivan jedninične kružnice slika 9..). Primjer 9.3. Odredi Z transformaciju diskretne eksponencijale. Diskretna eksponencijala je definirana kao { 0, a n < 0 f[n] = a n, a n 0. 55

2 Računamo prema definiciji 9.): Z [ f[n] ] = f[n] n = a n n = a ) n = a. Pri tome adnja jednakost vrijedi samo na području konvergencije dobivenog reda. Kako se radi o geometrijskom redu, područje konvergencije je odredeno s a <, odnosno s > a. Područje konvergencije je dio ravnine ivan kružnice polumjera a. Primjer 9.4. Odredi Z transformaciju jedinične kosine. Jedinična kosina je definirana kao { 0, a n < 0 f[n] = n, a n 0. Red definiran prema 9.) može se proivoljno mnogo puta derivirati i njegove derivacije ostaju konvergentne. Deriviranjem dobivamo odnosno d d Z[ f[n] ] = + f[n] d d n d d Z[ f[n] ] = + f[n]n n d d Z[ f[n] ] = nf[n] n. 9.3) Ira 9.3) nam poveuje Z transformaciju nia {f[n]} s Z transformacijom istog nia pomnoženog s n. Da bi odredili transformaciju jedninčne kosine promatramo jediničnu kosinu kao jediničnu stepenicu s[n] pomnoženu s n. Sada je Z [ f[n] ] = Z [ ns[n] ] = d d = ) = ). Područje konvergencije je opet dio ravnine ivan jedinične kružnice. Primjer 9.5. Pomoću definicije Z transformacije odredi trasformaciju nia { 0, a n < 0 f[n] = sinan), a n 0. Vrijedi Primjetite da funkciju f[n] možemo apisati i kao f[n] = sinan)s[n]. Z [ f[n] ] = Z [ sinan)s[n] ] = = = j = j sinan) n = e jan n j e ja ) n j sinan)s[n] n e jan e jan) n j e jan n e ja ) n 56

3 Dobivene sume konvergiraju a e ja = e ja = < i e ja = e ja = <, pa obje sume konvergiraju a >. Područje kovergencije Z transformacije funkcije f[n] = sinan)s[n] je područje kompleksne ravnine ivan jedinične kružnice slika 9..). područje konvergencije 0 -kompleksna ravnina Slika 9..: Područje konvergencije Za > možemo svaku od suma promatrati kao konvergentni geometrijski red. Tada je Z [ f[n] ] = j pa je konačno rješenje e ja ) n j e ja ) n = j e ja j e ja = e ja + e ja j e ja e ja + sina) = cosa) + = sina) cosa) + Z [ f[n] ] = sina), >. cosa) + Primjer 9.6. Koristeći rješenje prethodnog adatka odredi Z transformaciju nia f[n] = pomoću svojstva deriviranja slike Z transformacije { 0, a n < 0 n sinan), a n 0. Z [ nf[n] ] = d d Z[ f[n] ]. 57

4 Polaimo od svojstva deriviranja slike: Z [ nf[n] ] = d d Z[ f[n] ] = d d sina) cosa) + = sina) cosa) + ) sina) cosa) ) cosa) + ) = sina) cosa) + + cosa) cosa) + ). Nakon sredivanja dobivamo konačno rješenje Z [ n sinan) ] = ) sina) cosa) + ), >. Zadatak 9.. odredite Z transformacije Primjer 9.7. Koristeći svojstvo deriviranja slike i ponavajući transformacije Z [ s[n] ] = Z[n], Z[n ], Z[n 3 ] i Z [ a n] = a Z[na n ], Z[n a n ], Z[n 3 a n ]. Odredite Z transformaciju Z [ a n f[n] ] ako je ponato da je Z [ f[n] ] = F ). Vrijedi Z [ a n f[n] ] = a n f[n] n = Z [ f[n] ] = F ) = i f[n]/a) n f[n] n Uvodenjem supstitucije = /a ili jednostavnom usporedbom iraa) dobivamo Z [ a n f[n] ] = F /a). Primjer 9.8. Odredite Z transformaciju nia pomaknutog lijevo a jedan, tj. odredite Z [ f[n + ] ] ako je ponato da je Z [ f[n] ] = F ). Vrijedi Znamo da je Z [ f[n + ] ] = Z [ f[n + ] ] = f[n + ] n i Z [ f[n] ] = F ) = f[n + ] n = f[n + ] n+) = f[n] n. f[n + ] n+). Uvodenjem supstitucije n = n + uočavamo da nedostaje jedan član i to prvi) da bi dobili F ): Z [ f[n + ] ] = f[n + ] n+) = 58 n = f[n ] n.

