ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)"

Transcript

1 ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο

2 Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά ουσιώδη γίνονται με (εναλλακτικά, ) Μαθηματικά δεν προσφέρονται για τηλεφωνική επίλυση αποριών! Τηλεφωνική επικοινωνία για επείγοντα ή διαδικαστικά, (γρ.) και (κιν.) Ιστότοπος : χώρος ΠΛΗ 20, κωδικοί portal. Πληροφορίες, συμπληρωματικό υλικό, fora, παλιές εργασίες. Εργασίες: ανακοίνωση εκφώνησης - προθεσμίας, υποβολή εργασιών, διόρθωση βαθμολογία. Πρέπει να το επισκέπτεστε τακτικά! ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 2

3 Εργασίες Βαθμολογία: 6 εργασίες συνολικά (1 συνδυαστική, 2 λογική, 3 γραφήματα). Βαθμολογούνται με άριστα το 100 (άρα το άριστα είναι 600 ). Δικαίωμα συμμετοχής στις εξετάσεις: Παράδοση τουλάχιστον 5 εργασιών και συνολική βαθμολογία τουλάχιστον 300 (στα 600). Εργασία «παραδόθηκε» αν αναρτηθεί έγκαιρα στο study και βαθμολογηθεί με 25 (στα 100). Αν, μετά την ανάρτηση εργασίας στο study, υπάρχει οποιοδήποτε πρόβλημα (π.χ., ανάρτηση λάθος αρχείου, δεν μπορώ να διαβάσω το αρχείο, κλπ.), επικοινωνώ μαζί σας με ή τηλεφωνικά. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 3

4 Δομή Εργασιών 1 ερώτημα με 4 ερωτήσεις τύπου Σ / Λ όπως στις εξετάσεις. Απαιτείται συνοπτική αιτιολόγηση των απαντήσεων. 10% της βαθμολογίας (35%-40% για το Α μέρος εξετάσεων). 4 βαθμολογούμενα ερωτήματα με ασκήσεις (με 2 ή 3 σκέλη) Α σκέλος απλό ερώτημα («κατανόησης») με σύντομη απάντηση. Ανακοινώνεται μία εβδομάδα νωρίτερα για αυτοαξιολόγηση. Περίπου 20% της συνολικής βαθμολογίας. Β σκέλος (και Γ σκέλος, αν υπάρχει) ασκήσεις επιπέδου εξετάσεων. Απαντήσεις για όλα υποβάλλονται μαζί και στο ίδιο έντυπο. Ενσωματώνονται τα ερωτήματα κατανόησης στην εργασία και βαθμολογούνται. Συνολική έκταση ίδια, αλλά συνολικά ευκολότερη εργασία. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 4

5 Εργασίες Ανακοίνωση Παράδοση: Εργασίες ανακοινώνονται Δευτέρα (ή Τρίτη, 1 η Δευτέρα 19/10 ) και παραδίδονται Τετάρτη 3 + εβδομάδες μετά ( 1 η Τετάρτη 11/11 ). Παράδοση αποκλειστικά με ανάρτηση στο study. Deadline: Τετάρτη μεσάνυχτα, μέχρι 23:59, πρέπει να έχει αναρτηθεί η εργασία σας (μετά «κλειδώνει» ηυποβολή). Δεν δίνεται περαιτέρω παράταση σε ατομικό επίπεδο. Ανάρτηση λύσεων: Πέμπτη βράδυ ή Παρασκευή πρωί. Αν αντιληφθώ πρόβλημα, επικοινωνώ μαζί σας (πρώτα mail, μετά κινητό). Τις ημέρες παράδοσης εργασιών: τσεκάρουμε και κινητό. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 5

6 Εργασίες Συμπλήρωση Λύσεων σε Word : Κατεβάζουμε εκφώνηση εργασίας και συμπληρώνουμε στοιχεία και λύσεις στις αντίστοιχες περιοχές του ίδιου εγγράφου. Δεν αλλάζουμε κατά κανένα άλλον τρόπο το έγγραφο! Το αναρτούμε στο study. Διορθώσεις σχόλια βαθμολογία συμπληρώνονται στο ίδιο έγγραφο και αναρτώνται στο study εντός 2 εβδομάδων. Λύσεις αποκλειστικά δακτυλογραφημένες (όχι χειρόγραφα σκαναρισμένα, όχι pdf, jpg αρχεία, κλπ.) Όλοι όσοι δουλεύουν μόνοι σοβαρά στις εργασίες επιτυγχάνουν! Εξετάσεις 2015: 12/31 και 9/21, σύνολο 21/33 (64%). Εξετάσεις 2014: 17/33 και 6/16, σύνολο 23/33 (70%). Εξετάσεις 2013: 13/30 και 8/16, σύνολο 21/30 (70%). Εξετάσεις 2012: 10/21 και 6/13, σύνολο 16/23 (70%). Εξετάσεις 2011: 18/26 και 6/10, σύνολο 24/29 (83%). ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 6

7 Εξετάσεις Εξετάσεις (τι ισχύει τελευταία μπορεί να αλλάξει φέτος): A μέρος: διάρκεια 1:10, 35% 40% της συνολικής βαθμολογίας. 40 ερωτήματα Σ/Λ οργανωμένα σε 10 θέματα των 4. (Ήπια) αρνητική βαθμολογία. Πρακτικά ελέγχει κατανόηση συνόλου ύλης. Β μέρος: διαρκεί 2:20, 60% 65% της συνολικής βαθμολογίας. 4 θέματα, με σκέλη και υπο-ερωτήματα: 1 θέμα συνδυαστικής, 25%, 1 θέμα λογικής, 35%, και 2 θέματα γραφημάτων, 40% συνολικά. Ελέγχει κατανόηση και ικανότητα επίλυσης προβλημάτων. Κλειστά βιβλία, σημειώσεις, κλπ. «Τυπολόγιο» με 3 φύλλα Α4 χειρόγραφα. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 7

8 ΟΣΣ Συμπληρωματικό Υλικό ΟΣΣ με παρουσίαση θεωρίας και επίλυση ασκήσεων. Να έρχεστε σε όλες προετοιμασμένοι, είναι εξαιρετικά σημαντικό! Να προσπαθείτε να έχετε μελετήσει αυτά που γράφω στην ατζέντα. Επιπλέον βιβλιογραφία: Μόνο αφού διαβάσετε όλο το διαθέσιμο υλικό! Συμπληρωματικό υλικό: Webcasts Σταματίου (πρώτα 8). Hypertext (πρώτες 2 ενότητες). Ασκήσεις συνδυαστικής (2 πολύ καλές συλλογές!). Μαθηματική επαγωγή (1 ο κεφάλαιο). Σημειώσεις + διαφάνειες που θα στείλω. Παλιές εργασίες θέματα: τουλάχιστον 3-4 χρόνια πίσω. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 8

9 Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων αποτελεσμάτων (ενδεχομένων). Π.χ. ρίψη ζαριών, μοίρασμα τράπουλας, ανάθεση γραφείων, επιλογή password, διανομή αντικειμένων, 6άδες Lotto, Δύο προσεγγίσεις: Στοιχειώδης Συνδυαστική. Γεννήτριες Συναρτήσεις. Βασικές αρχές και έννοιες στη στοιχειώδη συνδυαστική: Κανόνες γινομένου και αθροίσματος, αρχή εγκλεισμού αποκλεισμού. Διατάξεις και μεταθέσεις (με ή χωρίς) επανάληψη. Συνδυασμοί (με ή χωρίς) επανάληψη. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 9

