Συνδυαστική Απαρίθμηση

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συνδυαστική Απαρίθμηση"

Transcript

1 Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

2 Συνδυαστική Απαρίθμηση Υπολογισμός (με συνδυαστικά επιχειρήματα) του πλήθους των διαφορετικών αποτελεσμάτων ενός «πειράματος». «Πείραμα»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων αποτελεσμάτων. Π.χ. ρίψη ζαριών, μοίρασμα τράπουλας, ανάθεση γραφείων, επιλογή password, 6άδες Lotto, Πληθάριθμος δυναμοσυνόλου: αν Α = n, τότε P(A) = 2 n Βασικές αρχές και έννοιες: Κανόνες γινομένου και αθροίσματος, αρχή εγκλεισμού αποκλεισμού. ιατάξεις και μεταθέσεις (με ή χωρίς) επανάληψη. Συνδυασμοί (με ή χωρίς) επανάληψη. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 2

3 Κανόνας Γινομένου Πείραμα Α με n αποτελέσματα. Πείραμα Β με m αποτελέσματα. Αν αποτελέσματα Α και Β είναι ανεξάρτητα, τότε συνδυασμός των πειραμάτων Α και Β έχει n m αποτελέσματα. Ανεξάρτητα: το αποτέλεσμα του Α δεν επηρεάζει (ως προς τον αριθμό των αποτελεσμάτων) το αποτέλεσμα του Β, και αντίστροφα. Π.χ. Α Β = Α Β Επιλογή ενός ψηφίου 0-9 και ενός κεφαλαίου Ελληνικού γράμματος: = 240 διαφορετικά αποτελέσματα. #συμβ/ρών (με κεφαλαία Ελληνικά) μήκους 10: #παλινδρομικών συμβ/ρών μήκους 10: #συναρτήσεων από Α στο Β ( A = n, B = m): #συναρτήσεων 1-1 από Α στο Β (m n): ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 3

4 Κανόνας Αθροίσματος Πείραμα Α με n αποτελέσματα. Πείραμα Β με m αποτελέσματα. Αν αποτελέσματα Α και Β είναι αμοιβαία αποκλειόμενα, τότε συνδυασμός των πειραμάτων Α ή Β έχει n+m αποτελέσματα. Αμοιβαία αποκλειόμενα: η παρατήρηση αποτελέσματος του Α αποκλείει την παρατήρηση αποτελέσματος του Β, και αντίστροφα. Α Β = Α + Β, αν Α Β = Αρχή εγκλεισμού αποκλεισμού: Α Β = Α + Β - Α Β 5 Ελληνικά, 7 Αγγλικά, και 10 Γερμανικά βιβλία. Τρόποι να διαλέξουμε 2 βιβλία σε διαφορετική γλώσσα: Ελλ. Αγγλ.: 5 7 = 35 Ελλ. Γερμ.: 5 10 = 50 Αγγλ. Γερμ.: 7 10 = 70 Αμοιβαία αποκλειόμενα. Σύνολο: 155 διαφορετικές επιλογές. Τρόποι να διαλέξουμε 2 βιβλία: ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 4

5 Παραδείγματα #passwords με 6 8 χαρακτήρες αποτελούμενα από κεφαλαία (Αγγλικά) γράμματα και (τουλάχιστον ένα) δεκαδικό ψηφίο. #passwords μήκους k = 36 k 26 k #passwords = ( )-( ) #passwords μήκους 2 από Α, Β, C, D και 0, 1, 2 με τουλάχιστον ένα ψηφίο. Σωστό το = 33. Λάθος το (γιατί;) = 42 #δυαδικών συμβ/ρών μήκους 8 που είτε αρχίζουν από 1 είτε τελειώνουν σε 00: Όχι αμοιβαία αποκλειόμενα: = 160. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 5

6 ιατάξεις Μεταθέσεις ιατάξεις P(n, k): k από n διακεκριμένα αντικείμενα σε k διακεκριμένες θέσεις (1 αντικείμενο σε κάθε θέση). P(n, k) = #τρόπων να πληρωθούν k διακεκριμένες θέσεις από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). #τρόπων να πληρώσουμε 4 (διαφορετικές) θέσεις εργασίας αν έχουμε 30 υποψήφιους: #συμβ/ρών μήκους 10 μεόλατασύμβολαδιαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: Μεταθέσεις n αντικειμένων: P(n, n) = n! #αναθέσεων 10 (διαφορετικών) γραφείων σε 10 καθηγητές: #συμβ/ρών μήκους 24 με όλα τα σύμβολα διαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 6