5 Uvodimo član f[0] na slijedeći način: f[n ] n = f[0] f[0] + n = n = f[n ] n. Sada je Z [ f[n + ] ] = f[0] + n =0 f[n ] n = F ) f[0]. Zadatak 9.. Ako je ponato da je Z [ f[n] ] = F ) pokažite da vrijedi Z [ f[n + m] ] m = m F [] f[n] n m. Primjer 9.9. Odredite Z transformaciju nia pomaknutog desno, tj. odredite Z [ f[n m] ] ako je ponato da je Z [ f[n] ] = F ). Vrijedi Znamo da je Z [ f[n m] ] = Z [ f[n m] ] = n =0 f[n m] n i Z [ f[n] ] = F ) = f[n] n. + f[n m] n = m f[n m] n m). Uvodenjem supstitucije n = n m vidmo da moramo odbaciti prvih m članova broja bi dobili F ): Z [ f[n m] ] + = m f[n m] n m) = m = m n = m + n = m + f[n ] n + m f[n ] n. n =0 f[n ] n Drugi član preponajemo kao F ) dok u prvom vraćamo stari indeks sumacije n. Dobivamo: Z [ f[n m] ] m = m F ) + f[n m] n. Primijetite da je a kaualne funkcije f[n] = 0 a n < 0 pa dobiveni ira a Z transformaciju nia pomaknutog desno postaje Z [ f[n m] ] = m F ). Primjer 9.0. Odredi Z transformaciju nia f[n] = n + )a n. Z transformacija je linearna pa je stoga Z [ n + )a n] = Z [ na n] + Z [ a n]. 59

6 Z transformacija drugog člana je ponata i tablica, Z [ a n] = a, dok Z transformaciju prvog člana odredimo u pomoć svojstva deriviranja slike, Z [ na n] = d d Konačno rješenje je tada a = a a) = a a). Z [ n + )a n] = a). Primjer 9.. Ako su f i g kaualne funkcije i ako je ponato da je Z [ f[n] ] = F ) i Z [ g[n] ] = G) odredi Z transformaciju konvolucije f g)[n] = i= f[i]g[n i]. Prema definiciji Z transformacija konvolucije je Z [ f g)[n] ] = n Zamjenom redoslijeda sumacija dobivamo Z [ f g)[n] ] = = n i=0 Z transformacija konvolucije je + i= + i= f[i]g[n i] = f[i] i G) = G) i=0 f[i]g[n i]. i= Z [ f g)[n] ] = F )G) f[i] n g[n i] f[i] i = F )G). 9.. Inverna Z transformacija Z transformacija definirana je kao Z [ f[n] ] = f[n] n = F ). 9.4) Invernu Z transformaciju koristimo pri odredivanju nia f[n] čiju Z transformaciju F ) ponajemo. Pišemo Z [ F ) ] = f[n]. 9.5) 60