10 Κανόνας Γινομένου Γεγονός Α με n ενδεχόμενα. Γεγονός Β με m ενδεχόμενα. Αν ενδεχόμενα των Α και Β είναι ανεξάρτητα, τότε συνδυασμός Α και Β έχει n m ενδεχόμενα. Ανεξάρτητα: το αποτέλεσμα του Α δεν επηρεάζει (ως προς το πλήθος των ενδεχομένων) το αποτέλεσμα του Β, και αντίστροφα. Ενδεχόμενα όταν δύο άνθρωποι ρίχνουν από μία ζαριά; Επιλογή ενός ψηφίου 0-9 και ενός κεφαλαίου Ελληνικού γράμματος: = 240 διαφορετικά αποτελέσματα. #συμβ/ρών (με κεφαλαία Ελληνικά) μήκους 10: #παλινδρομικών συμβ/ρών μήκους 10: #πινακίδων αυτοκινήτων: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 10

11 Κανόνας Αθροίσματος Γεγονός Α με n ενδεχόμενα. Γεγονός Β με m ενδεχόμενα. Αν ενδεχόμενα των Α και Β είναι αμοιβαία αποκλειόμενα, τότε συνδυασμός Α ή Β έχει n+m ενδεχόμενα. Αμοιβαία αποκλειόμενα: δεν υπάρχει ενδεχόμενο που εντάσσεται και στο Α και στο Β. Α Β = Α + Β, αν Α Β = Αρχή εγκλεισμού αποκλεισμού: Α Β = Α + Β - Α Β 5 Ελληνικά, 7 Αγγλικά, και 10 Γερμανικά βιβλία. Τρόποι να διαλέξουμε 2 βιβλία σε διαφορετική γλώσσα: Ελλ. Αγγλ.: 5 7 = 35 Ελλ. Γερμ.: 5 10 = 50 Αγγλ. Γερμ.: 7 10 = 70 Αμοιβαία αποκλειόμενα. Σύνολο: 155 διαφορετικές επιλογές. Τρόποι να διαλέξουμε 2 βιβλία (ανεξ. γλώσσας): ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 11

12 Παραδείγματα Πόσα passwords με 8 χαρακτήρες αποτελούμενα από κεφαλαία (Αγγλικά) γράμματα και τουλάχιστον ένα δεκαδικό ψηφίο; Υπάρχουν τέτοια #passwords. #δυαδικών συμβ/ρών μήκους 8 που είτε αρχίζουν από 1 είτε τελειώνουν σε 00: Όχι αμοιβαία αποκλειόμενα: = 160. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 12

13 Διατάξεις Μεταθέσεις Διατάξεις P(n, k): k από n διακεκριμένα αντικείμενα σε k διακεκριμένες θέσεις (1 αντικείμενο σε κάθε θέση). P(n, k) = #τρόπων να πληρωθούν k διακεκριμένες θέσεις από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). #τρόπων να πληρώσουμε 4 (διαφορετικές) θέσεις εργασίας αν έχουμε 30 υποψήφιους: #συμβ/ρών μήκους 10 μεόλατασύμβολαδιαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: Μεταθέσεις n αντικειμένων: P(n, n) = n! #αναθέσεων 10 (διαφορετικών) γραφείων σε 10 καθηγητές: #συμβ/ρών μήκους 24 με όλα τα σύμβολα διαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 13

14 Παραδείγματα #συμβ/ρών από 4 διαφορετικούς (κεφαλαίους Ελληνικούς) χαρακτήρες ακολουθούμενους από 3 διαφορετικά ψηφία: Ρ(24, 4) Ρ(10, 3) #τετραψήφιων δεκαδικών αριθμών που δεν αρχίζουν από 0 και δεν έχουν επαναλάμβανόμενα ψηφία: = #μεταθέσεων (κεφαλαίων Ελληνικών) όπου Ω εμφανίζεται μετά από τα Χ, Ψ: Ρ(24, 21) 2! #μεταθέσεων όπου Ψ εμφανίζεται πριν το Ω, και μετά από τα Φ, Χ: Ρ(24, 20) 2! ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 14

15 Ερώτημα 1.α, 1 η Εργ #τοποθέτησης 8 (ίδιων / διακεκριμένων) πύργων σε μια σκακιέρα 8x8, ώστε να μην απειλεί ο ένας τον άλλο. Ένας πύργος σε κάθε γραμμή. Οπύργοςτης1 ης γραμμής με 8 τρόπους, οπύργοςτης2 ης γραμμής με 7 τρόπους, κοκ. Αν πύργοι ίδιοι, συνολικά: 8! τρόποι. Αν πύργοι διακεκριμένοι: πολλαπλασιάζουμε με μεταθέσεις: 8!. Συνολικά: (8!) 2 τρόποι a b c d e f g h ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 15

16 Κυκλικές Μεταθέσεις Κυκλικές μεταθέσεις n ατόμων: (n 1)! #τρόπων που n άνθρωποι κάθονται σε κυκλικό τραπέζι (διακρίνουμε μεταξύ «δεξιά» και «αριστερά»). Αν δεν διακρίνουμε μεταξύ «δεξιά» και «αριστερά»: (n 1)! / 2 ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 16

17 Κυκλικές Μεταθέσεις: Παράδειγμα (Ερ. 4.β, 1 η Εργασία 10-11) Κυκλικό τραπέζι 2n (μη διακεκριμένων) θέσεων, nζευγάρια (άντρας γυναίκα, διακεκριμένοι). Τρόποι να καθίσουν όταν: Δεν υπάρχει κανένας περιορισμός. Κυκλικές μεταθέσεις 2n διακ. αντικειμένων: (2n)!/(2n) = (2n-1)! Γυναίκα - άντρας κάθε ζευγαριού σε γειτονικές θέσεις. (n-1)! κυκλικές μεταθέσεις των ζευγαριών σε ζεύγη θέσεων. 2 τοποθετήσεις για κάθε ζευγάρι (ανεξάρτητα ενδεχόμενα). (n-1)! 2 n διαφορετικές μεταθέσεις. Άνδρες και γυναίκες εναλλάξ: (n-1)! κυκλικές μεταθέσ. για άνδρες και n! μεταθέσεις για γυναίκες. Ανεξάρτητα ενδεχόμενα: (n 1)!n! ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 17

18 Μεταθέσεις με Ομάδες #συμβ/ρών (μήκους 8) με γράμματα λέξης ΕΦΗΒΙΚΟΣ: 8! #συμβ/ρών (μήκους 8) με γράμματα λέξης ΠΑΡΑΠΟΝΑ: Μεταθέσεις με ομάδες ίδιων αντικειμένων: 8!/(2!3!1!1!1!) Μεταθέσεις n αντικειμένων σε k ομάδες ίδιων αντικειμένων με πληθάριθμο n 1, n 2,, n k αντίστοιχα: #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ: Αν πρώτο και τελευταίο Α: 22!/(5!8!5!4!) Αν δεν πρέπει να εμφανίζεται ΔΔΔΔ: 24!/(7!8!5!4!) 21!/(7!8!5!1!) 24!/(7!8!5!4!) ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 18