7 Παραδείγματα #συμβ/ρών από 4 διαφορετικούς χαρακτήρες ακολουθούμενους από 3 διαφορετικά ψηφία: Ρ(24, 4) Ρ(10, 3) #τετραψήφιων δεκαδικών αριθμών που δεν αρχίζουν από 0 και δεν έχουν επαναλάμβανόμενα ψηφία: = #μεταθέσεων (κεφαλαίων Ελληνικών) όπου Α εμφανίζεται πριν από τα Β και Γ: Ρ(24, 21) 2! #μεταθέσεων όπου Α εμφανίζεται πριν το Β, και μετά από τα Γ και : Ρ(24, 20) 2! ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 7

8 ιατάξεις με Επανάληψη #πενταψήφιων δεκαδικών αριθμών: 10 5 ιατάξεις με επανάληψη: n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα») σε k διακεκριμένες θέσεις: ιανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα), όταν η σειρά στις υποδοχές δεν έχει σημασία. #πενταψήφιων δεκαδικών αριθμών με τουλ. ένα 8: Πληθικός αριθμός δυναμοσυνόλου Α: 2 A A στοιχεία σε 2 υποδοχές (ανήκει δεν ανήκει στο υποσύνολο). #δυαδικών συμβ/ρών μήκους n με άρτιο πλήθος από 1: συμβ/ρά μήκους n 1, μοναδική συμ/ρά με άρτιο πλήθος 1. Ιδέα του parity bit. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 8

9 ιατάξεις με Επανάληψη ιανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό χωρητικότητας) με σειρά στις υποδοχές να έχει σημασία. Ιστιοφόρο έχει n κατάρτια στα οποία μπορεί να αναρτηθούν k διαφορετικές σημαίες. Πόσα διαφορετικά σήματα; Κυκλικές μεταθέσεις n ατόμων: #τρόπων που n άνθρωποι κάθονται σε κυκλικό τραπέζι (διακρίνουμε μεταξύ δεξιά και αριστερά). ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 9

10 Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). ιαφορετικές 6άδες Lotto (από 1-49): #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: #τρόπων στελέχωσης 5μελούς κοινοβουλευτικής επιτροπής, όπου μέλη ισότιμα: #δυαδικών συμβ/ρών μήκους 32 με (ακριβώς) επτά 1: #επιλογών 3 αριθμών ώστε άθροισμα να διαιρείται από 3. Αριθμοί σε 3 ομάδες 100 αριθμών με βάση mod 3. Είτε 3 από ίδια ομάδα είτε έναν από κάθε ομάδα. Τελικά 3C(100, 3) = ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 10

11 Μεταθέσεις με Ομάδες #συμβ/ρών (μήκους 8) με γράμματα λέξης ΕΦΗΒΙΚΟΣ: 8! #συμβ/ρών (μήκους 8) με γράμματα λέξης ΠΑΡΑΠΟΝΑ: Μεταθέσεις με ομάδες ίδιων αντικειμένων: 8!/(2!3!1!1!1!) Μεταθέσεις n αντικειμένων σε k ομάδες ίδιων αντικειμένων με πληθάριθμο n 1, n 2,, n k αντίστοιχα: #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 : Αν πρώτο και τελευταίο Α: Αν δεν πρέπει να εμφανίζεται : ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 11

12 Παραδείγματα Έστω το «τετράγωνο» που ορίζεται από τα σημεία (0, 0), (0, 8), (10, 0), και (10, 8). Πόσα διαφορετικά «μονοπάτια» από το (0, 0) στο (10, 8), αν σε κάθε βήμα μετακινούμαστε είτε κατά μια μονάδα προς τα πάνω είτε κατά μιαμονάδαπροςταδεξιά. Πρέπει να κάνουμε 8 βήματα Πάνω και 10 βήματα εξιά. #μονοπατιών = #μεταθέσεων 8 Πκαι10 = 18!/(10! 8!) Ακολουθίες α 1,..., α n και β 1,..., β m. #τρόπων καταγραφής στοιχείων των 2 ακολουθιών ώστε να διατηρείται η σειρά μεταξύ των στοιχείων της ίδιας ακολουθίας; Μεταθέσεις n A και m B δείχνουν θέσεις στοιχείων κάθε ακολουθίας. εδομένη η σειρά των στοιχείων κάθε ακολουθίας. Τελικά: (n+m)!/(n! m!). ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 12