7 9... Inverna Z transformacija racionalnih funkcija U primjeni su najvažnije racionalne funkcije oblika F ) = b k k + b k k + + b 0 a l l + a l l + + a ) Iravno preponavanje nia f[n] a bilo koju racionalnu funkciju oblika 9.6) nije praktično. Uobičajeno se racionalna funkcija F ) rastavlja na parcijalne ralomke. Jednom kada je ponat rastav funkcije F ) a odredivanje inverne Z transformacije koriste se tablice osnovnih funkcija. Prije rastava na parcijalne ralomke moramo odrediti polove racionalne funkcije F ). Tek kada su ponati polovi i njihova kratnost odreduje se rastav funkcije. Svaki parcijalni ralomak u rastavu će odgovarati Z transformaciji nekog elementarnog nia, dok traženi ni f[n] dobivamo kao broj tih elementarnih niova. Ako su stupanj brojnika i naivnika jednaki te ako su svi polovi medusobno raličiti i raličiti od nule rastav na parcijalne ralomke je oblika: F ) = b k k + b k k + + b 0 a k k + a k k = b k k + b k k + + b a 0 a k ) )... k ) = α 0 + α + + α k k Koeficijente u ovom rastavu odredujemo na sljedeći način: α 0 = F ) = b 0 =0 a 0 α i = i F ) =i = i b k k + b k k + + b 0 a k )... i )... k ), i 0 =i Za slučaj višestrukih polova raličitih od nule funkcija F ) ima rastav nešto drugačijeg oblika. Radi jednostavnosti pretpostavimo da je samo jedan od ukupno k polova raličitih od nule pol višestrukosti m i neka to bude baš. U tom slučaju je rastav oblika F ) = b k k + b k k + + b 0 a k k + a k k + + a 0 = b k k + b k k + + b 0 a k ) )... k ) = α 0 + α + α ) + + α m m ) m + + α m+ + + α k k m+ Općenito svaki pol i kratnosti m > urokuje pojavljivanje članova oblika i s višim potencijama sve do potencije m. Koeficijente α i u ovom rastavu odredujemo na sljedeći način: α 0 = F ) = b 0 =0 α i = m i)! F ) α i = i a 0 d m i dw m i =i ) m F ) m = i = w ), i =,..., m w=0 b k k + b k k + + b 0 a k )... i )... k ), =i i = m +,..., k 6

8 Kako je ira a koeficijente veane u višestruki pol dosta kompliciran obično te koeficijente računamo na slijedeći način. Najprije odredimo koeficijent α m koji je vean u najveću potenciju, α m = F ). = Osim njega odredimo i sve ostale koeficijente veane u jednostruke polove. Sada je potrebno odrediti još preostalih m koeficijenata u višestruki pol. Kako rastav funkcije F ) vrijedi a svaki tako vrijedi i a neki odabrani j raličit od nule i raličit od polova funkcije F ). Ako odaberemo m raličitih brojeva j koji su usto raličiti od nule i polova funkcije F ) dobivamo sustav od m jednadžbi j F j ) = α 0 + α + α j j ) + + α m j ) m + j j + α m+ + + α k, j =,..., m j j k m+ Rješenja ovog sustava jednadžbi su upravo traženi koeficijenti α,...,α m. U slučaju jednostrukog ili višestrukog pola u nuli postupak je sličan opisanom a višestruki pol raličit od nule, samo što umjesto članova rastava oblika j i ) j imamo članove oblika j, gdje potencije j idu od do m. Pri tome valja primijetiti da sada više nije moguće jednostavno iračunati slobodni član rastava α 0. Svaki pol doprinosi rastavu kako je prikaano u tablici 9.. dok se koeficijenti rastava odreduju prema iraima danim u tablici 9... Osim koeficijenata u tablici 9.. u rastavu se nalai još jedan slobodan koeficijent. jednostruki pol raličit od nule α m-struki pol raličit od nule α + α ) + + α m m ) m j m j jednostruki pol jednak nuli α m-struki pol jednak nuli α + α + + α m Tablica 9..: Doprinos pola rastavu na parcijalne ralomke m Primjer 9.. Odredi ni f[n] čija je Z transformacija Z [ f[n] ] = a cosb) ) a cosb) + a. Funkcija F ) ima dva pola. Ako su polovi medusobno raličiti očekujemo rastav oblika F ) = α 0 + α + α. 6