19 Παραδείγματα Τρόποι τακτοποίησης 10 ατόμων σε 4 διακεκριμένες καμπίνες: 4κλινη, 3κλινη, 2κλινη, 1κλινη (ερ. 1.β, 1 η εργ ). Μεταθέσεις 4 Α, 3 Β, 2 Γ, 1 Δ (εισιτηρίων) σε 10 διακεκριμένες θέσεις (άτομα). Μεταθέσεις με ομάδες αντικειμένων: 10!/(4!3!2!1!). 30 διακεκριμένοι μαθητές, 15 αγόρια και 15 κορίτσια. Τρόποι να χωριστούν σε ομάδες και να πάρουν εργασία (επαν. εξετ. 2011): Ομάδες από ένα αγόρι και ένα κορίτσι, κοινό θέμα εργασίας. Κορίτσια: διακεκριμένες θέσεις. Μεταθέσεις αγοριών: 15! Ομάδες από 5 άτομα, ανεξαρτήτως φύλου, 6 διαφορετικά θέματα. Μεταθέσεις με ομάδες: 30!/(5!) 6 Ομάδες από 5 άτομα, ανεξαρτήτως φύλου, κοινό θέμα εργασίας. Μεταθέσεις με ομάδες, διαιρούμε με 6! επειδή κοινό θέμα εργασίας: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 19

20 Διατάξεις με Επανάληψη Διατάξεις με επανάληψη: n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα») σε k διακεκριμένες θέσεις: Ισοδύναμο με διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα), όταν η σειρά στις υποδοχές δεν έχει σημασία. #πενταψήφιων δεκαδικών συμβ/ρών: 10 5 #τετραψήφιων δεκαδικών αριθμών (που δεν αρχίζουν από 0): = #πενταψήφιων δεκαδικών συμβ/ρών με τουλ. ένα 8: Πλήθος διαφορετικών υποσυνόλων ενός συνόλου Α: 2 A ( A στοιχεία σε 2 «υποδοχές»: ανήκει δεν ανήκει στο υποσύνολο). ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 20

21 Διατάξεις με Επανάληψη Διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό χωρητικότητας) με σειρά στις υποδοχές να έχει σημασία. Βιβλιοθήκη με n ράφια όπου τοποθετούνται k διαφορετικά βιβλία («όρθια» ράφια, βιβλία χωρίς κενά μεταξύ τους, έχει σημασία η σειρά στα ράφια). #διαφορετικών τοποθετήσεων; ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 21

22 Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). Διαφορετικές 6άδες Lotto: C(49, 6) #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: C(n, k) #τρόπων στελέχωσης 5μελούς κοινοβουλευτικής επιτροπής, όπου μέλη ισότιμα: C(300, 5) #δυαδικών συμβ/ρών μήκους 32 με (ακριβώς) επτά 1: C(32, 7) ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 22

23 Ερώτημα 1.α, 1 η Εργ Τρόποι τοποθέτησης 2 ίδιων πιονιών σε μια σκακιέρα 8x8, ώστε να μην καταλαμβάνουν γειτονικά τετράγωνα. Διακρίνουμε 3 αμοιβαία αποκλειόμενα γεγονότα (κανόνας αθροίσματος). 1 ο πιόνι σε γωνία: 4x60 τρόποι. 8 1 ο πιόνι σε πλευρά (όχι γωνία): 24x58 τρόποι ο πιόνι σε «εσωτερικό» τετράγωνο: 36x55 τρόποι. 5 4 Αθροίζουμε και λαμβάνουμε υπόψη ότι τα πιόνια είναι μη διακεκριμένα (συνδυασμοί): 3 2 (4x60+24x58+36x55)/2 = a b c d e f g h ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 23

24 Παραδείγματα 40 βουλευτές του κόμματος Α, 35 βουλευτέςτουκόμματοςβ, και 25 βουλευτέςτουκόμματοςγ. #τρόπων να ορίσουμε 10 (μη διακεκριμένες) 3μελείς κοινοβουλευτικές ομάδες, με έναν βουλευτή από κάθε κόμμα, αν κάθεβουλευτήςμπορείνασυμμετέχεισε1 το πολύ ομάδα; #τρόποι επιλογής 10 βουλευτών κόμματος Α: C(40, 10). #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Β: P(35, 10). #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Γ: P(25, 10). #τρόπων συνολικά: 40!35!25!/(10!30!25!15!). ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 24

25 Παραδείγματα 40 βουλευτές του κόμματος Α, 35 βουλευτέςτουκόμματοςβ, και 25 βουλευτές του κόμματος Γ. #τρόπων να καθίσουν σε 3 πτέρυγες με 40 διακεκριμένες θέσεις ηκαθεμία, αν όλοι οι βουλευτές κάθε κόμματος πρέπει να καθίσουν στην ίδια πτέρυγα. #τρόπων «τοποθέτησης» κομμάτων στις πτέρυγες: 3! #τρόπων να καθίσει κόμμα Α: P(40, 40) = 40! #τρόπων να καθίσει κόμμα Β: P(40, 35) = 40!/5! #τρόπων να καθίσει κόμμα Γ: P(40, 25) = 40!/15! #τρόπων συνολικά: 3!40!40!40!/(5!15!). Τι αλλάζει αν θεωρήσουμε ότι οι βουλευτές κάθε κόμματος δεν είναι διακεκριμένοι; ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 25

26 Συνδυασμοί με Επανάληψη Διαφορετικά αποτελέσματα από ρίψη 2 ζαριών: Συνδυασμοί με επανάληψη: k από n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα»). Διανομή k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα). Μεταθέσεις από k ίδιες «μπάλες» και n-1 ίδια «διαχωριστικά». Πλήθος «μπαλών» μεταξύ διαδοχικών «διαχωριστικών» καθορίζει πλήθος αντικειμένων στην αντίστοιχη υποδοχή. #διανομών k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές ώστε καμία υποδοχή κενή (k n). C(n+ (k n) 1, k n) = C(k 1, k n) = C(k 1, n 1) ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 26

27 Παραδείγματα 10 όμοιες καραμέλες σε 3 διακεκριμένα παιδιά: Επιλογή 10 από 12 παιδιά (σειρά επιλογής έχει σημασία): Επιλογή 10 από 12 παιδιά (σειρά επιλογής δεν έχει σημασία): Επιλογή 10 από 3 χρώματα με επανάληψη (σειρά επιλογής δεν έχει σημασία): Επιλογή 3 από 10 χρώματα με επανάληψη (σειρά επιλογής δεν έχει σημασία): ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 27

28 Παραδείγματα #ακεραίων λύσεων της εξίσωσης x 1 + x 2 + x 3 + x 4 = 20 Αν x i 0: C( , 20) = C(23, 20) = C(23, 3) Αν x i 1: C( , 16) = C(19, 16) = C(19, 3) Αν x 1 2, x 2 4, x 3 1, x 4 5: C( , 8) = C(11, 3) Πλήθος 5ψήφιων (δεκαδικών) συμβ/ρων με άθροισμα ψηφίων 8; Πλήθος ακεραίων λύσεων εξίσωσης x 1 + x 2 + x 3 + x 4 + x 5 = 8, ώστε 0 x 1, x 2, x 3, x 4, x 5 9. Περιορισμός «9» ικανοποιείται πάντα, αφού έχουμε μη αρνητικές μεταβλητές με άθροισμα 8. Τελικά: C( , 8) = C(12, 8) = C(12, 4) τέτοιοι αριθμοί. Τι συμβαίνει αν το άθροισμα των ψηφίων είναι π.χ. 18; Παρόμοια, αλλά αφαιρούμε ενδεχόμενα όπου κάποια από τις μεταβλητές έχει τιμή 10. Τελικά: C( , 18) 8 C( , 8) ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 28

29 Παραδείγματα 2n+1 κοινοβουλευτικές έδρες να μοιραστούν σε 3 κόμματα ώστε κανένα να μην έχει πλειοψηφία. #διανομών 2n+1 (ίδιες) μπάλες σε 3 διακεκριμένες υποδοχές ώστε κάθε υποδοχή n μπάλες. #διανομών χωρίς περιορισμούς: #διανομών όπου κάποια υποδοχή έχει n+1 μπάλες: Επιλέγουμε (με 3 τρόπους) υποδοχή με «πλειοψηφία». Τοποθετούμεσεαυτήn+1 μπάλες. #διανομών υπόλοιπων n μπαλών στις 3 υποδοχές: Τελικά #διανομών: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 29

30 Παραδείγματα #τρόπων να χωριστούν 24 ομάδες σε 4 ομίλους των 6 ομάδων αν: Όμιλοι είναι διακεκριμένοι: Όμιλοι δεν είναι διακεκριμένοι: 5 διαφορετικά γράμματα (π.χ. Α, Β, Γ, Δ, Ε) και 20 κενά _. #συμβ/ρών που αρχίζουν και τελειώνουν με γράμμα και έχουν ανάμεσα σε διαδοχικά γράμματα τουλάχιστον 3 κενά. Μεταθέσεις 5 γραμμάτων: 5! 12 κενά στις 4 διακεκριμένες «υποδοχές» ανάμεσα σε γράμματα. Υπόλοιπα 8 κενά στις 4 «υποδοχές» με C( , 8) τρόπους. Τελικά: C(11, 8) 5! συμβ/ρές. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 30

31 Παραδείγματα #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ όπου δεν εμφανίζεται το ΓΑ. #συμβ/ρών μήκους 19 από 7 Α, 8 Β, και 4 Δ: 19!/(7!8!4!) Δημιουργούνται 20 διακεκριμένες «υποδοχές» για τα 5 Γ. Εξαιρούνται οι 7 πριν από κάθε Α. Διανομή 5 Γσε13 διακεκριμένες «υποδοχές»: C(17, 5). Τελικά: [19!/(7!8!4!)] [17!/(5!12!)]. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 31

32 Παραδείγματα n θρανία στη σειρά για k φοιτητές που εξετάζονται (n 2k-1). #τοποθετήσεων ώστε τουλάχιστον μια κενή θέση ανάμεσα σε κάθε ζευγάρι φοιτητών. Μεταθέσεις k φοιτητών: k! (καταλαμβάνουν k θρανία). Τοποθετούμε k 1 θρανία ανάμεσά τους. Υπόλοιπα n 2k+1 (ίδια) θρανία στις k+1 διακεκριμένες «υποδοχές» στην αρχή, στο τέλος, και ανάμεσα σε φοιτητές. C((k+1) + (n 2k+1) 1, n-2k+1) = C(n k+1, n-2k+1) = C(n k+1, k) Τελικά C(n k+1, k) k! = (n-k+1)!/(n-2k+1)! Διαφορετικά μεταθέσεις (με ομάδες) k διαφορετικών αντικειμένων (φοιτητών) και n-2k+1 ίδιων αντικειμένων (ελεύθερων θρανίων). ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 32

33 Παραδείγματα Έστω το «τετράγωνο» που ορίζεται από τα σημεία (0, 0), (0, 8), (10, 0), και (10, 8). Πόσα διαφορετικά «μονοπάτια» από το (0, 0) στο (10, 8), αν σε κάθε βήμα μετακινούμαστε είτε κατά μια μονάδα προς τα πάνω είτε κατά μια μονάδα προς τα δεξιά. Πρέπει να κάνουμε 8 βήματα Πάνω και 10 βήματα Δεξιά. #μονοπατιών = #μεταθέσεων 8 Πκαι10 Δ = 18!/(10! 8!) #επιλογών 3 αριθμών ώστε άθροισμα να διαιρείται από 3. Αριθμοί σε 3 ομάδες 100 αριθμών με βάση mod 3. Επιλέγουμε είτε 3 από ίδια ομάδα είτε έναν από κάθε ομάδα. Τελικά 3C(100, 3) = ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 33

34 Παραδείγματα #διμελών σχέσεων στο σύνολο Α, Α = n: Όλες: Ανακλαστικές: Συμμετρικές: Αντισυμμετρικές: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 34

35 Ανακεφαλαίωση ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 35

36 Εφαρμογή: Διακριτή Πιθανότητα Διακριτός δειγματοχώρος: αριθμήσιμο σύνολο Ω, όπου ω Ω, αντιστοιχούμε p(ω) [0, 1] και Γεγονός Ε: υποσύνολο Ω. p(e) = Πιθανότητα για 6άρες στο τάβλι: 1/36. Πιθανότητα για 6-5 στο τάβλι: 2/36. Πιθανότητα για ίδιο αποτέλεσμα στα 2 ζάρια: 6*1/36 = 1/6. Πιθανότητα τουλάχιστον 2 από k (τυχαία επιλεγμένους) ανθρώπους να έχουν γενέθλια την ίδια ημέρα; ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 36

37 Εφαρμογή: Διακριτή Πιθανότητα Ρίχνουμε 4 (ίδια / διακ.) ζάρια. Πιθανότητα κανένα να μην φέρει 6; (Ερώτ. 1.β, 1 η Εργ ) Αφού η πιθανότητα δεν σχετίζεται με «ταυτότητα» ζαριών, δεν παίζει ρόλο αν τα ζάρια είναι διακεκριμένα ήόχι. Τα θεωρούμε διακεκριμένα, ώστεόλαταενδεχόμεναισοπίθανα. Όλα τα ενδεχόμενα: 6 4 = Ενδεχόμενα χωρίς 6: 5 4 = 625. Ενδεχόμενα με τουλάχιστον ένα 6: = 671. Δείτε ακόμη ερ. 2.β, 1 η Εργασία ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 37

38 Ερωτ. 2, 1 η Εργασία Κάθε άνθρωπος ανήκει σε ένα από 12 ζώδια με πιθ. 1/12. Υπολογισμός Π(2, n): πιθανότητα τουλάχιστον 2 άτομα από μια ομάδα n ατόμων να ανήκουν στο ίδιο ζώδιο. 1 Πιθ(όλα τα n άτομα σε διαφορετικό ζώδιο) = 1 Π( 1, n) Π( 1, n) = (12-n+1)/12 n = P(12, n)/12 n Π(2, 2) = 1/12, Π(2, 3) = 17/72, P(2, 4) = 41/96, P(2, 5) = 89/144 Π(2, 12) = 1 12!/12 12 = %, Π(2, 13) = 1 (περιστερώνας)! Διαφορετικοί τρόποι υπολογισμού, αλλά πιο δύσκολοι! Όλοι στο ίδιο ζώδιο: 12/12 n (απάντηση για n = 2). Ακριβώς ένα ζώδιο με ακριβώς 2 άτομα και υπόλοιπα ζώδια με 1 άτομο: C(n,2) P(12, n 1)/12 n Ακριβώς δύο ζώδια με ακριβώς 2 άτομα και υπόλοιπα ζώδια με 1 άτομο: C(n,2) C(n 2,2) P(12, n 2)/(2 12 n ) Ακριβώς ένα ζώδιο με ακριβώς 3 άτομα: C(n,3) P(12, n 2)/12 n ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 38

39 Γεννήτριες Συναρτήσεις Αναπαράσταση ακολουθιών: Με γενικό (ή «κλειστό») τύπο α n. Αναδρομική σχέση. Κωδικοποίηση σε δυναμοσειρά μιας (πραγματικής) μεταβλητής x. Γεννήτρια Συνάρτηση (ΓΣ) Α(x) ακολουθίας α: Συντελεστής του x n αντιστοιχεί σε n-οστό όρο ακολουθίας α. Επιλέγουμε διάστημα τιμών x ώστε σειρά να συγκλίνει (πάντα!). Έτσι θεωρούμε ότι Α(x) άπειρα παραγωγίσιμη (αναλυτική). Παραγωγίζουμε/ολοκληρώνουμε την A(x) ως πεπερασμένο άθροισμα. Κάθε ακολουθία α αντιστοιχεί σε μοναδική ΓΣ Α(x). ΓΣ Α(x) αντιστοιχεί σε μοναδική ακολουθία: Μετασχηματισμός και «αλγεβρικός» χειρισμός ακολουθιών και επίλυση των προβλημάτων που κωδικοποιούν. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 39

40 Παραδείγματα ΓΣ ακολουθίας 1, 1, 1, 1,... : 1/(1 x) ΓΣ ακολουθίας α n = b λ n : b/(1 λx) ΓΣ για πεπερασμένες ακολουθίες (υπόλοιποι όροι θεωρούνται 0). ΓΣ ακολουθίας 0, 0, 1, 2, 3, 4, 5: x 2 + 2x 3 + 3x 4 + 4x 5 + 5x 6 ΓΣ ακολουθίας α k = C(n, k): ΓΣ ακολουθίας α n = n+1 : ΓΣ ακολουθίας β n = n : Ακολουθία που αντιστοιχεί σε ΓΣ A(x) = 5/(1 4x): α n = 5 4 n ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 40

41 Παραδείγματα Ακολουθία αντιστοιχεί σε ΓΣ Α(x) = 1/(1+x); Γενικευμένο δυωνυμικό ανάπτυγμα (όταν n δεν είναι φυσικός): Ειδικότερα, αν n φυσικός: Δηλαδή η 1/(1-x) n είναι η ΓΣ για συνδυασμούς k από n αντικείμενα με επανάληψη (ή διανομήk ίδιων αντικειμένων σε n διακ. υποδοχές). Με βάση γενικευμένο δυωνυμικό ανάπτυγμα, Άρα η ΓΣ A(x) = 1/(1+x) αντιστοιχεί στην ακολουθία α n = (-1) n ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 41

42 Προβλήματα Συνδυαστικής Συνήθεις ΓΣ χρησιμοποιούνται για την κωδικοποίηση και επίλυση προβλημάτων συνδυασμών. Για κάθε αντικείμενο Α, κωδικοποιούμε στον εκθέτη της μεταβλητής x πόσες φορές μπορούμε να το επιλέξουμε. 1+x+x 2 +x 3 + +x p : μπορούμε να επιλέξουμε το αντικείμενο Α 0, 1,..., p φορές (μπορεί και άπειρο άθροισμα). Σε αυτή τη φάση κωδικοποιούνται οι περιορισμοί. Απαριθμητής για (επιλογές) αντικειμένου Α. Απαριθμητές για διαφορετικά αντικείμενα πολλαπλασιάζονται (κανόνας γινομένου) και δίνουν ΓΣ για συνδυασμούς από n αντικείμενα. Ο συντελεστής του x k στη ΓΣ αντιστοιχεί στον #συνδυασμών k από n αντικείμενα (υπό τους περιορισμούς που έχουμε θέσει). Η ΓΣ κωδικοποιεί όλαταενδεχόμενατου πειράματος και #τρόπων να προκύψει κάθε ενδεχόμενο. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 42

43 Παραδείγματα Συνδυασμοί από n αντικείμενα χωρίς επαναλήψεις: Απαριθμητής για κάθε αντικείμενο: 1+x ΓΣ (1+x) n. Συντελεστής x k = C(n, k). Συνδυασμοί από n αντικείμενα με απεριόριστες επαναλήψεις: Απαριθμητής για κάθε αντικείμενο: 1+x+x 2 +x 3 + = 1/(1-x) ΓΣ 1/(1-x) n. Συντελεστής x k = C(n+k-1, k). Συνδυασμοί από n αντικείμενα με απεριόριστες επαναλήψεις ώστε κάθε αντικείμενο να επιλεγεί τουλάχιστον 1 φορά: Απαριθμητής για κάθε αντικείμενο: x+x 2 +x 3 + = x/(1-x) ΓΣ x n /(1-x) n. Συντελεστής x k = C(k-1, n-1). ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 43

44 Παραδείγματα #λύσεων εξίσωσης z 1 +z 2 +z 3 +z 4 = 30 στους φυσικούς αν z 1 άρτιος 10, z 2 περιττός 11, 3 z 3 10, 0 z Α(x)=(1+x 2 +x 4 + +x 10 )(x+x 3 + +x 11 )(x 3 +x 4 + +x 10 )(1+x+ +x 15 ) Ζητούμενο δίνεται από συντελεστή x 30 που είναι 185. O συντελεστής του x 30 στην A(x) δεν ταυτίζεται με αυτόν στην Α (x)=(1+x 2 +x 4 +x 6 + )(x+x 3 +x 5 + )(x 3 +x 4 +x 5 + )(1+x+x 2 +x 3 + ) Κέρματα 20 λεπτών, 50 λεπτών, 1 ευρώ και 2 ευρώ. Συνδυασμοί με συνολική αξία n ευρώ ώστε τουλάχιστον ένα κέρμα από κάθε είδος. Κωδικοποιούμε στον εκθέτη την αξία των κερμάτων (σε λεπτά). Α(x) = (x 20 +x 40 + )(x 50 +x )(x 100 +x ) (x 200 +x ) To ζητούμενο δίνεται από τον συντελεστή του x 100n ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 44

45 Παραδείγματα ΓΣ για τη διανομή 20 μαρκαδόρων, 6 μαύρων, 10 μπλέ, και 4 κόκκινων, σε 2 καθηγητές ώστε κάθε καθηγητής να πάρει 10 μαρκαδόρους και τουλάχιστον 1 από κάθε χρώμα. Διανομή στον 1 ο καθηγητή (σύμφωνα με περιορισμούς) καθορίζει τι θα πάρει ο 2 ος καθηγητής με μοναδικό τρόπο. Αρκεί να διατυπώσουμε τη ΓΣ για τον 1 ο καθηγητή. (x+x 2 +x 3 +x 4 +x 5 )(x+x 2 + +x 9 )(x+x 2 +x 3 ) Το ζητούμενο δίνεται από τον συντελεστή του x 10 που είναι 15. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 45

46 Παραδείγματα Ερώτημα 3.β, 1 η Εργασία : Έχουμε n λίτρα λάδι (ίδια «αντικείμενα») που συσκευάζονται σε 5λιτρα και 10λιτρα, και διανέμονται σε 3 διακεκριμένες αποθήκες. Τουλάχιστον 2 συσκευασίες από κάθε είδος σε κάθε αποθήκη. Να διατυπωθεί ΓΣ. Ποιος συντελεστής δίνει πλήθος διανομών; Συνδυασμοί συνήθης ΓΣ. Διανομή n ίδιων «αντικειμένων» (λίτρων λαδιού) σε 6 διακεκριμένες υποδοχές: Πλήθος ακεραίων λύσεων εξίσωσης: Γεννήτρια συνάρτηση: Πλήθος διανομών δίνεται από συντελεστή του x n. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 46

