Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων. Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εφαρµογες Της Ψηφιακης Επεξεργασιας Σηµατων Εκτιµηση Συχνοτητων Με ΙδιοΑναλυση του Μητρωου ΑυτοΣυσχετισης ιδάσκων Επίκουρος Καθηγητής Εµµανουήλ Ζ. Ψαράκης Πάτρα Οκτώβριος 205

2

3 Στοιχειωδης-Θεωρια Ας ϑεωρήσουµε ότι έχουµε στην διάθεσή µας την ακόλουθη στοχαστική διαδικασία : P X (n) = A i e jnωi + W(n), n = 0,,, M () i= µε A i = A i e jφi, φ i, i =, 2,..., P ασυσχέτιστες τυχαίες µεταβλητές οµοιόµορφα κατανεµηµένες στο [ π, π] και W(n) λευκός γκαουσιανός ϑόρυβος διασποράς σw 2. Σκοπός µας είναι να εκτιµήσουµε τα A i τα ω i, i =, 2,..., P καθώς και την διασπορά σw 2 του λευκού ϑορύβου. Α. Στοχαστική ιαδιακασία Πρώτης Τάξης : Στην περίπτωση αυτή η στοχαστική διαδικασία ϑα έχει την ακόλουθη µορφή : X (n) = A e jωn + W(n) = S(n) + W(n). (2) και για την ακολουθία αυτοσυσχέτισης της στοχαστικής διαδικασίας ϑα έχουµε : r X X (k) = E{X (n + k)x (n)} = E{(A e jω(n+k) + W(n + k))(a e jωn + W(n))} = E{ A 2 e jωk + W(n + k)w(n) + A e jω(n+k) W(n) + A e jωn W(n + k)} = A 2 e jωk + σ 2 Wδ(k) (3) Άρα το µητρώο αυτοσυσχέτισης της στοχαστικής διαδικασίας, µπορεί να γραφεί ως ακολούθως : R X X = r X X (0) r X X ()... r X X (M ). r X X ( ) r X X (0) rx X () r X X ( (M )) r X X ( ) r X X (0) = R SS + R WW = A 2 e M (ω )e h M (ω ) + σ 2 WI M (4) όπου e M (ω ) = [ e jω e 2jω e j(m )ω ] h, (5) R SS ένα µητρώο τάξης και R WW ένα διαγώνιο µητρώο τάξης M. Από τις Σχέσεις (4) και (5) τελικά έχουµε : R X X e M (ω ) = (M A 2 + σ 2 W)e M (ω ) (6)

4 2 δηλαδή το διάνυσµα της Σχέσης (5) είναι ιδιοδιάνυσµα του µητρώου R X X µε αντίστοιχη ιδιοτιµή M A 2 + σ 2 W. Επίσης, αν n 2, n 3,, n M είναι τα υπόλοιπα ιδιοδιανύσµατα του µητρώου, γνωρίζουµε ότι : Εποµένως, από τις (4) και (7) παίρνουµε : < e M (ω ), n m >= 0, m = 2, 3..., M (7) R X X n m = σ 2 wn m = λ m n m, m = 2, 3,..., M, δηλαδή για όλες τις ιδιοτιµές του R X X, εκτός της µεγαλύτερης, έχουµε ότι : λ m = σ 2 W, m = 2, 3,..., M (8) και από τις (6) και (8): λ max = λ = M A 2 + σ 2 W. (9) Ο αλγόριθµος που ακολουθεί, εκτιµά τις ποσότητες που επιθυµούµε :. Ιδιο-ανάλυση του µητρώου αυτοσυσχέτισης R X X και εύρεση της µεγαλύτερης ιδιοτιµής λ και των υπολοίπων που γνωρίζουµε από την Σχέση (6) ότι είναι όλες ίσες µεταξύ τους. Εποµένως : σ 2 w = λ min, και (0) A 2 = M (λ max λ min ) () 2. Ξέρουµε από τη Σχέση (5) ότι e M (ω ) είναι το ιδιοδιάνυσµα που αντιστοιχεί στη µέγιστη ιδιοτιµή του µητρώου αυτοσυσχέτισης και εποµένως e M (ω )[2] = e jω και µπορούµε να χρησιµοποιήσουµε την παραπάνω σχέση για να ϐρούµε το ω, δηλαδή : ω = jln(e M (ω )[2]). (2) Ερωτησεις. Πώς µπορούµε να ορίσουµε τον Υπόχωρο του Σήµατος (Signal Space) και 2. πώς τον Υπόχωρο του Θορύβου ( Noise Space); 3. Ποιός είναι κατά την γνώµη σας ο ϱόλος της τυχαίας µεταβλητής φ στη Σχέση (2);