9 jednostruki pol raličit od nule α = F ) m-struki pol raličit od nule α = m i)! = d m i dw m i ) m F ) jednostruki pol jednak nuli α = F ) =0 d m i m-struki pol jednak nuli α i = m m i)! d m i F ) ) m w=0 Tablica 9..: Koeficijenti u rastavu na parcijalne ralomke = w ) w=0 Najprije odredujemo polove:, = a cosb) ± 4a cos b) 4a = a cosb) ± ja sinb) = ae ±jb Kako smo dobili dva raličita korijena rastav je oblika kojeg smo pretpostavili. Odredujemo koeficijente rastava α 0, α i α : α 0 = F ) = 0 0 a cosb) ) =0 0 a0 cosb) + a = 0 α = aejb F ) = aejb a cosb) ) ae jb ) ae jb ) =ae jb =ae jb = aejb a cosb) ae jb ae jb = ejb ejb + e jb ) e jb e jb = α = ae jb F ) = ae jb a cosb) ) ae jb ) ae jb ) =ae jb = ae jb a cosb) ae jb ae jb = e jb ejb + e jb ) e jb e jb = Uvrštavamo dobivene α 0, α i α u rastav i dobivamo F ) = a cosb) ) a cosb) + a = 0 + ae jb + ae jb. Sada odredimo traženi ni f[n] = aejb ) n + ae jb ) n = a n cosbn), n 0 =ae jb Primjer 9.3. Odredi invernu Z transformaciju [ Z m a) m ] a m = i m = 3 koristeći ponatu relaciju a transformaciju konvolucije Z [ f g)[n] ] = F )G) ako je ponato da je [ ] Z = a n. a 63

10 Računajmo prvo invernu transformaciju a m = : [ Z ] [ ] a) = Z = a n a n a a n n = a i a n i = a n = n + )a n i=0 Kod računanja inverne transformacije a m = koristimo prethodno dobiveni reultat a m = : [ Z 3 ] [ a) 3 = Z ] a a) = a n n + )a n n n = a i n + i)a n i = a n n + i) i=0 = a n n + ) i=0 nn + ) ) = i=0 n + )n + ) a n.! Zadatak 9.3. Primjer 9.4. Pokaži da vrijedi [ Z m ] a) m = n + )n + )... n + m ) a n. m )! Odredi invernu Z transformaciju [ Z 3 + ] polove: Potrebno je odrediti rastav na parcijalne ralomke. Prvo tražimo = 0 ) + 3) = 0 Zadana racionalna funkcija ima jedan dvostruki pol, = i jedan jednostruki pol 3 = 3. Rastav na parcijalne ralomke je oblika F ) = α 0 + α + α ) + α Odredujemo koeficijente α 0, α i α 3 prema iraima i tablice 9..: α 0 = F ) =0 = = ) α = ) + 3) = = = 9 + 3) 0 α 3 = ) + 3) = = ) = 75 Odredili smo α 0 i α i α 3 te je još potrebno odrediti koeficijent α. Umjesto iraa i tablice 9.. odabrati ćemo neki raličit od nule i raličit od polova, = i 3 = 3. Odaberimo npr. = : F ) = = + α )

11 5 4 = α α = 9 50 Konačni rastav na parcijalne ralomke je F ) = ) , pa je tražena inverna Z transformacija f[n] = δ[n] 9 50 n n + )n )n, n 0 što nakon grupiranja postaje f[n] = 9 δ[n] + 0 n + 77 ) n )n, n 0. Primjer 9.5. Odredi invernu Z transformaciju [ ] + Z. ) Opet je potrebno odrediti rastav na parcijalne ralomke. Zadana racionalna funkcija ima jedan dvostruki pol, = 0 i jedan jednostruki pol 3 = te je rastav oblika F ) = + ) = α 0 + α + α + α 3. Zbog dvostrukog pola u nuli ne možemo jednostavno odrediti slobodni koeficijent α 0 u ravoju funkcije na parcijalne ralomke. Na jednostavan način je mguće odrediti samo koeficijente α i α 3 : α = F ) =0 = + ) = 0 + =0 0 = α 3 = F ) = + = ) = + = = Da bi odredili preostale koeficijente ravoja α 0 i α odabiremo dvije raličite vrijednost koje su u to raličite od polova adane racionalne funkcije. Neka to budu vrijednosti i. Sada rješavamo sustav jednadžbi: + F ) = ) ) = α 0 + α ) + F ) = + ) = α 0 + α + 0 = α 0 α 3 = α 0 + α α 0 = α = Odredili smo sve koeficijente te je konačni rastav F ) = + ) = +. 65