13 Συνδυασμοί με Επανάληψη ιαφορετικά αποτελέσματα από ρίψη 2 (ίδιων) ζαριών: 21 Συνδυασμοί με επανάληψη: k από n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα»). ιανομή k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα). ιανομές αντιστοιχούν σε μεταθέσεις k 1 και n-1 0. #1 ανάμεσα σε 0 καθορίζει #αντικειμένων σε κάθε υποδοχή. #διανομών k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές ώστε καμία υποδοχή κενή (k n). C(n+ (k n) 1, k n) = C(k 1, k n) = C(k 1, n 1) ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 13

14 Ανακεφαλαίωση Προβλήματα Διατάξεων σε k διακεκριμένες θέσεις επιλογή k από τα n αντικείμενα, κάθε επιλογή είναι «διαφορετική» n διακεκριμένα αντικείμενα Προβλήματα Συνδυασμών σε k μη διακεκριμένες θέσεις επιλογή k από τα n αντικείμενα, οι επιλογές είναι «ίδιες» χωρίς επανάληψη (κάθε αντικείμενο διαθέσιμο σε 1 «αντίγραφο») n! Pnk (, ) = ( n k)! με επανάληψη (κάθε αντικείμενο διαθέσιμο σε πολλά «αντίγραφα») Ισοδύναμο με διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές δεν παίζει ρόλο η σειρά στις υποδοχές παίζει ρόλο η σειρά στις υποδοχές k n ( n+ k 1)! ( n 1)! με επανάληψη (κάθε αντικείμενο διαθέσιμο σε πολλά «αντίγραφα») χωρίς επανάληψη (κάθε αντικείμενο διαθέσιμο σε 1 «αντίγραφο») Ισοδύναμο με διανομή k μη διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές n! ( n+ k 1)! Cn ( + k 1, k) = ( n 1)! k! Cnk (, ) = ( n k)! k! Μεταθέσεις (n = k): P( nn, ) = n! Μεταθέσεις n αντικειμένων όταν έχουμε k ομάδες ίδιων αντικ. με πληθάριθμο n 1,, n k : n1 n2 n!!! n! k Συνδυαστική Απαρίθμηση 14

15 Παραδείγματα 10 όμοιες καραμέλες σε 3 διακεκριμένα παιδιά: Επιλογή 10 από 12 παιδιά (σειρά επιλογής έχει σημασία): Επιλογή 10 από 12 παιδιά (σειρά επιλογής δεν έχει σημασία): Επιλογή 10 από 3 χρώματα με επανάληψη (σειρά επιλογής δεν έχει σημασία): Επιλογή 3 από 10 χρώματα με επανάληψη (σειρά επιλογής δεν έχει σημασία): ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 15

16 Παραδείγματα #τοποθέτησης 8 (ίδιων / διακεκριμένων) πύργων σε μια σκακιέρα 8x8, ώστε να μην απειλεί ο ένας τον άλλο. Ένας πύργος σε κάθε γραμμή. Οπύργοςτης1 ης γραμμής με 8 τρόπους, οπύργοςτης2 ης γραμμής με 7 τρόπους, κοκ. Αν πύργοι ίδιοι, συνολικά: 8! τρόποι. Αν πύργοι διακεκριμένοι: πολλαπλασιάζουμε με μεταθέσεις: 8!. Συνολικά: (8!) 2 τρόποι a b c d e f g h ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 16

17 Παραδείγματα 40 βουλευτές του κόμματος Α, 35 βουλευτέςτουκόμματοςβ, και 25 βουλευτέςτουκόμματοςγ. #τρόπων να ορίσουμε 10 (μη διακεκριμένες) 3μελείς κοινοβουλευτικές ομάδες, με έναν βουλευτή από κάθε κόμμα, αν κάθεβουλευτήςμπορείνασυμμετέχεισε1 το πολύ ομάδα; #τρόποι επιλογής 10 βουλευτών κόμματος Α: C(40, 10). #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Β: P(35, 10). #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Γ: P(25, 10). #τρόπων συνολικά: 40!35!25!/(10!30!25!15!). ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 17