5 3 4. Τι ϑα άλλαζε στον υπολογισµό των αναγκαίων ποσοτήτων, αν δεν υπήρχε αυτός ο παράγοντας; Καταγράψτε αναλυτικά τις απόψεις σας. 5. Υποθέστε οτι είστε σε ϑέση να γνωρίζετε το µητρώο αυτοσυσχέτισης της στοχαστικής διαδικασίας. Ποιό κατά την γνώµη σας είναι το ελάχιστο µέγεθος του µητρώου που ϑα επιτρέψει τον υπολογισµό των αναγκαιών ποσοτήτων; ιαδικασια. Άσκηση στο Matlab : Υπολογίστε το πλάτος την συχνότητα και την διασπορά του λευκού ϑορύβου στοχαστικής διαδικασίας πρώτης τάξης (δες Σχέση (2) ), µε µητρώο αυτοσυσχέτισης : R X X = [ 3 2( j) 2( + j) 3 ]. 2. Υποθέστε οτι δεν είστε σε ϑέση να γνωρίζετε το µητρώο αυτοσυσχέτισης της στοχαστικής διαδικασίας αλλά µόνο να το εκτιµήσετε από ένα αριθµό N διαφορετικών υλοποιήσεων της (µήκους M δειγµάτων η κάθε µια) που σας δίνονται. Ποιός κατά την γνώµη σας είναι ο ϱόλος του M και του N στην εκτίµηση των τιµών των αναγκαίων ποσοτήτων; Καταγράψτε αναλυτικά και ϑεµελιώστε, µε αναφορά σε µαθηµατικούς νόµους, την άποψή σας. 3. Άσκηση στο Matlab : ηµιουργήστε N = 00 (και επαναλάβετε για N = 000, 0000, 50000) υλοποιήσεις (µήκους M = 50 δείγµατα η κάθε µια) της ακόλουθης στοχαστικής διαδικασίας : X (n) = 3 2e j( π 5 n+φ) + W(n), (3) όπου φ τυχαία µεταβλητή οµοιόµορφα κατανεµηµένη στο [ π, π] και W(n) λευκός γκαουσιανός ϑόρυβος διασποράς σw 2 = 0.5. Χρησιµοποιήστε κατάλληλα τις υλοποιήσεις της στοχαστικής διαδικασίας και εκτιµήστε : τη στοχαστική µέση τιµή 2 το µητρώο αυτοσυσχέτισης R X X µεγέθους Χρησιµοποιήστε το παραπάνω µητρώο που εκτιµήσατε και δηµιουργήστε τα ακόλουθα πέντε µητρώα : R X X, M, M = 2, 0, 20,, 50 µεγέθους M M αντίστοιχα. Για κάθενα από τα παραπάνω µητρώα M = 2, 0, 20,, 50: Pisarenko, V. F. The retrieval of harmonics from a covariance function Geophysics, J. Roy. Astron. Soc., vol. 33, pp , 973

6 4 Υπολογίστε, χρησιµοποιώντας κατάλληλη εντολή του Matlab, τις ιδιοτι- µές και τα ιδιοδιανύσµατα : αντίστοιχα. λ m, m =, 2,, M e M (ω ), και n m, m = 2, 3,, M (4) 2 Χρησιµοποιήστε κατάλληλα τις ιδιοτιµές λ m, m = 2, 3,, M που υπολογίσατε και εκτιµήστε την διασπορά σw 2 του λευκού ϑορύβου. Σχεδιάστε το ιστόγραµµα των παραπάνω ιδιοτιµών και υπολογίστε της πρώτης και δεύτερης τάξης κεντρικές ϱοπές των. σας. Σχολιάστε τα αποτελέσµατά 3 Χρησιµοποιήστε τη Σχέση () και την εκτίµηση της διασποράς του ϑο- ϱύβου και εκτιµήστε το πλάτος του σήµατος. σας. 4 Ορίστε τα ακόλουθα τριγωνοµετρικά πολυώνυµα : Σχολιάστε την εκτίµησή P (M, m) (e jω ) = e h M (ω)n m, m = 2, 3,, M. (5) 5 Χρησιµοποιήστε κατάλληλα τις M σχέσεις ορθογωνιότητας της Σχέσης (7) και τις ϱίζες των παραπάνω πολυωνύµων και εκτιµήστε την συχνότητα ω. Σχολιάστε την ποιότητα της εκτιµήσης σας. Πώς αποµονώσατε την ϱίζα που σας ενδιέφερε; Χρησιµοποιήστε τη συνάρτηση kmeans() του Matlab µε τα κατάλληλα ορίσµατα. Σχολιάστε αναλυτικά. 6 Ορίστε τις ακόλουθες ϱητές συναρτήσεις : Q (M, m) (e jω ) = P (M, m) (e jω, m = 2, 3,, M. (6) ) 2 όπου P (M, m) (e jω ) το µέτρο του m οστου µιγαδικού πολυωνύµου P (M, m) (e jω ) της Σχέσης (5). Σχεδιάστε τις παραπάνω συναρτήσεις και καταγράψτε τα συµπεράσµατά σας. 7 Ορίστε την ακόλουθη ϱητή συνάρτηση : Q MUSIC M (e jω ) =, (7) M P (M, m) (e jω ) 2 m=2 η οποία αποτελεί την συνάρτηση που ϐασίζονται οι εκτιµήσεις του αλγορίθµου MUSIC (MUltiple SIgnal Classification). Σχεδιάστε την παραπάνω συνάρτηση και καταγράψτε τα συµπεράσµατά σας. 8 Ορίστε την ακόλουθη ϱητή συνάρτηση : Q EV M (e jω ) = M m=2, (8) P (M, m) (e jω ) 2 λ m