12 f[n] Slika 9..: Periodički ni n Invernu Z transformaciju sada jednostavno očitamo i tablica f[n] = δ[n] δ[n ] δ[n ] + n, n 0. Primjer 9.6. Odredi analitički ira a periodički ni adan slikom 9... Ni f[n] možemo prikaati kao ni impulsa f[n] = δ[n] + δ[n ] + δ[n 4] +... Zbog periodičnosti možemo odrediti ira a ovaj ni u Z domeni: F ) = = n =. Odredivanje analitičkog iraa a ni f[n] sada se svodi na odredivanje inverne Z transformacije. Rastav racionalne funkcije F ) na parcijalne ralomke je oblika F ) = = α 0 + α + α +. Odredujemo koeficijente rastava: α 0 = ) + ) = 0 =0 α = ) + ) = = α = + ) + ) = = Konačan rastav je F ) = pa je traženi analitički ira a ni f[n] + +, f[n] = n + ) n, n Inverna Z transformacija dijeljenjem Z transformacija je definirana kao Z [ f[n] ] = f[n] n = F ) 9.7) 66

13 što možemo raspisati na način F ) = f[0] + f[] + f[] ) Ukoliko je potrebno pronaći invernu Z transformaciju neke racionalne funkcije oblika 9.6) možemo se koristiti djeljenjem polinoma. Naime, djeljenjem brojnika racionalne funkcije s naivnikom dobivamo polinom oblika 9.8) koji predstavlja upravo naš traženi ni. Najveći nedostatak ove metode jest u tome što ne dobivamo opći ira a diskretni ni, već računamo taj ni član po član počevši od prvoga. Primjer 9.7. Dijeljenjem odredi prvih pet članova nia f[n] a adanu racionalnu funkciju F ) = Da bi odredili prvih pet članova nia potrebno je podijeliti brojinik s naivnikom te iračunati prvih pet članova reultata: ) : ) = Kao reultat dobivamo F ) = te su prvih pet članova nia f[n] f[0] =, f[] = 3, f[] =, f[3] = 5 i f[4] = 85. Ovaj reultat obično apisujemo kao f[n] = δ[n] + 3δ[n ] + δ[n ] + 5δ[n 3] + 85δ[n 4]

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

OPIS LINEARNIH DISKRETNIH SUSTAVA. 5. Opis linearnih diskretnih sustava pomoću jednadžbi diferencija. Nedjeljko Perić i Ivan Petrović

OPIS LINEARNIH DISKRETNIH SUSTAVA. 5. Opis linearnih diskretnih sustava pomoću jednadžbi diferencija. Nedjeljko Perić i Ivan Petrović OPIS LINEARNIH DISKRENIH SUSAVA 5. Opis linearnih diskretnih sustava pomoću jednadžbi diferencija * raži se odnos imeđu ulanih i ilanih slijedova impulsa - Za kontinuirane sustave 6 diferencijalne jednadžbe

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

9. PREGLED ELEMENTARNIH FUNKCIJA

9. PREGLED ELEMENTARNIH FUNKCIJA 9. PREGLED ELEMENTARNIH FUNKCIJA Pod elementarnim funkcijama najčešće ćemo podrazumijevati realne funkcije realne varijable Detaljnije ćemo u Matematici II analizirati funkcije koje se najčešće koriste

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LIMES NIZOVA LIMES MONOTONIH NIZOVA GEOMETRIJSKOG REDA LIMES FUNKCIJA 1 2.4. LIMES NIZA I TEOREMI O LIMESIMA 2.4.1. Definicija limesa i konvergentnog niza 2.4.1.1 Riješeni

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Funkcije više varijabli

Funkcije više varijabli VJEŽBE IZ MATEMATIKE 2 Ivana Baranović Miroslav Jerković Lekcija 7 Pojam funkcije dviju varijabla, grafa i parcijalnih derivacija Poglavlje 1 Funkcije više varijabli 1.1 Domena Jedno od osnovnih pitanja

Διαβάστε περισσότερα

Periodične funkcije. Branimir Dakić, Zagreb

Periodične funkcije. Branimir Dakić, Zagreb Periodične funkcije Branimir Dakić, Zagreb Periodičnost 1 je pojava koju susrećemo na svakom koraku. Periodične su mnoge prirodne pojave, primjerice izmjena dana i noći ili izmjena godišnjih doba, pojava

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

Neodred eni integrali

Neodred eni integrali Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Funkcije Sadržaj: Pojam funkcije, svojstva, operacija s funkcijama, zadavanje funkcije Pregled osnovnih elementarnih funkcija: Polinomi Racionalne

Funkcije Sadržaj: Pojam funkcije, svojstva, operacija s funkcijama, zadavanje funkcije Pregled osnovnih elementarnih funkcija: Polinomi Racionalne Funkcije Sadržaj: Pojam funkcije, svojstva, operacija s funkcijama, zadavanje funkcije Pregled osnovnih elementarnih funkcija: Polinomi Racionalne funkcije Iracionalne funkcije Potencije Eksponencijalne

Διαβάστε περισσότερα

Četrnaesto predavanje iz Teorije skupova

Četrnaesto predavanje iz Teorije skupova Četrnaesto predavanje iz Teorije skupova 27. 01. 2006. Kratki rezime prošlog predavanja: Dokazali smo teorem rekurzije, te primjenom njega definirali zbrajanje ordinalnih brojeva. Prvo ćemo navesti osnovna

Διαβάστε περισσότερα

FUNKCIJE DVIJU VARIJABLI (ZADACI)

FUNKCIJE DVIJU VARIJABLI (ZADACI) FUNKCIJE DVIJU VARIJABLI (ZADACI) Rozarija Jak²i 5. travnja 03. UVOD U FUNKCIJE DVIJU VARIJABLI.. Domena funkcija dviju varijabli Jedno od osnovnih pitanja koje se moºe postaviti za realnu funkciju dvije

Διαβάστε περισσότερα

VVR,EF Zagreb. November 24, 2009

VVR,EF Zagreb. November 24, 2009 November 24, 2009 Homogena funkcija Parcijalna elastičnost Eulerov teorem Druge parcijalne derivacije Interpretacija Lagrangeovog množitelja Ako je (x, y) R 2 uredjeni par realnih brojeva, onda je s (x,

Διαβάστε περισσότερα

3 Populacija i uzorak

3 Populacija i uzorak 3 Populacija i uzorak 1 3.1 Slučajni uzorak X varijabla/stat. obilježje koje izučavamo Cilj statističke analize na osnovi uzorka izvesti odredene zaključke o (populacijskoj) razdiobi od X 2 Primjer 3.1.

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

f(x) = a x, 0<a<1 (funkcija strogo pada)

f(x) = a x, 0<a<1 (funkcija strogo pada) Eksponencijalna funkcija (baze a) f() a, a > 0, a domena D(f) R; slika funkcije f(d) (0,+ ); nema nultočaka, jer je a > 0, za sve R; graf G(f) je krivulja u ravnini prikazana na slici desno; f() a, 0

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

Prosti brojevi. Uvod

Prosti brojevi. Uvod MLADI NADARENI MATEMATIČARI Marin Getaldic Prosti brojevi 20.12.2015. Uvod Definicija 1. Kažemo da je prirodan broj p prost broj ako ima točno dva (različita) djelitelja (konkretno, to su 1 i p). U suprotnom