47 Παραδείγματα #διανομών 2n+1 ίδιων μπαλών σε 3 διακεκριμένες υποδοχές ώστε κάθε υποδοχή να έχει n μπάλες. ΗΓΣείναιA(x) = (1+x+x 2 + +x n ) 3 = (1 x n+1 ) 3 /(1-x) 3 Tο ζητούμενο δίνεται από τον συντελεστή του x 2n+1 Με πράξεις: Ο συντελεστής του x 2n+1 είναι ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 47

48 Παραδείγματα 100 (μη διακεκριμένοι) επιβάτες κατεβαίνουν σε 4 (διακεκριμένες) στάσεις. Γεννήτρια Συνάρτηση όταν: Δενυπάρχουνπεριορισμοί. #ακεραίων λύσεων της z 1 +z 2 +z 3 +z 4 = 100 με z 1, z 2, z 3, z 4 0. (1+x+x 2 +x 3 + ) 4 = 1/(1 x) 4 Ζητούμενο δίνεται από συντελεστή x 100 που είναι C(103, 3) #επιβ. 3 η στάση #επιβ. 2 η στάση #επιβ. 1 η στάση. Πρέπει z 2 = z 1 +κ, κ 0, και z 3 = z 2 +λ = z 1 +κ+λ, λ 0. #ακεραίων λύσεων της 3z 1 +2κ+λ+z 4 = 100 με z 1, κ, λ, z 4 0. (1+x 3 +x 6 + +x 99 )(1+x 2 +x 4 + +x 100 )(1+x+x 2 + +x 100 ) 2 Ζητούμενο δίνεται από συντελεστή x 100 που είναι ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 48

49 Ερώτημα 3.α, 1 η Εργασία Χαρτ/μτα 5, 10, 20 ευρώ. ΓΣ για τρόπους επιλογής 100 χαρτ/μτων συνολικής αξίας 1000 ευρώ, τουλάχιστον 10 από 10 και 20 ευρώ. Συνήθης ΓΣ γιατί χαρτονομίσματα κάθε είδους όχι διακεκριμένα. Τρόποι επιλογής όσες οι ακέραιες λύσεις συστήματος: Πρέπει να εξασφαλίσουμε ότι πάντα συναληθεύουν δύο ισότητες: λύνουμε 1 η (π.χ. ως προς w) και αντικαθιστούμε στη 2 η. Τρόποι επιλογής όσες οι ακέραιες λύσεις συστήματος: Συνήθης ΓΣ: Ζητούμενο δίνεται από συντελεστή του x 500. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 49

50 Ερώτημα 3.β, 1 η Εργασία κέρματα του 1 ευρώ και 9 κέρματα των 2 ευρώ. ΓΣ για τρόπους επιλογής κερμάτων με συνολική αξία 20 ευρώ, ώστε τουλάχιστον 1 κέρμα του 1 ευρώ και το πολύ 7 κέρματα των 2 ευρώ. Συνήθης ΓΣ γιατί κέρματα κάθε είδους όχι διακεκριμένα. Τρόποι επιλογής όσες οι ακέραιες λύσεις συστήματος:... ή ισοδύναμα: Συνήθης ΓΣ: Ζητούμενο δίνεται από συντελεστή του x 20. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 50

51 Εκθετικές Γεννήτριες Συναρτήσεις... για προβλήματα διατάξεων. Διακεκριμένα αντικείμενα σε διακεκριμένες θέσεις. Αναζητούμε τον συντελεστή τον συντελεστή του x k /k! (ουσιαστικά πολλαπλασιάζουμε τον συντελεστή του x k με k!) Λαμβάνουμε υπόψη διατάξεις στον σχηματισμό των απαριθμητών. Διατάξεις k αντικειμένων από n χωρίς επανάληψη. P(n, k) = C(n, k) k! Το P(n, k) προκύπτει ως συντελεστής του x k /k! στο (1+x) n ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 51

52 Εκθετικές Γεννήτριες Συναρτήσεις Εκθετική Γεννήτρια Συν. Ε(x) ακολουθίας α: Συντελεστής του x n /n! αντιστοιχεί σε n-οστό όρο ακολουθίας α. «Εκθετική» γιατί στην ακολουθία 1, 1, 1,... αντιστοιχεί η Εκθετική ΓΣ (ΕΓΣ) e x λόγω της ταυτότητας: ΕΓΣ για μεταθέσεις n διαφορετικών αντικειμένων: ΕΓΣ για μεταθέσεις n ίδιων αντικειμένων: ΕΓΣ για μεταθέσεις n αντικειμένων σε k ομάδες με ίδια αντικείμενα με πληθάριθμο ομάδων n 1, n 2,, n k : ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 52

53 Παραδείγματα ΕΓΣ για διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές χωρίς περιορισμούς και χωρίς να έχει σημασία η σειρά στις υποδοχές. Ισοδύναμα, ΕΓΣ για διατάξεις k από n με απεριόριστες επανάληψεις. Π.χ. k άνθρωποι επιλέγουν ένα γλυκό από n διαφορετικά είδη. Εκθετικός απαριθμητής για κάθε υποδοχή: Εκθετική ΓΣ: e nx και ο συντελεστής x k /k! είναι n k ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 53

54 Παραδείγματα Το ίδιο με περιορισμό καμία υποδοχή να μην μείνει κενή (k n): Εκθετικός απαριθμητής για κάθε υποδοχή: e x 1 Εκθετική ΓΣ: (e x 1) n Συντελεστής του x k /k! είναι ίσος με Εφαρμογές: Πρόγραμμα μελέτης 4 μαθημάτων για 7 ημέρες ώστε κάθε μάθημα να μελετηθεί τουλάχιστον 1 ημέρα. «Διανομή» 7 διακ. ημερών σε 4 διακ. μαθήματα ώστε κανένα μάθημα να μην μείνει «κενό». #«διανομών»: = 8400 Ανάθεση 20 μεταπτ. φοιτητών σε 5 εργαστήρια ώστε κάθε εργαστήριο να δεχθεί τουλάχιστον 1 φοιτητή. #«αναθέσεων»: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 54

55 Παραδείγματα #πενταδικών συμβ/ρών μήκους n με άρτιο πλήθος από 1: Εκθετικός απαριθμητής για ψηφία 0, 2, 3, 4: Εκθετικός απαριθμητής για ψηφίο 1: Εκθετική ΓΣ: e 4 (e x + e x )/2 = (e 5x + e 3x )/2 Συντελεστής του x n /n! είναι (5 n + 3 n )/2 ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 55

56 Παραδείγματα #πενταδικών συμβ/ρών μήκους n με άρτιο πλήθος 1 και περιττό πλήθος 0 όπου τα 2, 3, 4 εμφανίζονται τουλάχιστον 1 φορά. Εκθετικός απαριθμητής για ψηφία 2, 3, 4: e x 1 Εκθετικός απαριθμητής για ψηφίο 1: (e x + e x )/2 Εκθετικός απαριθμητής για ψηφίο 0: Εκθετική ΓΣ: (e x 1) 3 [(e x + e x )/2] [(e x e x )/2] Συντελεστής του x n /n! είναι 5 n -3 4 n + 3 n+1 2 n + (-2) n 3 (-1) n -1 ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 56

57 Παραδείγματα ΕΓΣ για διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές χωρίς περιορισμούς και όταν έχει σημασία η σειρά στις υποδοχές. Επειδή είναι πρόβλημα διατάξεων, έχουμε εκθετική ΓΣ. Αφού έχει σημασία η σειρά σε κάθε υποδοχή, κατά το σχηματισμό του απαριθμητή, πολλαπλασιάζουμε το x k /k! με k! Ο απαριθμητής για κάθε υποδοχή είναι: 1+x+x 2 +x 3 + = 1/(1 x) H εκθετική ΓΣ είναι 1/(1 x) n Το ζητούμενο δίνεται από τον συντελεστή του x k /k!, που είναι: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 57

58 Ανακεφαλαίωση ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 58

59 Αναδρομικές Σχέσεις Αναπαράσταση ακολουθίας α εκφράζοντας α n ως συνάρτηση α n-1, α n-2,, με δεδομένες αρχικές συνθήκες. Ακολουθία Fibonacci F n = F n-1 + F n-2, F 0 = 1 και F 1 = 1. Συχνά F 0 = 0 και F 1 = 1 ως αρχικές συνθήκες. Γεωμετρική πρόοδος με λόγο λ: α n = λα n-1, α 0 = 1. Αριθμητική πρόοδος με βήμα ω: α n = α n-1 + ω, α 0 = 0. Άθροισμα n πρώτων φυσικών: α n = α n-1 + n, α 0 = 0. Αναδρομικές σχέσεις προκύπτουν «φυσιολογικά» από την περιγραφή του προβλήματος. Ανάλυση αναδρομικών αλγορίθμων, συνδυαστική,... «Επίλυση» για υπολογισμό n-οστού όρου: όχι πάντα εύκολη. Γραμμικές σχέσεις με σταθερούς συντελεστές (ΠΛΗ20). Σχέσης που προκύπτουν από διαίρει-και-βασίλευε αλγόριθμους (ΠΛΗ30). ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 59

60 Παράδειγμα Οι Πύργοι του Ανόι: #κινήσεων ώστε n δίσκοι, όλοι διαφορετικού μεγέθους, να μεταφερθούν από αριστερά στα δεξιά χωρίς κάποιος δίσκος να βρεθεί πάνω από κάποιον άλλο μικρότερο. T(n): #κινήσεων για n 1 δίσκους. Αρχική συνθήκη: Τ(0) = 0, Τ(1) = 1, Τ(2) = 3, Τ(3) = 7, Τ(n) = 2T(n-1) + 1 ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 60

61 Παράδειγμα Αναδρομική σχέση για #δυαδικών συμβ/ρών μήκους n που δεν περιέχουν το 00 (δύο συνεχόμενα 0). α 0 = 1, α 1 = 2, α 2 = 3, α 3 = 5,... Κάθε συμβ/ρά μήκους n-1 χωρίς 00 δίνει μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 1. Έτσι παίρνουμε α n-1 συμβ/ρές μήκους n χωρίς 00. Κάθε συμβ/ρά μήκους n-1 χωρίς 00 που τελειώνει σε 1 δίνει άλλη μία συμβ/ρά μήκους n χωρίς 00 με την προσθήκη του ψηφίου 0. Έτσι παίρνουμε α n-2 (διαφορετικές) συμβ/ρές μήκους n χωρίς 00. Συνεπώς α n = α n-1 + α n-2, με α 0 = 1, α 1 = 2. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 61

62 Παράδειγμα Αναδρομική σχέση για #πενταδικών συμβ/ρών μήκους n με άρτιο αριθμό 0. α 0 = 1, α 1 = 4, α 2 = 17,... Κάθε συμβ/ρά μήκους n-1 με άρτιο αριθμό 0 δίνει 4 συμβ/ρές μήκους n με άρτιο αριθμό 0, με προσθήκη ενός από τα 1, 2, 3, 4. Έτσι παίρνουμε 4α n-1 συμβ/ρές μήκους n με άρτιο αριθμό 0. Κάθε συμβ/ρά μήκους n-1 με περιττό αριθμό 0 δίνει 1 συμβ/ρά μήκους n με άρτιο αριθμό 0, με προσθήκη ενός 0. Έτσι παίρνουμε 5 n-1 α n-1 (διαφορετικές) συμβ/ρές μήκους n με άρτιο αριθμό 0. Συνεπώς α n = 5 n-1 + 3α n-1, με α 0 = 1. Δείτε ακόμη Ερ. 4.α, 1 η Εργασία ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 62

63 Επίλυση Αναδρομικών Σχέσεων με Γεννήτριες Συναρτήσεις Για γραμμικές αναδρομικές σχέσεις με σταθερούς συντελεστές είναι (συνήθως) εύκολο να υπολογίσουμε τη ΓΣ της ακολουθίας. Η ακολουθία που αντιστοιχεί στη ΓΣ αποτελεί τη «λύση» της σχέσης. Παράδειγμα (πύργοι του Ανόι): α n = 2α n με α 0 = 0. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 0 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 63

64 Επίλυση Αναδρομικών Σχέσεων με Γεννήτριες Συναρτήσεις Παράδειγμα: α n = 3α n n-1 με α 0 = 1. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 1 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 64

65 Ερώτημα 4.β, 1 η Εργασία 11-12: Αναδρομική Σχέση Πλήθος ακολουθιών μήκους n από ψηφία 0, 1, 2, 3, ώστε να μην εμφανίζεται 1 σε θέση μετά από κάποιο 2 ή 3. Έστω α n πλήθος αποδεκτών ακολουθιών μήκους n. α 0 = 1, α 1 = 4, α 2 = 14,... Κατασκευή αποδεκτών ακολουθιών μήκους n+1 από ακολουθίες μήκους n με προσθήκη ψηφίου στο τέλος: Προσθήκη ψηφίων 0, 1, 2, 3 σε 2 n αποδεκτές ακολουθίες που περιέχουν μόνο 0 ή 1: 4x2 n ακολουθίες. Προσθήκη ψηφίων 0, 2, 3 σε α n 2 n αποδεκτέςακολουθίεςπου περιέχουν τουλάχιστον ένα 2 ή 3: 3(α n 2 n ) ακολουθίες. Αναδρομική σχέση: α n+1 = 3α n + 2 n, με α 0 = 1. ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 65

66 Ερώτημα 4.β, 1 η Εργασία 11-12: Επίλυση με ΓΣ Αναδρομική Σχέση: α n = 3α n n-1 με α 0 = 1. Για κάθε n 1 πολλαπλασιάζουμε με x n και αθροίζουμε: Αν συμβολίσ. με Α(x) τη ΓΣ της α n έχουμε τώρα μιασχέσηγιαα(x): Χρησιμοποιώντας α 0 = 1 και λύνοντας ως προς A(x): Κλασματική ανάλυση: «Λύση»: ΠΛΗ 20, ΑΘΗ 4 ( ) 1η ΟΣΣ(Συνδυαστική) 66

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ

ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 3ο ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ ΕΛΕΓΧΟΣ ΤΥΧΑΙΟΤΗΤΑΣ 3.1 Τυχαίοι αριθμοί Στην προσομοίωση διακριτών γεγονότων γίνεται χρήση ακολουθίας τυχαίων αριθμών στις περιπτώσεις που απαιτείται η δημιουργία στοχαστικών

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΕΙΣΑΓΩΓΗ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ. ΤΙ ΕΙΝΑΙ ΤΑ ΜΑΘΗΜΑΤΙΚΑ; Η επιστήμη των αριθμών Βασανιστήριο για τους μαθητές και φοιτητές Τέχνη για τους μαθηματικούς ΜΑΘΗΜΑΤΙΚΑ Α Εξάμηνο ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 6. Πιθανότητες ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 1. Μαθηματικό Υπόβαθρο 23, 26 Ιανουαρίου 2007 Δρ. Παπαδοπούλου Βίκη 1 1.1. Σύνολα Ορισμός : Σύνολο μια συλλογή από αντικείμενα Στοιχεία: Μέλη συνόλου Τα στοιχεία

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου

Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΙΘΑΝΟΤΗΤΕΣ. Μαθηματικά Γενικής Παιδείας. Γ.Λυκείου Γ. ΛΥΚΕΙΟΥ ΜΘΗΜΤΙΚ ΓΕΝΙΚΗΣ ΠΙΔΕΙΣ ΠΙΘΝΟΤΗΤΕΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου Π Ι Θ Ν Ο Τ Η Τ Ε Σ ΟΡΙΣΜΟΙ Πείραμα τύχης λέγεται το πείραμα το οποίο όσες φορές και αν επαναληφθεί (φαινομενικά τουλάχιστον

Διαβάστε περισσότερα

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες.