7 5 η οποία αποτελεί την συνάρτηση που ϐασίζονται οι εκτιµήσεις του αλγορίθµου EV(EigenVector). Σχεδιάστε την παραπάνω συνάρτηση και καταγράψτε τα συµπεράσµατά σας. Σχολιάστε την ποιότητα των εκτιµήσεών σας καθώς το M αυξάνεται. 4. Επαναλάβετε την παραπάνω διαδικασία για διαφορετικές τιµές της ισχύος του ϑορύβου σw 2 και καταγράψτε τα συµπεράσµατά σας. Β. Στοχαστική ιαδιακασία P -οστής Τάξης Ας ϑεωρήσουµε τώρα την περίπτωση που η στοχαστική διαδικασία συντίθεται από P ϕανταστικά εκθετικά σήµατα. Στην περίπτωση αυτή το µητρώο αυτοσυσχέτισης ϑα έχει την ακόλουθη µορφή : R X X = E(ω)ΛE(ω) h + σwi 2 ή ισοδύναµα : P R X X = A i 2 e M (ω i )e h M (ω i ) + σwi 2 i= = R SS + R WW (9) όπου : P R SS = A i 2 e M (ω i )e h M (ω i ) (20) i= R WW = σwi. 2 (2) Από τις Σχέσεις (20), (2) είναι ϕανερό ότι τα µεγέθους M M µητρώα R SS και R WW είναι τάξης P και M P αντίστοιχα. Ας υποθέσουµε επιπλέον ότι U είναι ένα µητρώο που περιέχει τα ιδιοδιανύσµατα του µητρώου αυτοσυσχέτισης της Σχέσης (9). Τότε, µπορούµε να χωρίσουµε το µητρώο U σε δύο τµήµατα. Το πρώτο, το οποίο ϑα συµβολίσουµε ως U S ϑα περιέχει τα πρώτα P ιδιοδιανύσµατα και ϑα αποτελεί µία ορθοκανονική ϐάση του υπόχωρου του σήµατος και το δεύτερο, το οποίο ϑα συµβολίσουµε ως U N ϑα περιέχει τα υπόλοιπα M P ιδιοδιανύσµατα και ϑα αποτελεί µία ορθοκανονική ϐάση του υπόχωρου του ϑορύβου. Για τα ιδιοδιανύσµατα αυτά είναι προφανές ότι ισχύουν οι ακόλουθες σχέσεις ορθογωνιότητας : < e M (ω i ), u m >= 0, i =, 2,..., P και m = P +, P + 2,..., M. (22) Ερωτησεις. Πώς µπορούµε να ορίσουµε στην γενική περίπτωση τον Υπόχωρο του Σήµατος και 2. πώς τον Υπόχωρο του Θορύβου ;

8 6 3. Ποιός είναι κατά την γνώµη σας ο ϱόλος των τυχαίων µεταβλητών φ i, i =, 2,, P στη Σχέση (7); 4. Τι ϑα άλλαζε στον υπολογισµό του µητρώου αυτοσυσχέτισης, αν δεν ήταν αυτές οι τυχαίες µεταβλητές ασυσχέτιστες; Καταγράψτε αναλυτικά τις απόψεις σας. 5. Υποθέστε οτι είστε σε ϑέση να γνωρίζετε το µητρώο αυτοσυσχέτισης της στοχαστικής διαδικασίας. Ποιό κατά την γνώµη σας είναι το ελάχιστο µέγεθος του µητρώου που ϑα επιτρέψει τον υπολογισµό των αναγκαιών ποσοτήτων ( δες την αντίστοιχη ερώτηση του µέρους Α της άσκησης); 2 6. Εύκολα µπορούµε να δούµε ότι, γενικά, τα διανύσµατα e M (ω i ), i =, 2,, P δεν είναι ιδιοδιανύσµατα του µητρώου αυτοσυσχέτισης. Ποιές ϑα πρέπει να είναι οι συχνότητες ω i, i =, 2,, P για να ισχύει αυτό ; Καταγράψετε την απάντησή σας. 2 Στην περίπτωση της στοχαστικής διαδικασίας P -οστής τάξης και για M = P + (τεχνική Pisarenko), η Σχέση (22) γίνεται : < e P + (e jω i ), u P + >= 0, ω i, i =, 2,..., P. Άρα, ϐρίσκοντας τις ϱίζες του πολυωνύµου που εκφράζει το ακόλουθο εσωτερικό γινόµενο : < e P + (e jω ), u P + >, ϐρίσκουµε τις Ϲητούµενες συχνότητες. Προκειµένου να υπολογίσουµε τώρα τα πλάτη, πολλαπλασιάζουµε το µητρώο R xx της Σχέσης (9) µε κάθε στήλη του µητρώου U S δηλαδή µε τα διανύσµατα ϐάσης του χώρου σήµατος, ως εξής : P u h S,j Rxxu S,j = A i 2 u h S,j e P +(ω i )e h P + (ω i)u S,j + σw u 2 S,j 2 2, j =, 2,, P. i= Οι παραπάνω σχέσεις, παίρνοντας υπόψη µας ότι u S,j 2 2 =, j =, 2,, P, µπορούν να γραφούν σε µορφή γραµµικού συστήµατος ως ακολούθως : p σw 2 P = Ma όπου : p = M = a = P = [ [ [ u h S, Rxxu S, u h S,2 Rxxu S,2 u h S,P Rxxu S,P < u S,, e P + (ω ) > 2 < u S,, e P + (ω P ) > 2 < u S,2, e P + (ω ) > 2 < u S,2, e P + (ω P ) > 2. < u S,P, e P + (ω ) > 2 < u S,P, e P + (ω P ) > 2 A 2 A 2 2 A P 2 ] t ] t ] t εδοµένου ότι έχουµε ήδη υπολογίσει τις συχνότητες και η διασπορά του ϑορύβου έχει εκτιµηθεί, η λύση του παραπάνω συστήµατος οδηγεί στον υπολογισµό των πλατών. Σηµείωση : Εάν τα διανύσµατα ϐάσης του χώρου σήµατος ήταν κάθετα µεταξύ τους, τότε το παραπάνω µητρώο ϑα ήταν διαγώνιο και η λύση ϑα ήταν η ακόλουθη : A i = u h S,i Rxxu S,i, i =, 2,, P.

9 7 ιαδικασια. Άσκηση στο Matlab : Υπολογίστε τα πλάτη, τις συχνότητες και την διασπορά του λευκού ϑορύβου στοχαστικής διαδικασίας δεύτερης τάξης µε το ακόλουθο µητρώο αυτοσυσχέτισης : R X X = j j j j j j Είναι ϕανερό ότι στην περίπτωση αυτή το µοναδικό ιδιοδιάνυσµα που ανήκει στον υπόχωρο του ϑορύβου είναι το u 3. Άρα < e 3 (ω i ), u 3 >= 0, i =, 2. Αν εποµένως ορίσουµε και πάλι το τριγωνοµετρικό πολυώνυµο της Σχέσης (5), τότε οι επιθυµητές συχνότητες µπορούν να προκύψουν από τον υπολογισµό των ϱιζών του παραπάνω πολυωνύµου (επιβεβαιώστε). Σχεδιάστε το ακόλουθο πολυώνυµο : P inv (e jω ) = και καταγράψτε τα συµπεράσµατά σας P (e jω ) 2 2. Υποθέστε οτι δεν είστε σε ϑέση να γνωρίζετε το µητρώο αυτοσυσχέτισης της στοχαστικής διαδικασίας αλλά µόνο να το εκτιµήσετε από ένα αριθµό N διαφορετικών υλοποιήσεων της (µήκους M δειγµάτων η κάθε µια) που σας δίνονται.. Ποιός κατά την γνώµη σας είναι ο ϱόλος του M και του N στην εκτίµηση των τιµών των αναγκαίων ποσοτήτων; Καταγράψτε αναλυτικά και ϑεµελιώστε, µε αναφορά σε µαθηµατικούς νόµους, την άποψή σας. 3. Άσκηση στο Matlab : ηµιουργήστε N = 00 υλοποιήσεις (µήκους M = 50 δείγµατα η κάθε µια) στοχαστικής διαδικασίας της Σχέσης () µε τα ακόλουθα χαρακτηριστικά : A i = 2 i, i =, 2,, 5 ejφi (23) ω = 0.2π ω 2 = 0.4π ω 3 = 0.5π ω 4 = 0.75π ω 5 = 0.88π (24) σ 2 W = 0.75 (25) όπου φ i, i =, 2,, 5 τυχαίες ασυσχέτιστες µεταβλητές οµοιόµορφα κατανεµη- µένες στο [ π, π] και W(n) λευκός γκαουσιανός ϑόρυβος διασποράς σ 2 W = 0.5. Χρησιµοποιήστε κατάλληλα τις υλοποιήσεις της στοχαστικής διαδικασίας και :

10 8 επαναλάβετε τη διαδικασία του πρώτου µέρους, µε τις αναγκαίες τροποποιήσεις, και καταγράψτε τα συµεράσµατά σας. 2 χρησιµοποιείστε διαφορετικές συχνότητες, και εκτιµήστε τη ϱωµαλεότητα των διαφορετικών τεχνικών εκτίµησης των παραµέτρων. Καταγράψτε τα συµπε- ϱάσµατά σας.

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Εκτίµηση Τυχαίων Σηµάτων othig i atue is adom A thig

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Πάτρα 2005 ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Επεξεργασίας Σηµάτων Τηλεπικοινωνιών & ικτύων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Πάτρα 2005 ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Επεξεργασίας Σηµάτων Τηλεπικοινωνιών & ικτύων 2.5 0.5 0-0.5 - -.5-2 0 50 00 50 200 250 300 350 400 450 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Πάτρα 2005 ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Επεξεργασίας Σηµάτων Τηλεπικοινωνιών & ικτύων ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalman EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Φίλτρο Kalma Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Ακολουθιακή Επεξεργασία Τα δείγµατα

Διαβάστε περισσότερα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα

5.1 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 5 Ιδιοτιµές και Ιδιοδιανύσµατα 5 Ιδιοτιµές και Ιδιοδιανύσµατα Αν ο A είναι ένας n n πίνακας και το x είναι ένα διάνυσµα στον R n, τότε το Ax είναι και αυτό ένα διάνυσµα στον R n Συνήθως δεν υπάρχει