18 Παραδείγματα #ακεραίων λύσεων της εξίσωσης x 1 + x 2 + x 3 + x 4 = 20 Αν x i 0: C( , 20) = C(23, 20) = C(23, 3) Αν x i 1: C( , 16) = C(19, 16) = C(19, 3) Αν x 1 2, x 2 4, x 3 1, x 4 5: C( , 8) = C(11, 3) 5 διαφορετικά γράμματα (π.χ. Α, Β, Γ,, Ε) και 20 κενά _. #συμβ/ρών που αρχίζουν και τελειώνουν με γράμμα και έχουν ανάμεσα σε διαδοχικά γράμματα τουλάχιστον 3 κενά. Μεταθέσεις 5 γραμμάτων: 5! 12 κενά στις 4 διακεκριμένες «υποδοχές» ανάμεσα σε γράμματα. Υπόλοιπα 8 κενά στις 4 «υποδοχές» με C( , 8) τρόπους. Τελικά: C(11, 8) 5! συμβ/ρές. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 18

19 Παραδείγματα n θρανία στη σειρά για k φοιτητές που εξετάζονται (n 2k-1). #τοποθετήσεων ώστε τουλάχιστον μια κενή θέση ανάμεσα σε κάθε ζευγάρι φοιτητών. Μεταθέσεις k φοιτητών: k! (καταλαμβάνουν k θρανία). Τοποθετούμε k 1 θρανία ανάμεσά τους. Υπόλοιπα n 2k+1 (ίδια) θρανία στις k+1 διακεκριμένες «υποδοχές» στην αρχή, στο τέλος, και ανάμεσα σε φοιτητές. C((k+1) + (n 2k+1) 1, n-2k+1) = C(n k+1, n-2k+1) = C(n k+1, k) Τελικά C(n k+1, k) k! = (n-k+1)!/(n-2k+1)! ιαφορετικά μεταθέσεις (με ομάδες) k διαφορετικών αντικειμένων (φοιτητών) και n-2k+1 ίδιων αντικειμένων (ελεύθερων θρανίων). ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 19

20 Παραδείγματα #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 όπου δεν εμφανίζεται το ΓΑ. #συμβ/ρών μήκους 19 από 7 Α, 8 Β, και 4 : 19!/(7!8!4!) ημιουργούνται 20 διακεκριμένες «υποδοχές» για τα 5 Γ. Εξαιρούνται οι 7 πριν από κάθε Α. ιανομή 5 Γσε13 διακεκριμένες «υποδοχές»: C(17, 5). Τελικά: [19!/(7!8!4!)] [17!/(5!12!)]. #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 όπου το πρώτο Β εμφανίζεται πριν το πρώτο Α. #επιλογών θέσεων για 4 (από 24): C(24, 4). #επιλογών θέσεων για 5 Γ (από 20): C(20, 5). Ένα Β σε πρώτη διαθέσιμη θέση. #επιλογών θέσεων για υπόλοιπα 7 Β (από 14): C(14, 7). Συνολικά: [24!/(4!5!15!)] [14!/(7!7!)]. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 20

21 Παραδείγματα #διανομών 22 διαφορ. βιβλίων πάχους 5 εκ. σε 3 διακεκριμένα ράφια μήκους 1 μ. το καθένα ώστε κανένα ράφι κενό. k διακεκριμένα αντικείμενα σε n διακεκριμένες υποδοχές ώστε καμία υποδοχή κενή (k n, πάχος βιβλίων δεν συνιστά περιορισμό). Αν αντικείμενα ίδια, #διανομών: C(k 1, n 1). Αντικείμενα διαφορετικά: C(k 1, n 1) k! ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 21

22 Παραδείγματα 2n+1 κοινοβουλευτικές έδρες να μοιραστούν σε 3 κόμματα ώστε αν οποιαδήποτε 2 συμφωνούν να έχουν πλειοψηφία. #διανομών 2n+1 (ίδιες) μπάλες σε 3 διακεκριμένες υποδοχές ώστε κάθε υποδοχή n μπάλες. #διανομών χωρίς περιορισμούς: #διανομών όπου κάποια υποδοχή έχει n+1 μπάλες: Επιλέγουμε (με 3 τρόπους) υποδοχή με «πλειοψηφία». Τοποθετούμεσεαυτήn+1 μπάλες. #διανομών υπόλοιπων n μπαλών στις 3 υποδοχές: Τελικά #διανομών: ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 22

23 Παραδείγματα #διμελών σχέσεων στο σύνολο Α, Α = n: Όλες: Ανακλαστικές: Συμμετρικές: Αντισυμμετρικές: ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 23

24 Υποσύνολα Πολυσυνόλου #διαιρετών του 180; Ανάλυση σε γινόμενο πρώτων παραγόντων: 180 = #διαιρετών 180 = #υποσυνόλων {2:2, 3:2, 5:1} #διαιρετών του 180 = = 18. #υποσύνολων πολυσυνόλου με k στοιχεία όπου κάθε στοιχείο p είναι διαθέσιμο σε n p «αντίγραφα». (1+n 1 )(1+n 2 ) (1+n k ) Για #μη κενών υποσυνόλων: (1+n 1 )(1+n 2 ) (1+n k ) 1 #διαιρετών του 1400; Ανάλυση σε γινόμενο πρώτων παραγόντων: 1400 = #διαιρετών 1400 = #υποσυνόλων {2:3, 5:2, 7:1} #διαιρετών του 1400 = = 24. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 24

25 Εφαρμογή: ιακριτή Πιθανότητα ιακριτός δειγματοχώρος: αριθμήσιμο σύνολο Ω, όπου ω Ω, αντιστοιχούμε p(ω) [0, 1] και Γεγονός Ε: υποσύνολο Ω. p(e) = Πιθανότητα για 6άρες στο τάβλι: 1/36. Πιθανότητα για 6-5 στο τάβλι: 2/36. Πιθανότητα για ίδιο αποτέλεσμα στα 2 ζάρια: 6*1/36 = 1/6. Πιθανότητα τουλάχιστον 2 από k (τυχαία επιλεγμένους) ανθρώπους να έχουν γενέθλια την ίδια ημέρα; ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 25

26 Εφαρμογή: ιακριτή Πιθανότητα Ρίχνουμε 4 (ίδια / διακ.) ζάρια. Πιθανότητα κανένα να μην φέρει 6; Αφού η πιθανότητα δεν σχετίζεται με «ταυτότητα» ζαριών, δεν παίζει ρόλο αν τα ζάρια είναι διακεκριμένα ήόχι. Τα θεωρούμε διακεκριμένα, ώστεόλαταενδεχόμεναισοπίθανα. Όλα τα ενδεχόμενα: 6 4 = Ενδεχόμενα χωρίς 6: 5 4 = 625. Ενδεχόμενα με τουλάχιστον ένα 6: = 671. Έχουμε 10 ζευγάρια παπούτσια ανακατεμένα σε ένα ντουλάπι. Επιλέγουμε τυχαία 8 παπούτσια απότοντουλάπι. Ποια η πιθανότητα να μην επιλέξουμε κανένα ζευγάρι παπουτσιών; Ποια η πιθανότητα να επιλέξουμε ακριβώς ένα ζευγάρι παπουτσιών; ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 26

27 υωνυμικοί Συντελεστές υωνυμικό Θεώρημα: Ως άμεση συνέπεια: Προκύπτει συνδυαστικά ως #υποσυνόλων συνόλου με n στοιχεία. Με x = 1 και y = 1: Απόδειξη για τύπο εγκλεισμού αποκλεισμού: Για x = 2 και y = 1: ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 27

28 Ταυτότητα του Pascal Ταυτότητα του Pascal: #τρόπων να επιλέξουμε k από n αντικείμενα: είτε επιλέγουμε το τελευταίο και επιλέγουμε τα άλλα k 1 από τα υπόλοιπα n-1 αντικείμενα, είτε δεν επιλέγουμε το τελευταίο και επιλέγουμε όλα τα k από τα υπόλοιπα n-1 αντικείμενα. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 28

29 Τρίγωνο του Pascal Αναδρομική σχέση για υπολογισμό δυωνυμικών συντελεστών: Η τεχνική σήμερα είναι γνωστή ως δυναμικός προγραμματισμός. n ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 29

30 Ταυτότητα Vandermonde Ταυτότητα Vandermonde: #τρόπων να επιλέξουμε r από n (αριθμημένες) πράσινες μπάλες και m (αριθμημένες) κόκκινες μπάλες: Επιλέγουμε r k από m κόκκινες k από n πράσινες με C(m, r k) C(n, k) τρόπους. Αμοιβαία αποκλειόμενα ενδεχόμενα για διαφορετικές τιμές του k. Άμεση συνέπεια: ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 30

31 ημιουργία Μεταθέσεων... n αντικειμένων σε λεξικογραφική σειρά. Συνάρτηση που επιστρέφει (λεξικογραφικά) επόμενη μετάθεση. Ελάχιστη: αντικείμενα σε αύξουσα σειρά. Μέγιστη: αντικείμενα σε φθίνουσα σειρά. εδομένης μετάθεσης α 1 α 2...α n : Υπολόγισε ελάχιστη δυνατή κατάληξη που επιδέχεται (λεξικογραφικής) αύξησης. Υπολογισμός επόμενης μετάθεσης (που δεν έχει εμφανιστεί ήδη ως κατάληξη) για αυτή την κατάληξη ιακριτά Μαθηματικά (Άνοιξη 2016)

32 ημιουργία Μεταθέσεων εδομένης μετάθεσης α 1 α 2...α n : Μέγιστος δείκτης j τ.ω. α j < α j+1 (άρα α j+1 > α j+2 > α n-1 > α n ) Επόμενη μετάθεση α 1 α 2...α n : Πρόθεμα α 1... α j-1 αμετάβλητο. α j = ελάχιστο από τα α j+1,..., α n που «ξεπερνά» το α j. Υπόλοιπα από τα α j, α j+1,..., α n (εκτός αυτού που πήρε θέση j) σε αύξουσα σειρά ιακριτά Μαθηματικά (Άνοιξη 2016)

33 ημιουργία Μεταθέσεων Υλοποίηση: Μέγιστο j τ.ω. α j < α j+1. Ισχύει ότι α j+1 > α j+2 >... > α n. Μετά την αντιμετάθεση των α j και α k, τα α j+1,, α n είναι ταξινομημένα σε φθίνουσα σειρά. Αντιμετάθεση ζευγών (α j+1, α n ), (α j+2, α n-1 ), κοκ. καταλήγει σε ταξινόμηση σε αύξουσα σειρά. Υλοποίηση χωρίς ταξινόμηση σε χρόνο Ο(n). ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 33

34 ημιουργία Συνδυασμών Όλοι οι (2 n ) συνδυασμοί n αντικειμένων: δημιουργία δυαδικών αριθμών μήκους n. ημιουργία όλων των συνδυασμών k αντικειμένων από n σε λεξικογραφική σειρά. Συνάρτηση για επόμενο συνδυασμό. Αντικείμενα σε αύξουσα σειρά. Ελάχιστος: k. Μέγιστος: (n k +1) n εδομένης μετάθεσης α 1 α 2...α n : Υπολόγισε ελάχιστη δυνατή κατάληξη που επιδέχεται αύξησης. Αύξηση λαμβάνει υπόψη ότι έχουμε συνδυασμούς ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 34

35 ημιουργία Συνδυασμών εδομένου συνδυασμού α 1 α 2...α k : Μέγιστος δείκτης j τ.ω. α j n k+j (άρα α j+1 α k μέγιστος συνδυασμός k j στοιχείων) Επόμενος συνδυασμός α 1 α 2...α k : Πρόθεμα α 1... α j-1 αμετάβλητο. α j = α j +1. Τα επόμενα στοιχεία (α j +2, α j + 3,...) στις υπόλοιπες θέσεις ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 35

36 ημιουργία Συνδυασμών Υλοποίηση σε χρόνο Ο(k). ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 36

37 ιατάξεις με Επανάληψη #εβδομαδιαίων προγραμμάτων μελέτης για μαθήματα Μ, Φ, Χ, Ο ώστε κάθε μάθημα τουλάχιστον 1 ημέρα. Αρχή εγκλεισμού αποκλεισμού: #προγραμμάτων χωρίς (τουλ.) 1 μάθημα: 3 7 (4 περιπτώσεις). #προγραμμάτων χωρίς (τουλ.) 2 μαθήματα: 2 7 (6 περιπτώσεις). #προγραμμάτων χωρίς (τουλ.) 3 μαθήματα: 1 7 = 1 (4 περιπτ.) #προγραμμάτων χωρίς (τουλ.) 4 μαθήματα: 0 Τελικά: = 8400 ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 37