Δύο φίλοι θα παίξουν τάβλι και αποφασίζουν νικητής να είναι εκείνος που θα κερδίσει τρεις συνολικά παρτίδες ή δύο συνεχόμενες παρτίδες. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 3 ου ΚΕΦΑΛΑΙΟΥ Άσκηση (Προτάθηκε από pito ) Για ένα φάρμακο σε πειραματικό στάδιο αποδείχθηκε ότι δημιουργεί δύο ειδών παρενέργειες. Η πιθανότητα να δημιουργήσει

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Λύσεις των θεμάτων ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 04 Λύσεις των θεμάτων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

υναμικός Προγραμματισμός

υναμικός Προγραμματισμός υναμικός Προγραμματισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιωνυμικοί Συντελεστές ιωνυμικοί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

Βασικές Έννοιες Θεωρίας Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 Επιτροπή προπτυχιακών σπουδών: Κ. Βασιλάκης Κ. Γιαννόπουλος

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ

Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επιμέλεια: Σ. Ασημέλλης 1. Σε ένα ποδοσφαιρικό πρωτάθλημα μετέχουν 16 ομάδες. Κάθε ομάδα παίζει με όλες τις υπόλοιπες ως γηπεδούχος και ως φιλοξενούμενη. Νίκη μιας ομάδας

Διαβάστε περισσότερα

Κυκλώματα, Σήματα και Συστήματα

Κυκλώματα, Σήματα και Συστήματα Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών

Διαβάστε περισσότερα

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ»

«ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο «ΣΥΝΕΧΗ ΚΛΑΣΜΑΤΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ: ΠΡΟΣΕΓΓΙΣΕΙΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ» ΜΠΙΘΗΜΗΤΡΗ ΒΑΣΙΛΙΚΗ ΣΤΕΛΛΑ Επιβλέπουσα: Αν. Καθηγήτρια

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΙΙΙ εσµευµένη Πιθανότητα

ΙΙΙ εσµευµένη Πιθανότητα ΙΙΙ εσµευµένη Πιθανότητα 1 Λυµένες Ασκήσεις Ασκηση 1 Στρίβουµε ένα νόµισµα δύο ϕορές. Υποθέτοντας ότι και τα τέσσερα στοιχεία του δειγµατοχώρου Ω {(K, K, (K, Γ, (Γ, K, (Γ, Γ} είναι ισοπίθανα, ποια είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ ΠΑΡΑΡΤΗΜΑ A ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ A.0. Σύνολα Μια οποιαδήποτε συλλογή αντικειμένων λέγεται * ότι είναι ένα σύνολο και τα αντικείμενα λέγονται στοιχεία του συνόλου. Αν με Α συμβολίσουμε ένα σύνολο και α είναι

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 4 Αριθμητικές Μέθοδοι Περιγραφικής Στατιστικής ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί.

Κεφάλαιο 2: ιατάξεις και Συνδυασµοί. Κεφάλαιο : ιατάξεις και Συνδυασµοί. Περιεχόµενα Εισαγωγή Βασική αρχή απαρίθµησης ιατάξεις µε και χωρίς επανατοποθέτηση Συνδυασµοί Ασκήσεις Εισαγωγή Μέχρι το τέλος αυτού του κεφαλαίου ϑα ϑεωρούµε πειράµατα

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 102, Στρόβολος 200, Λευκωσία Τηλ. 57-2278101 Φαξ: 57-2279122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 201 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία:

Διαβάστε περισσότερα

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος 2007-2008

Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής. Ακαδημαϊκό Έτος 2007-2008 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ακαδημαϊκό Έτος 2007-2008 ΠΑΡΑΔΟΤΕΟ: Έκθεση Προόδου Υλοποίησης του Μαθήματος Εισαγωγή στην Επιστήμη των Υπολογιστών Διδάσκοντες: Θ.Ανδρόνικος - Μ.Στεφανιδάκης Περιεχόμενα

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση

Διαβάστε περισσότερα

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις

Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Σύντομη Εισαγωγή στις Στοχαστικές Ανελίξεις Αν το αποτέλεσμα ενός τυχαίου πειράματος είναι - ένας αριθμός R, τότε μπορεί να εκφραστεί με μία τ.μ. Χ R - αριθμοί R τότε μπορεί να εκφραστεί με ένα τ.δ. Χ

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ Τμήμα Εφαρμοσμένης Πληροφορικής ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εξάμηνο Α' Φύλλο Ασκήσεων 3 ΔΟΜΕΣ ΕΠAΝΑΛΗΨΗΣ Διδάσκοντες: Μάγια Σατρατζέμη, Αλέξανδρος Χατζηγεωργίου, Ηλίας Σακελλαρίου, Στέλιος Ξυνόγαλος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του

Διαβάστε περισσότερα

t, όπου t Ζ. , t Ζ. ΕΦΑΡΜΟΓΕΣ

t, όπου t Ζ. , t Ζ. ΕΦΑΡΜΟΓΕΣ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Επίλυση Γραμμικής Διοφαντικής Εξίσωσης Έστω η εξίσωση x y, όπου,, ακέραιοι με και Αν αναζητούμε ακέραιες λύσεις της εξίσωσης αυτής, ηλαή ζεύγη ακεραίων

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Τελικές εξετάσεις 3 Ιανουαρίου 27 Διάρκεια εξέτασης: 3 ώρες (2:-5:) ΘΕΜΑ ο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015 ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 201-2015 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΙΑ: 05 / 06 / 2015 ΧΡΟΝΟΣ: 2 Ώρες Βαθμός:. Ολογρ.:.. Υπογραφή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή

Η Κανονική Κατανομή κανονική κατανομή (normal distribution) Κεντρικό Οριακό Θεώρημα (Central Limit Theorem) συνδέει οποιαδήποτε άλλη κατανομή Η Κανονική Κατανομή H κανονική κατανομή (ormal dstrbuto) θεωρείται η σπουδαιότερη κατανομή της Θεωρίας Πιθανοτήτων και της Στατιστικής. Οι λόγοι που εξηγούν την εξέχουσα θέση της, είναι βασικά δύο: ) Πολλές

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Πιθανότητες ΣΤ Δημοτικού

Πιθανότητες ΣΤ Δημοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Διδακτική των Μαθηματικών Χειμερινό εξάμηνο ακαδ. έτους 2012-2013 ΣΧΕΔΙΑΣΜΟΣ ΜΑΘΗΜΑΤΟΣ Πιθανότητες ΣΤ Δημοτικού Σοφία Άιζενμπαχ Α.Μ. 5898 Πάτρα,

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026

Δρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing

Διαβάστε περισσότερα