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

Στοχαστικά Σήµατα και Εφαρµογές

Στοχαστικά Σήµατα και Εφαρµογές Στοχαστικά Σήµατα & Εφαρµογές Ανασκόπηση Στοιχείων Γραµµικής Άλγεβρας ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής ιανύσµατα Ορίζουµετοδιάνυσµα µε Ν στοιχεία

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Γραµµική Εκτίµηση Τυχαίων Σηµάτων EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Γραµµική Εκτίµηση Τυχαίων Σηµάτων Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Εκτίµηση Τυχαίων Σηµάτων FIR φίλτρα: Ορίζουµε

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM)

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Διαφορική Παλµοκωδική Διαµόρφωση (DPCM) EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Διαφορική Παλµοκωδική Διαµόρφωση (DCM) Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Προεπισκόπηση Διαφορική Παλµοκωδική Διαµόρφωση

Διαβάστε περισσότερα

Επίλυση Γραµµικών Συστηµάτων

Επίλυση Γραµµικών Συστηµάτων Κεφάλαιο 3 Επίλυση Γραµµικών Συστηµάτων 31 Εισαγωγή Αριθµητική λύση γενικών γραµµικών συστηµάτων n n A n n x n 1 b n 1, όπου a 11 a 12 a 1n a 21 a 22 a 2n A [a i j, x a n1 a n2 a nn x n, b b 1 b 2 b n

Διαβάστε περισσότερα

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης

Ακαδηµαϊκό Έτος , Εαρινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 6: ΠΡΟΣΑΡΜΟΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΤΙΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Ακαδηµαϊκό Έτος 26 27, Εαρινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Το

Διαβάστε περισσότερα

) ( ) Μάθηµα 3 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 4.18). είναι ορθοκανονικά

) ( ) Μάθηµα 3 ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ. Λυµένες Ασκήσεις * * * Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 4.18). είναι ορθοκανονικά Γραµµική Άλγεβρα ΙΙ Σελίδα από Μάθηµα ο ΟΡΘΟΚΑΝΟΝΙΚΗ ΒΑΣΗ Θεωρία : Γραµµική Άλγεβρα : εδάφιο 6, σελ (µέχρι Πρόταση 48) Λυµένες Ασκήσεις Άσκηση Αν {,,, } και {,,, } σύνολα διανυσµάτων του p p p ν q q q

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΤΕΙ ΠΕΙΡΑΙΑ -ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΙΛΤΡΩΝ ΧΕΙΜΕΡΙΝΟ 2017-18 ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ 1. ΕΥΑΙΣΘΗΣΙΑ Ενα κύκλωµα, το οποίο κάνει µια συγκεκριµένη λειτουργία εκφραζόµενη

Διαβάστε περισσότερα

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ

ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αιτιατότητα Μη-Αιτιατότητα. Ευστάθεια. Περιοχή Σύγκλισης Μετασχηµατισµού Laplace

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: Ιανουαρίου 6 Ηµεροµηνία Παράδοσης της Εργασίας από

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Μετασχηµατισµός Laplace Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διευρύνει τη κλάση των σηµάτων για τα οποία µπορεί να επιτευχθεί η µετάβαση

Διαβάστε περισσότερα

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ.

Ορίζουσες ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. Προηγείται της Γραµµικής Αλγεβρας. Εχει ενδιαφέρουσα γεωµετρική ερµηνεία. ΛΥ. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 11/5/2012 Σηµαντικό χαρακτηριστικό µέγεθος (ϐαθµωτός) για κάθε τετραγωνικό

Διαβάστε περισσότερα

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4

12xy(1 x)dx = 12y. = 12 y. = 12 y( ) = 12 y 1 6 = 2y. x 6x(1 x)dx = 6. dx = 6 3 x4 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-7: Πιθανότητες-Χειµερινό Εξάµηνο 5 ιδάσκων: Π. Τσακαλίδης Λύσεις 6ης Σειρά Ασκήσεων Ασκηση. α) Η περιθωριακή σ.π.π. της f X,Y για την τ.µ X γίνεται:

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ Κυκλική Συνέλιξη Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Διακριτού Χρόνου Σειρές Fourier Περιοδική Επέκταση Σήµατος Πεπερασµένης Χρονικής Διάρκειας.

Διαβάστε περισσότερα

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη

Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Ορίζουσα Gram και οι Εφαρµογές της Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 65 11 Η Ορίζουσα Gram και

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων.

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων. 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Από τις Καταστατικές Εξισώσεις στη Συνάρτηση Μεταφοράς bx x y bx I X b I Y Καταστατικές

Διαβάστε περισσότερα

[ ] και το διάνυσµα των συντελεστών:

[ ] και το διάνυσµα των συντελεστών: Μηχανική ΙΙ Τµήµα Ιωάννου-Απόστολάτου 8 Μαϊου 2001 Εσωτερικά γινόµενα διανυσµάτων µέτρο διανύσµατος- ορθογώνια διανύσµατα Έστω ένας διανυσµατικός χώρος V, στο πεδίο των µιγαδικών αριθµών Τα στοιχεία του

Διαβάστε περισσότερα

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή.

Οι πράξεις που χρειάζονται για την επίλυση αυτών των προβληµάτων (αφού είναι απλές) µπορούν να τεθούν σε µια σειρά και πάρουν µια αλγοριθµική µορφή. Η Αριθµητική Ανάλυση χρησιµοποιεί απλές αριθµητικές πράξεις για την επίλυση σύνθετων µαθηµατικών προβληµάτων. Τις περισσότερες φορές τα προβλήµατα αυτά είναι ή πολύ περίπλοκα ή δεν έχουν ακριβή αναλυτική

Διαβάστε περισσότερα

ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη

ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ΕΕ725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η διάλεξη ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 15 Μαρτίου 2010 ηµήτρης-αλέξανδρος Τουµπακάρης Ειδικά Θέµατα Ψηφιακών Επικοινωνιών 4η

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων

Επαναληπτικές Ασκήσεις για το µάθηµα Ψηφιακή Επεξεργασία Σηµάτων Άσκηση η α) Πώς θα µετρήσετε πρακτικά πόσο κοντά είναι ένα σήµα σε λευκό θόρυβο; Αναφέρατε 3 διαφορετικές µεθόδους (κριτήρια) για την απόφαση: "Ναι, πρόκειται για σήµα που είναι πολύ κοντά σε λευκό θόρυβο"

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB- SIMULINK ρ. Γεώργιος Φ. Φραγκούλης Καθηγητής Ver. 0.2 9/2012 ιανύσµατα & ισδιάστατοι πίνακες Ένα διάνυσµα u = (u1, u2,, u ) εισάγεται στη MATLAB ως εξής : u=[ u1, u2,, un ] ή u=[ u1

Διαβάστε περισσότερα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων

Kεφάλαιο 4. Συστήµατα διαφορικών εξισώσεων 4 Εισαγωγή Kεφάλαιο 4 Συστήµατα διαφορικών εξισώσεων Εστω διανυσµατικό πεδίο F: : F=F( r), όπου r = ( x, ) και Fr είναι η ταχύτητα στο σηµείο r πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουµε τις τροχιές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία

Διαβάστε περισσότερα

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία ΜΑΘΗΜΑ 5.. ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ Εφαπτοµένη ευθεία Παράγωγος βασικών συναρτήσεων ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ Αθροίσµατος γινοµένου - πηλίκου Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Εξίσωση

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων

Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων Λύσεις και Υποδείξεις Επιλεγµένων Ασκήσεων 11 1 i) ii) 1 1 1 0 1 1 0 0 0 x = 0 x +x 4 +x 5 = x = 1 Λύνοντας ως προς x και στη συνέχεια ως προς x 4, ϐρίσκουµε ότι η γενική λύση του συστήµατος είναι η 5άδα

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

[A I 3 ] [I 3 A 1 ].

[A I 3 ] [I 3 A 1 ]. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΤΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΣΕΠΤΕΜΒΡΙΟΥ 9 (α) Να ϐρεθεί ο αντίστροφος του πίνακα A = 6 4 (ϐ) Εστω b, b, b στο R Να λύθεί το σύστηµα x = b 6x + x + x = b x

Διαβάστε περισσότερα

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να: ορίσουµε το Μετασχηµατισµό Laplace (ML) και το Μονόπλευρο Μετασχηµατισµό Laplace (MML) και να περιγράψουµε

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις:

2.1 Έννοια του στοχαστικού σήµατος. Θεωρούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: Στοχαστικά σήµατα Έννοια του στοχαστικού σήµατος Θερούµε ένα µονοδιάστατο γραµµικό δυναµικό σύστηµα που περιγράφεται από τις σχέσεις: & α Γνρίζουµε µε απόλυτη βεβαιότητα (µε πιθανότητα ένα), ότι η αρχική

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

P (M = 9) = e 9! =

P (M = 9) = e 9! = Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης 5ο Φροντιστήριο Ασκηση 1. ύο ποµποί ο Α και ο Β στέλνουν ανεξάρτητα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)

Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός ΙΙ

Επιστηµονικός Υπολογισµός ΙΙ Επιστηµονικός Υπολογισµός ΙΙ Ε. Γαλλόπουλος 1 1 Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής Πολυτεχνική Σχολή, Πανεπιστήµιο Πατρών 27/3/13 Μέθοδος ελαχίστου υπολοίπου (Minimum residual) Θέµα:

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών

Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Γιώργος Αλογοσκούφης, Δυναµική Μακροοικονοµική, Αθήνα 206 Μαθηµατικό Παράρτηµα 2 Εξισώσεις Διαφορών Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης εξισώσεων διαφορών. Oι εξισώσεις

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αναπαράσταση τελεστών µε πίνακα

Αναπαράσταση τελεστών µε πίνακα Μάθηµα 7 ο, 8 Νοεµβρίου 008 (9:00-:00) Άσκηση Bonus[+05 στον τελικό βαθμό] Για ένα μονοδιάστατο κβαντικό σύστημα που περιγράφεται από τρεις καταστάσεις με ενέργεια Ε, Ε και Ε3 και αντίστοιχες ιδιοσυναρτήσεις

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann 3 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemnn 3. Μέθοδος αντικατάστασης ή αλλαγής µεταβλητής Πρόταση 3.. Εστω ότι η u = f (y) είναι συνεχής στο διάστηµα I, η y = g() έχει συνεχή παράγωγο στο διάστηµα Ι και

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 7 : Γραµµικοί Μετασχηµατισµοί. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 7 : Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα Σελίδα από 5 Κεφάλαιο 9 Ιδιοτιµές και Ιδιοδιανύσµατα 9. Ορισµοί... 9. Ιδιότητες...7 9. Θεώρηµα Cayley-Hamilto...4 9.. Εφαρµογές του Θεωρήµατος Cayley-Hamilto...6 9.4 Ελάχιστο Πολυώνυµο...5 Ασκήσεις του

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1

a 1d L(A) = {m 1 a m d a d : m i Z} a 11 a A = M B, B = N A, k=1 Α44 ΚΡΥΠΤΟΓΡΑΦΙΑ ΣΗΜΕΙΩΣΕΙΣ #12 ΘΕΟ ΟΥΛΟΣ ΓΑΡΕΦΑΛΑΚΗΣ 1 Πλεγµατα Εστω ο διανυσµατικός χώρος R d διάστασης d Ο χώρος R d έρχεται µε ένα εσωτερικό γινόµενο x, y = d i=1 x iy i και τη σχετική νόρµα x = x,

Διαβάστε περισσότερα

Μαθηµατικά Ιβ Σελίδα 1 από 6

Μαθηµατικά Ιβ Σελίδα 1 από 6 Μαθηµατικά β Σελίδα από 6 Μάθηµα 9 ο ΑΩΝΠΗΣΗ ΠΝΑΚΑ Θεωρία : ραµµική Άλγεβρα : εδάφιο 5, σελ 5 (µόνο την Πρόταση 6) Τα παραδείγµατα που αντιστοιχούν στην ύλη έχουν διδαχθεί Ασκήσεις :,, 4, 8, 9, σελ 58

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 6 Θεώρηµα Thevenin Λευκωσία, 2015 Εργαστήριο 6 Θεώρηµα Thevenin Σκοπός: Σκοπός

Διαβάστε περισσότερα

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.

ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y. ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos

Διαβάστε περισσότερα

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49

p(x, y) = 1 (x + y) = 3x + 6, x = 1, 2 (x + y) = 3 + 2y, y = 1, 2, 3 p(1, 1) = = 2 21 p X (1) p Y (1) = = 5 49 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-27: Πιθανότητες - Χειµερινό Εξάµηνο 206-207 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 8 Από κοινού συναρτήσεις Τυχαίων Μεταβλητών Επιµέλεια : Κατερίνα Καραγιαννάκη

Διαβάστε περισσότερα

{3k + a : k N a = 1,2}.

{3k + a : k N a = 1,2}. P P 1èt s t rð P Ôst ì t è t Ð Ð t èr è ❼ ❼s t t s s Ð s Ð sô t r s Ð t s Ô ❼r rì ì èq Ð ì r t t èr Ôt r t r trðt rìq r r❼2t r rqðs 1èt s t r t ì s s ❼ ì s èq Ð r❼2t st r t ì st Ôt r ì st trðt ì P t r

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Παραγοντοποιήσεις Πινάκων και Γραµµικών Απεικονίσεων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 82 13 Παραγοντοποιήσεις

Διαβάστε περισσότερα

δ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N

δ[n kp ], k Z (1) 1 cos πn, N 1 n N 1 + N 2 2N ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2015 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής Τέταρτο Εργαστήριο - Ηµεροµηνία : 27/11/2015 Σηµείωση

Διαβάστε περισσότερα

p B p I = = = 5

p B p I = = = 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες - Εαρινό Εξάµηνο 2011 ιδάσκων : Π. Τσακαλίδης Λύσεις εύτερης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 17/3/2011

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ

ΚΕΦ.6:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ. ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ ΚΕΦ:ΤΕΤΡΑΓΩΝΙΚΕΣ ΜΟΡΦΕΣ ΣΥΜΜΕΤΡΙΚΟΙ ΠΙΝΑΚΕΣ Τετραγωνικές μορφές: Συναρτήσεις με τύπο Q ν α ι j j, j [ ] ν α α ν αν α νν ν Τ Χ ΑΧ Για παράδειγμα εάν v Q α + α + α + α α + α + α + α δηλ a a a a α + α + α

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών

Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Θεωρία Στοχαστικών Σηµάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών στοχαστικών διεργασιών Βιβλιογραφία Ενότητας Benvento []: Κεφάλαιo Widrow [985]:

Διαβάστε περισσότερα

1 Ορισµός ακολουθίας πραγµατικών αριθµών

1 Ορισµός ακολουθίας πραγµατικών αριθµών ΜΑΣ 02. Απειροστικός Λογισµός Ι Ορισµός ακολουθίας πραγµατικών αριθµών Ορισµός.. Ονοµάζουµε ακολουθία πραγµατικών αριθµών κάθε απεικόνιση του συνόλου N των ϕυσικών αριθµών, στο σύνολο R των πραγµατικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 19 Ιουνίου 2008 11:00-14:00 Έστω το παρακάτω

Διαβάστε περισσότερα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες

Διαβάστε περισσότερα

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares)

Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων (RLS Recursive Least Squares) ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Προσαρµοστικοί Αλγόριθµοι Υλοποίησης Βέλτιστων Ψηφιακών Φίλτρων: Ο αναδροµικός αλγόριθµος ελάχιστων τετραγώνων RLS Rcrsiv Last Sqars 27 iclas sapatslis

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Mάθηµα: "ΘΕΩΡΙΑ ΙΚΤΥΩΝ" ( ο εξάµηνο) Ακαδ. Έτος: - ο Τµήµα (Κ-Μ), ιδάσκων: Κ. Τζαφέστας Λύσεις ης Σειράς Ασκήσεων Άσκηση - (I-

Διαβάστε περισσότερα

Στοχαστικά Σήματα και Τηλεπικοινωνιές

Στοχαστικά Σήματα και Τηλεπικοινωνιές Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 4: Βέλτιστα Φίλτρα Wiener Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση βασικών εννοιών των

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ : ΠΛΗ «ΜΑΘΗΜΑΤΙΚΑ Ι» Τελική Εξέταση 5 Ιουνίου 00 Απαντήστε όλα τα κάτωθι ερωτήµατα, παρέχοντας επεξηγηµατικά σχόλια όπου

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1

ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 39 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 1 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚH Ι (ΠΛΗ ) ΕΡΓΑΣΙΑ 6 - ΛΥΣΕΙΣ Άσκηση. (6 µον.) Ελέγξτε ποια από τα επόµενα σύνολα είναι διανυσµατικοί χώροι

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Τριγωνοποίηση Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 7 2 Τριγωνοποίηση 21 Ανω Τριγωνικοί Πίνακες και

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12, ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ, - Οι παρακάτω λύσεις των ασκήσεων της 6 ης εργασίας που καλύπτει το µεγαλύτερο µέρος της ύλης της θεµατικής ενότητας ΠΛΗ) είναι αρκετά εκτεταµένες καθώς έχει δοθεί αρκετή έµφαση

Διαβάστε περισσότερα

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Γραµµική Αλγεβρα. Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα. Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Γραµµική Αλγεβρα Ενότητα 6 : Ιδιοτιµές & Ιδιοδιανύσµατα Ευστράτιος Γαλλόπουλος Τµήµα Μηχανικών Η/Υ & Πληροφορικής Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων Εργαστήριο 7 Εκθετικά κύµατα και Σύνθετη Αντίσταση Λευκωσία, 2013 Εργαστήριο 7 Εκθετικά κύµατα

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Β ΛΥΚ. ΕΞΙΣΩΣΕΙΣ Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής 6 Ιανουαρίου 013 1 Ασκήσεις 1.1 Ασκήσεις Επανάληψης 1. είξτε ότι : ηµ x + 3συν y 5.. Να αποδείξτε ότι

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης Oc 6 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Γεωμετρική Αναπαράσταση Σημάτων

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην

Διαβάστε περισσότερα

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Μετατροπείς A/D-Διαµόρφωση Δ Μετατροπείς Σ-Δ

EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ. Μετατροπείς A/D-Διαµόρφωση Δ Μετατροπείς Σ-Δ EΦΑΡΜΟΓΕΣ ΤΗΣ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ Μετατροπείς A/D-Διαµόρφση Δ Μετατροπείς Σ-Δ Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Μετατροπή A/D Μοντέλο Μετατροπέα Α/D xat

Διαβάστε περισσότερα

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα:

Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: 1 Άσκηση: Ένα σύστηµα µε είσοδο u(t), έξοδο y(t) και διάνυσµα κατάστασης x(t) = (x 1 (t) x 2 (t)) T περιγράφεται από το ακόλουθο διάγραµµα: Όπου Κ R α) Να βρεθεί η περιγραφή στο χώρο κατάστασης και η συνάρτηση

Διαβάστε περισσότερα

Χαρακτηριστική Εξίσωση Πίνακα

Χαρακτηριστική Εξίσωση Πίνακα Έστω ο n nτετραγωνικός πίνακας A της μορφής a L a M O M an L a όπου aij, i n, j n πραγματικές σταθερές Ονομάζουμε χαρακτηριστική εξίσωση του πίνακα A την εξίσωση A λi, όπου I ο n n μοναδιαίος πίνακας και

Διαβάστε περισσότερα

Η Έννοια της τυχαίας ιαδικασίας

Η Έννοια της τυχαίας ιαδικασίας Η Έννοια της τυχαίας ιαδικασίας Η έννοια της τυχαίας διαδικασίας, βασίζεται στην επέκταση της έννοιας της τυχαίας µεταβλητής, ώστε να συµπεριλάβει το χρόνο. Σεκάθεαποτέλεσµα s k ενόςπειράµατοςτύχης αντιστοιχούµε,

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 4 Άσκηση. (8 µον.) (α) ίνεται παραγωγίσιµη συνάρτηση f για την οποία ισχύει f /

Διαβάστε περισσότερα