Διαβάστε περισσότερα

1. Skup kompleksnih brojeva

1. Skup kompleksnih brojeva 1. Skup kompleksnih brojeva 1. Skupovibrojeva... 2 2. Skup kompleksnih brojeva................................. 5 3. Zbrajanje i množenje kompleksnih brojeva..................... 8 4. Kompleksno konjugirani

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

Ekstremi funkcije jedne varijable

Ekstremi funkcije jedne varijable maksimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) < f(x 0 ) (1) za po volji male vrijednosti h minimum funkcije y = f(x) je vrijednost f(x 0 ) za koju vrijedi f(x 0 + h) > f(x

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

Uvod u teoriju brojeva. Andrej Dujella

Uvod u teoriju brojeva. Andrej Dujella Uvod u teoriju brojeva (skripta) Andrej Dujella PMF - Matematički odjel Sveučilište u Zagrebu Sadržaj. Djeljivost.... Kongruencije... 3. Kvadratni ostatci... 9 4. Kvadratne forme... 38 5. Aritmetičke funkcije...

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

4 Funkcije. 4.1 Pojam funkcije

4 Funkcije. 4.1 Pojam funkcije 4 Funkcije 4.1 Pojam unkcije Neka su i neprazni skupovi i pravilo koje svakom elementu skupa pridružuje točno jedan element skupa. Tada se uredena trojka (,, ) naziva preslikavanje ili unkcija sa skupa

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Glava 1. Z transformacija. 1.1 Pojam z transformacije

Glava 1. Z transformacija. 1.1 Pojam z transformacije Glava 1 Z transformacija 1.1 Pojam z transformacije U elektrotehnici se vrlo često susrećemo sa signalima koji su diskretnog tipa. To znači da je radimo sa signalima koji su zadati svoji vrednostima samo

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

Teorija skupova. Matko Males Split. lipanj 2003.

Teorija skupova. Matko Males Split. lipanj 2003. Teorija skupova Matko Males Split lipanj 2003. 2 O pojmu skupa A, B, C,... oznake za skupove a, b, c,... oznake za elemente skupa a A, a / A Skup je posve odredjen svojim elementima, tj u potpunosti je

Διαβάστε περισσότερα

b = k a. Govorimo jošda a dijeli b ipišemo a b.

b = k a. Govorimo jošda a dijeli b ipišemo a b. 1 DJELJIVOST 1.1. Djeljivost. Prosti brojevi Količnik dvaju prirodnih brojeva nije uvijek prirodni broj. Tako na primjer, broj 54 8 nije prirodan, jer 54 nije djeljiv s 8. Broj 221 jest prirodan, jer 221

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Hijavata 1 Predgovor Pismeni ispit iz matematike 3 obuhvata

Διαβάστε περισσότερα

Kosinus-sinus dekompozicija ortogonalnih matrica malog reda

Kosinus-sinus dekompozicija ortogonalnih matrica malog reda V Hari i V Zadelj-Martić: Kosinus-sinus dekompozicija, mathe 10, veljača 007 1/14 Hrvatski matematički elektronski časopis mathe Broj 10 http://emathhr/ Kosinus-sinus dekompozicija ortogonalnih matrica

Διαβάστε περισσότερα

Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a

Zadatak 081 (Nina, gimnazija) Tada je: 2 f x = a x + b x + c ima ekstrem čija vrijednost. 4 a c. 4 a c b. 2 a Zadatak 8 (Nina, gimnazija) Skup svih vrijednosti funkcije f() = + c jest interval, 3 ]. Tada je: Rješenje 8 A. c = B. c = C. c = 3 D. c = 4 Polinom drugog stupnja (kvadratna funkcija) iznosi f = a + b

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler

Nizovi Redovi Redovi funkcija. Nizovi i redovi. Franka Miriam Brückler Nizovi i redovi Franka Miriam Brückler Nabrajanje brojeva poput ili 1, 2, 3, 4, 5,... 1, 2, 4, 8, 16,... obično se naziva nizom, bez obzira je li to nabrajanje konačno (do nekog zadnjeg broja, recimo 1,

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim. 1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα