Θεωρία Γραφημάτων 11η Διάλεξη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θεωρία Γραφημάτων 11η Διάλεξη"

Transcript

1 Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

2 Απεικόνιση γραφήματος στο επίπεδο (Embedding): Η αντιστοίχιση των κορυφών του γραφήματος σε σημεία του επιπέδου και των ακμών σε καμπύλες που ενώνουν τα σημεία που αντιστοιχούν στα άκρα της ακμής Επίπεδη απεικόνιση: Μια απεικόνιση στην οποία: Οι καμπύλες που αντιστοιχούν σε ακμές δεν τέμνουν τον εαυτό τους Δύο καμπύλες τέμνονται μόνο σε σημεία που αντιστοιχούν σε κορυφή στην οποία και οι δύο προσπίπτουν Επίπεδο γράφημα (Planar graph): Ένα γράφημα το οποίο έχει μια επίπεδη απεικόνιση Ενεπίπεδο γράφημα (Plane graph): Ένα επίπεδο γράφημα το οποίο συνοδεύεται από μια συγκεκριμένη επίπεδη απεικόνιση Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

3 Μη επίπεδη απεικόνιση του υπερκύβου Q 3 Όψεις ενεπίπεδου γραφήματος: Επίπεδη απεικόνιση του υπερκύβου Q 3 Τα ενωμένα τμήματα του R 2 που προκύπτουν εάν αφαιρέσουμε τις κορυφές και τις ακμές ενός γραφήματος από μια επίπεδη απεικόνισή του Περιθώριο όψης (face boundary): Η περιήγηση που προκύπτει από τις ακμές και κορυφές που προσπίπτουν σε μια όψη f ενός ενεπίπεδου γραφήματος G (σε clockwise ή ccw διάταξη) Μερικές ακμές/κορυφές μπορεί να εμφανίζονται 2 φορές 3 e e 2 f 0 f 1 7 f e 3 e 2 8 e 4 6 f e 9 e e 6 4 e 5 3 f 0: Εξωτερική όψη 4 2 e 2 7 f e 2 8 e 4 6 f e 9 e e 6 e 5 3 Περιθώριο της f 2 : 2e 4 3e 6 5e 9 7e 8 6e 7 5e 6 3e 5 4e 2 2 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

4 Θεώρημα 111 [Euler-1750]: Έστω συνεκτικό ενεπίπεδο γράφημα G με n κορυφές, m ακμές και f όψεις Τότε, ισχύει: n + f = m + 2 (1) Απόδειξη [με επαγωγή στο πλήθος ακμών]: G συνεκτικό m n 1 (2) Βάση: m = n 1 ΕΥ Το G είναι δένδρο f = 1 (3) n + f= m + 2 (2),(3) n + 1= n n + 1= n + 1 Έστω ότι το θεώρημα ισχύει για κάθε ενεπίπεδο συνεκτικό γράφημα με k n 1 ακμές ΕΒ Θα δείξω ότι το θεώρημα ισχύει για ενεπίπεδα συνδεδεμένα γραφήματα με k + 1 ακμές Έστω ενεπίπεδο συνεκτικό γράφημα G με m G = k + 1 ακμές, n G κορυφές και f G όψεις Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

5 m G = k + 1 n Το G έχει κύκλο, και άρα έχει τουλάχιστον μια εσωτερική όψη Έστω e μια ακμή που ανήκει στον κύκλο που ορίζει μια εσωτερική όψη του G Κατασκευάζω το ενεπίπεδο γράφημα G αφαιρώντας από το G την ακμή e Το G έχει f G = f G 1 όψεις και m G = m G 1 = k ακμές G Από επαγωγική υπόθεση έχουμε: n G + f G = m G + 2 n G + (f G 1) = (m G 1) + 2 n G + f G = m G + 2 το οποίο είναι το ζητούμενο για το γράφημα G Πόρισμα 112: Ο αριθμός των όψεων ενός επίπεδου συνεκτικού γραφήματος δεν εξαρτάται από την επίπεδη απεικόνισή του Απόδειξη : Ο αριθμός των όψεων (από το Θ Euler) είναι πάντα ίσος με m n + 2 e Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

6 Ερώτηση 111: Πώς μεταβάλλεται ο τύπος του Euler για γραφήματα με k συνεκτικές συνιστώσες; Βαθμός όψης: Ο αριθμός των ακμών μιας όψης συμβολίζεται με d(f) Ακμές που προσπίπτουν σε μια μόνο όψη προσμετρούνται 2 φορές f 1 f 0 d(f 0 ) = 8 d(f 1 ) = 4 Λήμμα 113: Έστω επίπεδο γράφημα G με m ακμές και έστω F(G) το σύνολο των όψεών του Τότε, d(f) = 2m f F(G) Απόδειξη : Κάθε ακμή συνεισφέρει ακριβώς 2 μονάδες στο άθροισμα γιατί είτε προσπίπτει σε 2 όψεις ή προσπίπτει σε μια όψη αλλά μετριέται διπλά Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

7 Θεώρημα 114 : Έστω επίπεδο γράφημα G με n κορυφές και m ακμές Τότε, m 3n 6 (4) Απόδειξη : Ισχύει για n = 3 (5),(6) 2m 3f (7) m = 3 (μέγιστος # ακμών) = 3 Υποθέτω ότι n 4 Υποθέτω ότι το G είναι συνεκτικό Αλλιώς, η (4) ισχύει για κάθε συνεκτική του συνιστώσα Για κάθε όψη f F(G) ισχύει: d(f) 3 d(f) 3f f F(G) (5) Από Λήμμα 113 έχουμε: d(f) = 2m (6) f F(G) Από Θ Euler n + f = m = n + f m 6 = 3n + 3f 3m (7) 6 3n + 2m 3m 6 3n m m 3n 6 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

8 Πόρισμα 115: Το γράφημα K 5 δεν είναι επίπεδο Απόδειξη : Για το K 5 έχω: n = 5 m = 10 Σημείωση: Η σχέση m 3n 6 δεν είναι αρκετή για να αποδείξουμε, με όμοιο τρόπο, ότι το K 3,3 δεν είναι επίπεδο Εάν το K 5 ήταν επίπεδο, θα ίσχυε ότι: Αυτό είναι ψευδές n = 6 m = 9 Θεώρημα 116 : Έστω διμερές επίπεδο γράφημα G με n κορυφές και m ακμές Τότε ισχύει: m 2n 4 (8) ισχύει Απόδειξη : Για διμερή γραφήματα ισχύει ότι d(f) 4 Ομοια με την απόδειξη του θεωρήματος 114 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

9 Ερώτηση 112: Να δειχθεί ότι το K 3,3 δεν είναι επίπεδο Ερώτηση 113: Να δειχθεί ότι κάθε υπογράφημα των K 5 και K 3,3 είναι επίπεδο Θεώρημα 117 [Wagner-1937, Fary-1948]: Κάθε επίπεδο γράφημα μπορεί να απεικονισθεί στο επίπεδο έτσι ώστε οι ακμές του να αντιστοιχούν σε ευθύγραμμα τμήματα Λήμμα 118: Για κάθε επίπεδο γράφημα G ισχύει ότι δ(g) 5 Απόδειξη [Με άτοπο]: Έστω δ(g) 6 Τότε, d(v) 6n και d(v) = 2m v V (G) v V (G) Άρα, 2m 6n m 3n Άτοπο, γιατί για επίπεδα γραφήματα ισχύει ότι m 3n 6 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

10 Ομοιομορφικά γραφήματα: Δύο γραφήματα είναι ομοιομορφικά όταν μπορεί να παραχθεί το ένα από το άλλο με μια ή περισσότερες υποδιαιρέσεις ακμών και συμπτύξεις κορυφών Υποδιαίρεση ακμής: u v u w v Σύμπτυξη κορυφής: u w v u v Θεώρημα 119 [Kuratowski-1930]: Ένα γράφημα G είναι επίπεδο ανν κανένα υπογράφημά του δεν είναι ομοιομορφικό με το K 5 ή το K 3,3 Παράδειγμα: Το γράφημα Petersen δεν είναι επίπεδο Σημείωση: Η σχέση m 3n 6 δεν αρκεί για να αποδειχθεί η μη-επιπεδότητα του γραφήματος Petersen Για το γράφημα Petersen έχουμε οτι n = 10, m = 15 και = 24, το οποίο ισχύει Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

11 Εξωεπίπεδο γράφημα (outer-planar graph): Ένα επίπεδο γράφημα G ονομάζεται εξωεπίπεδο εάν υπάρχει επίπεδη απεικόνιση του G στην οποία όλες οι κορυφές προσπίπτουν στην εξωτερική όψη K 4 Μη-εξωεπίπεδο γράφημα Εξωεπίπεδο γράφημα Θεώρημα 1110 : Ένα γράφημα είναι εξωεπίπεδο ανν δεν υπάρχει κάποιο υπογράφημά του ομοιομορφικό με το K 4 ή το K 2,3 Απόδειξη : Το K 4 και το K 2,3 δεν είναι εξωεπίπεδα [Αλλιώς το K 5 και το K 3,3 θα ήταν επίπεδα] Σημείωση: Η εξωεπιπεδότητα δεν πλήττεται από την αφαίρεση κορυφής/ακμής και την σύμπτυξη ακμής/κορυφής Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

12 '' '' [Με άτοπο] Έστω ότι το εξωεπίπεδο γράφημα G περιέχει υπογράφημα ομοιομορφικό με το K 4 ή το K 2,3 Μέσω συμπτύξεων κορυφής και διαγραφές ακμών-κορυφών στο G, παίρνω το K 4 ή το K 2,3 χωρίς να πλήττεται η εξωεπιπεδότητα Άτοπο, γιατί τα K 4 και K 2,3 δεν είναι εξωεπίπεδα '' '' [Με άτοπο] Έστω ότι το G δεν περιέχει υπογράφημα ομοιομορφικό με το K 4 ή το K 2,3 και έστω ότι το G δεν είναι εξωεπίπεδο Το G είναι επίπεδο [Δεν περιέχει υπογραφήματα ομοιομορφικά με το K 5 ή το K 3,3 ] Θεωρώ το γράφημα G = G K 1 : G : v G K 1 Το G δεν είναι επίπεδο [Έστω ότι ήταν επίπεδο Τότε η v ανήκει σε μία όψη που περιέχει όλες τις κορυφές του G Το G είναι εξωεπίπεδο Άτοπο] Το G περιέχει υπογράφημα H ομοιομορφικό με το K 5 ή το K 3,3 Το H περιέχει την v [Γιατί το G είναι επίπεδο] Εάν αφαιρέσουμε την v από το H αφαιρούμε μια κορυφή από το K 5 ή το K 3,3, οπότε, το G περιέχει υπογράφημα ομοιομορφικό με το K 4 ή το K 2,3 Άτοπο Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

13 Θεώρημα 1111 : Για κάθε εξωεπίπεδο γράφημα με n κορυφές και m ακμές ισχύει ότι: m 2n 3 (9) Απόδειξη : Ισχύει προφανώς για ακυκλικά γραφήματα [m n 1] Έστω G ένα εξωεπίπεδο γράφημα με κύκλους και έστω μια εξωεπίπεδη απεικόνισή του Κατασκευάζουμε το G προσθέτοντας ακμές στο G έτσι ώστε να μην υπάρχουν γέφυρες και να μην πλήττεται η εξωεπιπεδότητά του Έστω m οι ακμές του G, m m Παράδειγμα: G G Ζωγραφίζουμε το G έτσι ώστε όλες οι κορυφές του να είναι στην ίδια ευθεία και ``ελεύθερες'' προς τα κάτω: Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

14 Έστω v 1, v 2,, v n οι κορυφές του όπως τις συναντάμε από αριστερά προς τα δεξιά Σχηματίζω το επίπεδο γράφημα G όπως παρακάτω: Τοποθετώ 2 αντίγραφα του G ``καθρεπτικά'' το ένα ως προς το άλλο Έστω v 1, v 2,, v n οι κορυφές του 2ου αντίγραφου Προσθέτω τις ακμές (ευθ τμήματα) (v i, v i ), 1 i n Τριγωνοποιώ τις όψεις v i v i+1 v i+1 v i v i προσθέτοντας την ακμή (v i v i+1 ), 1 i < n Προσθέτω την ακμή (v n, v 1 ) Το G είναι επίπεδο με V (G ) = 2n και E(G ) = 2m + 2n Από Θ 114: 2m + 2n 3 2n 6 2m 4n 6 m 2n 3 m 2n 3 [Γιατί m m ] Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

15 Χρωματισμός επίπεδων γραφημάτων Θεώρημα 1112 : Κάθε επίπεδο γράφημα είναι 6-χρωματίσιμο Απόδειξη [Με επαγωγή ως προς το πλήθος κορυφών]: Έστω επίπεδο γράφημα G με n κορυφές Βάση: n 6 Αναδρομή: Έστω κορυφή v του G τέτοια ώστε d(v) 5 Η κορυφή v πάντα υπάρχει [Λήμμα 118] Χρωματίζουμε αναδρομικά το G {v} με 6 χρώματα Οι γείτονες της v στο G έχουν χρωματιστεί με το πολύ 5 χρώματα Χρωματίζουμε την v με το (τουλάχιστον ένα) μη-χρησιμοποιηθέν χρώμα Θεώρημα 1113 [Heawood-1890]: Καθε επίπεδο γράφημα είναι 5-χρωματίσιμο Απόδειξη [Με επαγωγή ως προς το πλήθος κορυφών]: Έστω επίπεδο γράφημα G με n κορυφές Βάση: n 5 Το G χρωματίζεται με 5 χρώματα Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

16 Αναδρομή: Έστω κορυφή v V (G) με d(v) 5 Το G {v} χρωματίζεται αναδρομικά με 5 χρώματα Αν d(v) < 5, η v χρωματίζεται με το (τουλάχιστον 1) μη-χρησιμοποιηθέν χρώμα Έστω d(v) = 5 και N G (v) = {v 1, v 2, v 3, v 4, v 5 } Υπάρχουν 2 γείτονες της v, έστω οι v 1, v 2 οι οποίοι δεν είναι ενωμένοι με ακμή στο G [Διαφορετικά, το G θα περιείχε το K 5 ] G: G Κατασκευάζουμε το γράφημα G v : 1 από v2 το G κάνοντας σύμπτυξη των ακμών v v 5 v 5 w (v, v 1 ), (v, v 2 ) v 3 v 3 Χρωματίζουμε αναδρομικά το G με 5 χρώματα και, έστω οι v 3, v 4, v 5 έχουν χρωματιστεί με τα χρώματα 3, 4, 5 και έστω η w έχει χρωματιστεί με το χρώμα 1 Χρωματίζουμε νόμιμα το G ως εξής: Οι κορυφές v 1 και v 2 με το χρώμα 1 [(v 1, v 2 ) / E(G)] Η κορυφή v με το χρώμα 2 v 4 v 4 Όλες οι άλλες κορυφές διατηρούν το χρωματισμό του G Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

17 Θεώρημα 1114 [Appel&Haken-1977]: Κάθε επίπεδο γράφημα είναι 4-χρωματίσιμο Δυικό (dual) επίπεδου γραφήματος: Το δυικό γράφημα ενός επίπεδου γραφήματος G είναι ένα γράφημα G το οποίο έχει ως: V (G ) = {f : f F(G)} E(G ) = {e = (f, g) : Οι όψεις f και g βρίσκονται στις 2 ``πλευρές'' της ακμής e E(G)} Παράδειγμα: f 1 f 2 G f 0 G Σημείωση: Το δυικό γράφημα G του G είναι επίπεδο γράφημα το οποίο μπορεί να έχει παράλληλες ακμές και/ή βρόγχους k-χρωματισμός ως προς τις όψεις: Ο χρωματισμός των όψεων ενός επίπεδου γραφήματος στο οποίο γειτονικές όψεις (όψεις με κοινή ακμή) έχουν διαφορετικό χρώμα Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

18 Σημείωση: Ο χρωματισμός όψεων ενός γραφήματος G είναι ισοδύναμος με το χρωματισμό κορυφών του G (αφού αφαιρεθούν οι παράλληλες ακμές και οι βρόγχοι) Παράδειγμα: G G G G Γράφημα G και το δυικό του G 4-χρωματισμός του G 4-χρωματισμός όψεων του G Θεώρημα 1115 : Ένα επίπεδο γράφημα είναι 2-χρωματίσιμο ως προς τις όψεις ανν έχει κύκλο Euler Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη Φεβρουάριος / 228

Θεωρία Γραφημάτων 8η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 10η Διάλεξη

Θεωρία Γραφημάτων 10η Διάλεξη Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη

Διαβάστε περισσότερα

E(G) 2(k 1) = 2k 3.

E(G) 2(k 1) = 2k 3. Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 11η Δια λεξη

Θεωρι α Γραφημα των 11η Δια λεξη Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 4η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 7η Διάλεξη

Θεωρία Γραφημάτων 7η Διάλεξη Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 9η Διάλεξη Θεωρία Γραφημάτων 9η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 9η Διάλεξη

Διαβάστε περισσότερα

Επίπεδα Γραφήματα (planar graphs)

Επίπεδα Γραφήματα (planar graphs) Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν στο επίπεδο χωρίς να τέμνονται οι ακμές τους 1 2 1 2 3 4 3 4 Άρα αυτό το γράφημα είναι επίπεδο Επίπεδα Γραφήματα (planar graphs) Μπορούν να σχεδιαστούν

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 206 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

d(v) = 3 S. q(g \ S) S

d(v) = 3 S. q(g \ S) S Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 2η Διάλεξη

Θεωρία Γραφημάτων 2η Διάλεξη Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη

Διαβάστε περισσότερα

m = 18 και m = G 2

m = 18 και m = G 2 Διάλεξη 11: 2.11.201 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 11.1 Βασικές Ιδιότητες Θεώρημα 11.1 (Τύπος του Eulr, 172) Αν ένα συνεκτικό ενεπίπεδο γράφημα έχει n κορυφές,

Διαβάστε περισσότερα

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε Διάλεξη 4: 20.10.2016 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος 4.1 2-συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός γραφήματος G μοιράζονται το πολύ μία κορυφή. Απόδειξη:

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

S A : N G (S) N G (S) + d S d + d = S

S A : N G (S) N G (S) + d S d + d = S Διάλεξη 7: 2.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Μαργώνης 7.1 Εφαρμογές του Θεωρήματος του Hall Πόρισμα 7.1 (Ελλειματική εκδοχή Θεωρήματος Hall) Εάν σε διμερές γράφημα

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκήσεις στους Γράφους 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα Ασκηση 1 η Να αποδείξετε ότι κάθε γράφημα περιέχει μια διαδρομή από μια κορυφή u σε μια κορυφή w αν και

Διαβάστε περισσότερα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα Ασκήσεις στους Γράφους 2 ο Σετ Ασκήσεων Δέντρα Ασκηση 1 η Ένας γράφος G είναι δέντρο αν και μόνο αν κάθε δυο κορυφές του συνδέονται με ένα μοναδικό μονοπάτι. Υποθέτουμε ότι ο γράφος G είναι δέντρο. Έστω

Διαβάστε περισσότερα

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ Διάλεξη 3: 25..26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη 3. Εναγόμενοι κύκλοι Ορισμός 3. Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()].

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη Θεωρία Γραφημάτων η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 207 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων η Διάλεξη

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,

Διαβάστε περισσότερα

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Γραφέας: Βασίλης Λίβανος Διδάσκων: Σταύρος Κολλιόπουλος 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (Edge-eparator) ενός γραφήματος G = (V, E)

Διαβάστε περισσότερα

Μαθηματικά Πληροφορικής

Μαθηματικά Πληροφορικής Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενα γραφήματα Ορισμός Κατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Εισαγωγή σε βασικές έννοιες Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 1 Περιεχόμενα

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,

Διαβάστε περισσότερα

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017 ΕΓΘΑ : Σ. Κοσμαδάκης, «Εισαγωγή στα Γραφήματα, Θεωρία-Ασκήσεις». Α 1 Έστω η παρακάτω σχέση Q(k) πάνω στο σύνολο {1, 2} όπου k τυχαίος

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα Επαγωγή για άκυκλα συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Γραφημάτων Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Θεωρία Γραφημάτων Χάρης Παπαδόπουλος 2012, Διάλεξη Κεφαλαίου 2 Περιεχόμενα

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από

Διαβάστε περισσότερα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.

Διαβάστε περισσότερα

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς

(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος

Διαβάστε περισσότερα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)

Διαβάστε περισσότερα

Σειρά Προβλημάτων 1 Λύσεις

Σειρά Προβλημάτων 1 Λύσεις ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ20, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 203, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη

Διαβάστε περισσότερα

Διμερή γραφήματα και ταιριάσματα

Διμερή γραφήματα και ταιριάσματα Κεφάλαιο 6 Διμερή γραφήματα και ταιριάσματα Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι C. L. Liu and C. Liu 1985, Cameron 1994, Diestel 2005 και Stanley 1986. 6.1 Διμερή γραφήματα Η κλάση

Διαβάστε περισσότερα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

Επαγωγή και αναδρομή για συνεκτικά γραφήματα ΘΕ4 Αναδρομή και Επαγωγή για Γραφήματα Επαγωγή και αναδρομή για συνεκτικά γραφήματα Επαγωγή για συνεκτικά γραφήματα (με αφαίρεση κορυφής) Η αρχή της επαγωγής, με αφαίρεση κορυφής, για δεδομένη προτασιακή

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε

Διαβάστε περισσότερα

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. ΑΣΚΗΣΗ 1: Είναι το ακόλουθο γράφημα απλό; Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12. v 2 ΑΠΑΝΤΗΣΗ 1: Το παραπάνω γράφημα δεν είναι απλό, αφού υπάρχουν δύο ακμές που

Διαβάστε περισσότερα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση πρόβλημα μεγέθους k πρόβλημα μεγέθους Ν-k Διαίρει και Βασίλευε πρόβλημα μεγέθους Ν διάσπαση επιλύουμε αναδρομικά τα υποπροβλήματα πρόβλημα μεγέθους k πρόβλημα

Διαβάστε περισσότερα

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)

Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

βασικές έννοιες (τόμος Β)

βασικές έννοιες (τόμος Β) θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά

Διαβάστε περισσότερα

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων

Διαβάστε περισσότερα

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης. Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που

Διαβάστε περισσότερα

Χρωματισμός γραφημάτων

Χρωματισμός γραφημάτων Χρωματισμός γραφημάτων Χρωματισμός γραφημάτων Έστω γράφημα G Αποδίδουμε 1 ακριβώς χρώμα σε κάθε κορυφή του G έτσι ώστε κορυφές που συνδέονται με ακμή να λαμβάνουν διαφορετικά χρώματα Χρωματισμός γραφημάτων

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

ΧΡΩΜΑΤΙΣΜΟΣ ΓΡΑΦΗΜΑΤΩΝ

ΧΡΩΜΑΤΙΣΜΟΣ ΓΡΑΦΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 ΧΡΩΜΑΤΙΣΜΟΣ ΓΡΑΦΗΜΑΤΩΝ 8.1 Εισαγωγή 8.2 Χρωματισμός Κόμβων 8.3 Χρωματισμός Ακμών 8.4 Χρωματισμός Επιπέδων Γραφημάτων και Χαρτών 8.5 Χρωματικά Πολυώνυμα 8.6 Σειριακός και άλλοι Αλγόριθμοι Χρωματισμού

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Εισαγωγή στους Αλγορίθμους Ενότητα 7η Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής

Διαβάστε περισσότερα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 10η Δια λεξη

Θεωρι α Γραφημα των 10η Δια λεξη Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα

Διαβάστε περισσότερα

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3 Δενδρικά Γραφήματα 93 ΚΕΦΑΛΑΙΟ 3 ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ 3.1 Εισαγωγή 3.2 Βασικές Ιδιότητες Δένδρων 3.3 Απαρίθμηση Δένδρων 3.4 Γενετικά Δένδρα 3.5 Ελάχιστα Γενετικά Δένδρα Προαπαιτούμενη Γνώση Πολύ καλή γνώση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 014, Α ΜΕΡΟΣ ΣΥΜΠΛΗΡΩΣΤΕ ΤΑ ΣΤΟΙΧΕΙΑ ΣΑΣ ΚΑΙ ΜΗΝ ΑΝΟΙΞΕΤΕ ΤΑ ΕΡΩΤΗΜΑΤΑ ΑΝ ΔΕΝ ΣΑΣ ΠΕΙ Ο ΕΠΙΤΗΡΗΤΗΣ ΕΠΩΝΥΜΟ ΟΝΟΜΑ... ΠΑΤΡΩΝΥΜΟ...ΤΜΗΜΑ..

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 8η Δια λεξη

Θεωρι α Γραφημα των 8η Δια λεξη Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Τελική Εξέταση Απρίλιος 204 Σελ. από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

ΕΠΙΠΕΔΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 7

ΕΠΙΠΕΔΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 7 Επίπεδα Γραφήματα 197 ΚΕΦΑΛΑΙΟ 7 ΕΠΙΠΕΔΑ ΓΡΑΦΗΜΑΤΑ 7.1 Εισαγωγή 7.2 Τύπος του Euler 7.3 Αναπαράσταση Επίπεδου Γραφήματος 7.4 Δυϊκό Γράφημα ενός Επίπεδου Γραφήματος 7.5 Εξωεπίπεδο Γράφημα 7.6 Έλεγχος Επιπεδότητας

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs) Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

Θεωρι α Γραφημα των 5η Δια λεξη

Θεωρι α Γραφημα των 5η Δια λεξη Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Θεωρία και Αλγόριθμοι Γράφων

Θεωρία και Αλγόριθμοι Γράφων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 9: Επιπεδικότητα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο

Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο 1.1 ΠΡΟΒΛΗ ΜΑ Χρωματίζουμε τα σημεία του επιπέδου με δύο χρώματα. Αποδείξτε ότι υπάρχουν δύο τουλάχιστον σημεία με το ίδιο χρώμα που απέχουν απόσταση 1. Έστω ότι χρωματίζουμε τα σημεία του επιπέδου κόκινα

Διαβάστε περισσότερα

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ),

w S n lim (n 1)! = x(x + q)(x + q + q 2 ) (x + q + q q n 1 ), Ασκήσεις #1 1. Εστω a(n, k) το πλήθος των υποσυνόλων του {1, 2,..., n} με k στοιχεία τα οποία δεν περιέχουν διαδοχικούς ακεραίους. (α) Δείξτε ότι το a(n, k) είναι ίσο με το πλήθος των συνθέσεων (r 0, r

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

y(p) = 0 y(p) = 0 y(p) = 0

y(p) = 0 y(p) = 0 y(p) = 0 Διακριτά Μαθηματικά Φροντιστήριο Θεωρία μέτρησης Polya Ι 1 / 21 Οι έξι όψεις ενός κύβου θα χρωματιστούν με 6 διαφορετικά χρώματα, κάθε όψη με ένα διαφορετικό χρώμα. Με πόσους τρόπους μπορεί να γίνει αυτό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ0, ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΕΡΩΤΗΜΑΤΑ ΠΡΩΤΗ ΕΞΕΤΑΣΗ ΙΟΥΛΙΟΥ 015, Α ΜΕΡΟΣ 1. Στους παρακάτω τύπους τα,, είναι προτασιακοί τύποι. Ισχύει ότι: 1. ( Σ / Λ ) O τύπος ( ) ( ) είναι αντίφαση.

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Φροντιστήριο 11 Λύσεις

Φροντιστήριο 11 Λύσεις Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

6 Συνεκτικοί τοπολογικοί χώροι

6 Συνεκτικοί τοπολογικοί χώροι 36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό έντρο

Ελάχιστο Συνδετικό έντρο Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος

Διαβάστε περισσότερα

ΓΥΜΝΑΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Ο τύπος του Euler για τα πολύεδρα

ΓΥΜΝΑΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Κασαπίδης Γεώργιος Μαθηματικός Ο τύπος του Euler για τα πολύεδρα 1. Πολύεδρα Στον τριδιάστατο ευκλείδειο χώρο θεωρούμε ένα σύστημα πολυγώνων, τα οποία είναι διατεταγμένα κατά τέτοιο τρόπο, ώστε να πληρούνται οι εξής δύο συνθήκες: α) Κάθε πλευρά των πολυγώνων του συστήματος

Διαβάστε περισσότερα

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο

Διαβάστε περισσότερα