38 Παραδείγματα Πόσα υποσύνολα 4 στοιχείων του Α = {1,..., 15} δεν περιέχουν διαδοχικούς αριθμούς; Υποσύνολο ως 4άδα (α 1, α 2, α 3, α 4 ) όπου 1 α 1 < α 2 < α 3 < α αντιστοιχία μεταξύ τέτοιων 4άδων (α 1, α 2, α 3, α 4 ) και λύσεων της εξίσωσης β 1 +β 2 +β 3 +β 4 +β 5 =14 στους φυσικούς με β 2, β 3, β 4 1: Για να μην είναι α 1, α 2, α 3, α 4 διαδοχικοί, πρέπει β 2, β 3, β 4 2. ιανομή 14 ίδιων μπαλών σε 5 διαφορετικές υποδοχές, ώστε υποδοχές 2, 3, και 4 να έχουν τουλάχιστον 2 μπάλες. Αποτέλεσμα: C(12, 8) = C(12, 4) = 495. Να γενικεύσετε για #υποσυνόλων k στοιχείων του {1,, n} που δεν περιέχουν διαδοχικούς αριθμούς. ιακριτά Μαθηματικά (Άνοιξη 2016) Συνδυαστική Απαρίθμηση 38

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αρχή του Περιστερώνα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση:

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σύνολα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ορισμός Συνόλου Σύνολο είναι μια συλλογή

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κανονικές Γλώσσες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Κανονικές Γλώσσες Κανονική γλώσσα αν

Διαβάστε περισσότερα

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αριθμήσιμα

Διαβάστε περισσότερα

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 5: Μεταθέσεις & Συνδυασμοί Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου: Ορισμός Συνόλου Σύνολα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σύνολο είναι μια συλλογή διακεκριμένων

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πεπερασμένα Αυτόματα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πεπερασμένα Αυτόματα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πεπερασμένα Αυτόματα είναι απλούστερες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016 HY118- ιακριτά Μαθηµατικά Πέµπτη, 21/4/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016 Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/206 Ο κανόνας του Pascal + = +,0 ή ισοδύναμα, = +,0 + Απόδειξη + =!!! +!!! = =!!! + =!!!! =!!!! = =!!!! = +!!! =!! = Το τρίγωνο του Pascal = + Για

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

Μια φυσική διαδικασία η οποία έχει συγκεκριμένο αριθμό παρατηρήσιμων αποτελεσμάτων.

Μια φυσική διαδικασία η οποία έχει συγκεκριμένο αριθμό παρατηρήσιμων αποτελεσμάτων. MYY204 Διακριτά Μαθηματικά Μθ άii ΣΥΝ ΥΑΣΤΙΚΗ -- Μεταθέσεις και ιατάξεις -- Συνδυασμοί -- Σφαιρίδια σε Κουτιά Reading: ROSEN : Κεφάλαιο 6 EPP : Κεφάλαιο 6 9 η -10 η Εβδομάδα Άνοιξη 2015 Τμήμα Μηχανικών

Διαβάστε περισσότερα

Σχέσεις Μερικής ιάταξης

Σχέσεις Μερικής ιάταξης Σχέσεις Μερικής ιάταξης ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σχέση Μερικής ιάταξης Σχέση Μερικής

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) Μέρος Ι (μέγιστος αριθμός μονάδων=40) Δώστε την κατάλληλη απάντηση (ΣΩΣΤΗ ή ΛΑΘΟΣ ) στις παρακάτω προτάσεις. Κάθε σωστή επιλογή παίρνει 5 μονάδες. Για κάθε λανθασμένη επιλογή

Διαβάστε περισσότερα

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 ΜΑΘΗΜΑΤΙΚΗ ΣΚΕΨΗ ρ Κορρές Κωνσταντίνος ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 1. Μία έρευνα από 50 µαθητές έδειξε ότι 30 είχαν γάτες, 25 είχαν σκύλους, 5 είχαν χάµστερ, 16 είχαν σκύλους και γάτες, 4 είχαν σκύλους και χάµστερ,

Διαβάστε περισσότερα

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων

1. Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων . Βασικές Έννοιες - Προτάσεις Θεωρίας Πιθανοτήτων Tα διάφορα επιστημονικά μοντέλα ή πειράματα ή γενικότερα τα φυσικά φαινόμενα μπορεί να θεωρηθεί ότι εντάσσονται σε δύο μεγάλες κατηγορίες: τα προσδιοριστικά

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Σηµειώσεις για το µάθηµα ΣΥΝ ΥΑΣΤΙΚΗ Θεοδόσης ηµητράκος e-mail: dimitheo@aegean.gr

Διαβάστε περισσότερα

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε» ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Συνδυαστική ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 10 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύντοµη εισαγωγή στην Συνδυαστική. Το ϕυλλάδιο διατίθεται

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσα χωρίς

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Πείραμα Π: Μια φυσική διαδικασία με ένα συγκεκριμένο (αριθμήσιμα ρ μ άπειρο / πεπερασμένο) ) σύνολο δυνατών

Πείραμα Π: Μια φυσική διαδικασία με ένα συγκεκριμένο (αριθμήσιμα ρ μ άπειρο / πεπερασμένο) ) σύνολο δυνατών MYY204 Διακριτά Μαθηματικά 11 η -12 η Eβδομάδα: ΙΑΚΡΙΤΗ ΠΙΘΑΝΟΤΗΤΑ -- Αξιώματα Πιθανοτήτων -- Θώ Θεώρημα του Bayes Reading: EPP, Κεφάλαιο 6 (παρ. 6.8-6.9) ROSEN, Κεφάλαιο 7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008 ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

Στην Ξένια και στην Μαίρη

Στην Ξένια και στην Μαίρη Στην Ξένια και στην Μαίρη Περιεχόμενα 3 ΠΡΟΛΟΓΟΣ Πολλές φορές θέλουμε να μελετήσουμε φαινόμενα ή συστήματα τα οποία εξελλίσονται, κυρίως αναφορικά με τον χρόνο, και των οποίων η μελλοντική συμπεριφορά

Διαβάστε περισσότερα

"ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι"

ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ και στις ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ των ΜΑΘΗΜΑΤΙΚΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΑΙ ΑΓΩΓΙΚΟ ΤΜΗΜΑ ΗΜΟΤΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 Εαρινό Εξάµηνο Ρόδος, Μάιος 2014 ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΙΚΩΝ, Ι ΑΚΤΙΚΗΣ και ΠΟΛΥΜΕΣΩΝ Μάθηµα: ΥΓ00003 "ΕΙΣΑΓΩΓΗ στις ΒΑΣΕΙΣ

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

Δυναμικός Προγραμματισμός

Δυναμικός Προγραμματισμός Τρίγωνο του Pascal Δυναμικός Προγραμματισμός Διωνυμικοί συντελεστές Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016 HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Σύνθετο Πείραµα Πείραµα:Οποιαδήποτε διαδικασίαπου µπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων.

Μάθηµα 1 ο. Πιθανότητα-Έννοιες και Ορισµοί. Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. Μάθηµα 1 ο Πιθανότητα-Έννοιες και Ορισµοί Στο µάθηµα αυτό θα αναφερθούµε σε βασικές έννοιες και συµβολισµούς της θεωρίας πιθανοτήτων. http://compus.uom.gr/inf267/index.php 1 Εισαγωγικά Βασικές Έννοιες

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΕΦΑΛΑΙΟ 3 ο ΠΙΘΑΝΟΤΗΤΕΣ Συνοπτική Θεωρία Όλες οι αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις από την Τράπεζα Θεμάτων του Υπουργείου και προτεινόμενες Διαγωνίσματα

Διαβάστε περισσότερα

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations .7 Διατάξεις Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν όταν επιλέγονται υποσύνολα που περιέχουν διακεκριμένα στοιχεία από ένα υπερσύνολο διακεκριμένων στοιχείων. Εδώ δεν ενδιαφέρουν οι θέσεις

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 ιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολουποθέσεωνκαιτουοποίουτο αποτέλεσμα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιακριτό Πρόβλημα Σακιδίου ίνονται n αντικείμενα και σακίδιο μεγέθους Β. Αντικείμενο

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Ι

Διακριτά Μαθηματικά Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διακριτά Μαθηματικά Ι Διακριτή πιθανότητα Διδάσκων: Επίκουρος Καθηγητής Σπύρος Κοντογιάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα