Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)"

Transcript

1 Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου Α: Ρ(Α)=n Πληθικός αριθμός δυναμοσυνόλου Ρ[ (Α)]=2 n.

2 Κανόνας Γινομένου Έστω δυο πειράματα Α και Β με P(A)=n & P(B)=m Τότε, αν Α και Β ανεξάρτητα (υπό την έννοια ότι τα αποτελέσματα του Α δεν επηρεάζουν τα αποτελέσματα του Β, και Α Β είναι το καρτεσιανό γινόμενο των Α και Β, θα είναι Ρ(Α Β)=Ρ(Α) Ρ(Β) Πόσες πινακίδες κυκλοφορίας (τριών γραμμάτων και τεσσάρων αριθμών του δεκαδικού συστήματος) οχημάτων μπορεί να εκδώσει το Υπουργείο Μεταφορών;

3 Σχέσεις Διμελείς Ανακλαστικές 2 n(n-1) Συμμετρικές 2 n(n+1)/2 Αντισυμμετρικές 2 n 3 n(n-1) Αλυσίδες (σχέσεις ολικής διάταξης) n! Όλες μαζί (2 n ) n

4 Κανόνας Αθροίσματος Έστω δυο πειράματα Α και Β με P(A)=n & P(B)=m Αν Α και Β είναι ξένα μεταξύ τους τότε: Ρ(ΑUΒ)=P(A)+P(B)

5 Αρχή εγκλεισμού - αποκλεισμού P(AUB)=P(A)+P(B)-P(A B) Παραδείγματα: A

6 Αρχή εγκλεισμού - αποκλεισμού P(AUB)=P(A)+P(B)-P(A B) Παραδείγματα: A A B

7 Αρχή εγκλεισμού - αποκλεισμού P(AUB)=P(A)+P(B)-P(A B) Παραδείγματα: A A B B

8 Απεικονίσεις, συναρτήσεις και εγκλεισμοί Θεωρείται η έννοια της συναρτήσεως γνωστή Αν Ρ(Α)>Ρ(Β), τότε δεν υπάρχει 1:1 απεικόνιση του Α στο Β Για κάθε απεικόνιση f από το Α στο Β υπάρχουν περισσότερα από k-[p(a)/p(b)] στοιχεία, με k=p(a)-p(b) Να παρουσιάσετε παραδείγματα:

9 Θεμελιώδης Αρχή Απαρίθμησης Το πλήθος n των στοιχείων ενός συνόλου που ο καθορισμός τους ή ο σχηματισμός τους μπορεί να θεωρηθεί ότι γίνεται σε m διαδοχικές φάσεις, τέτοιες ώστε, σε οποιαδήποτε φάση το πλήθος των δυνατοτήτων που απαριθμούνται να είναι σταθερό, ανεξάρτητα από το τι συνέβη στις προηγούμενες φάσεις, ισούται με: n = n 1 * n 2 * * n k όπου, n k, (κ=1, 2,,, m) η απαρίθμηση των δυνατοτήτων στην k φάση.

10 Παράδειγμα Οι πινακίδες των ιδιωτικών αυτοκινήτων στην Ελλάδα σχηματίζονται από τρία γράμματα του Ελληνικού αλφάβητου που έχουν αντίστοιχά τους στο Λατινικό και από 4 αριθμητικά ψηφία που σχηματίζουν τετραψήφιο αριθμό. Πόσα το πολύ ιδιωτικά αυτοκίνητα μπορούν να κυκλοφορούν στην Ελλάδα; Πόσα το πολύ από αυτά θα έχουν διαφορετικά ψηφία; Πόσα το πολύ θα έχουν όλα τα σύμβολα διαφορετικά; Πόσα το πολύ αρχίζουν από Μ ή Ν;

11 Παράδειγμα (συνέχεια)

12

13

14 Ασκήσεις Πόσα χρήματα στοιχίζει ένα σύστημα στο ΠΡΟΠΟ με μία τριπλή και τρεις διπλές παραλλαγές (και οι υπόλοιποι αγώνες στάνταρ); Πόσα μονοπάτια μήκους 3 υπάρχουν σε ένα μοναδιαίο κύβο, που να συνδέουν μια κορυφή του με αυτήν που βρίσκεται διαγωνίως απέναντι; Η αίθουσα ενός κινηματογράφου έχει 6 πόρτες. Με πόσους τρόπους μπορεί κάποιος να μπει από μια πόρτα και να βγει από άλλη; Πόσοι ακέραιοι μεγαλύτεροι από έχουν όλα τα ψηφία τους διαφορετικά και κανένα από τα ψηφία του δεν είναι 8 ή 9; Αν υπολογιστεί το 52! πόσα διαδοχικά μηδενικά θα εμφανιστούν στο τέλος;

15 Ασκήσεις Αν υπολογιστεί το 52! πόσα διαδοχικά μηδενικά θα εμφανιστούν στις τελευταίες θέσεις του γινομένου; Μία βιβλιοθήκη έχει βιβλία που πρόκειται να μηχανογραφηθούν. Ο βιβλιοθηκάριος σκέφθηκε να δώσει σε κάθε βιβλίο έναν κωδικό που να αποτελείται από 2 γράμματα και τρία ψηφία. Υπάρχουν αρκετοί κωδικοί ώστε να κωδικοποιηθούν όλα τα βιβλία με διαφορετικούς κωδικούς; Παίρνουμε τυχαία τρία από τα γράμματα του Ελληνικού αλφαβήτου. Πόσες είναι οι διαφορετικές τριάδες στις οποίες δεν εμφανίζονται διαδοχικά γράμματα; Πόσοι ακέραιοι μικρότεροι από , περιέχουν το ψηφίο 2;

16 Mε πόσους τρόπους μπορούµε να τοποθετήσουµε 100 αντικείµενα σε 4 κουτιά ;

17 Κύριες μορφές Συμπλεγμάτων Μεταθέσεις Διατάξεις : Αν ενδιαφέρει η σειρά τοποθέτησης Διατάξεις με επανατοποθέτηση Συνδυασμοί: Αν δεν ενδιαφέρει η σειρά τοποθέτησης

18 Να αναγνωρίσετε τη φύση του συμπλέγματος Ρίχνουμε διαδοχικά δύο ζάρια και κατάγράφουμε τις ενδείξεις τους με τη σειρά που εμφανίστηκαν. Πόσα διαφορετικά ζεύγη ενδείξεων είναι δυνατό να εμφανιστούν αν δεν τεθεί κανένας περιορισμός;

19 Να αναγνωρίσετε τη φύση του συμπλέγματος Ρίχνουμε διαδοχικά δύο ζάρια και κατάγράφουμε τις ενδείξεις τους με τη σειρά που εμφανίστηκαν. Πόσα διαφορετικά ζεύγη ενδείξεων είναι δυνατό να εμφανιστούν αν τα ζάρια έχουν διαφορετική ένδειξη;

20 Να αναγνωρίσετε τη φύση του συμπλέγματος Τέσσερεις αερομεταφορείς (α, β, γ, δ) συνδέουν την Αθήνα με το Άμστερνταμ και τρεις (Α, Β, Γ) το Άμστερνταμ με Βοστώνη. Με πόσες διαφορετικές διαδρομές μπορεί κάποιος να πετάξει από την Αθήνα στη Βοστώνη μέσω Άμστερνταμ;

21 Μεταθέσεις (Permutations) Μεταθέσεις n διαφορετικών αντικειμένων ονομάζονται οι διάφοροι τρόποι με τους οποίους μπορούμε να τα τοποθετήσουμε το ένα μετά το άλλο σε μία σειρά επάνω σε μία ευθεία γραμμή. Το πλήθος τους συμβολίζεται με P(n, n)

22 Απλές Μεταθέσεις Είναι ο αριθμός των συμπλεγμάτων που μπορεί να προκύψουν από τις εναλλαγές των θέσεων διακεκριμένων στοιχείων. Οι μεταθέσεις αναφέρονται σε συμπλέγματα όπου έχει σημασία η σειρά τοποθέτησης των σημείων και τα στοιχεία αυτά δεν επαναλαμβάνονται μέσα στο σύμπλεγμα. Οι μεταθέσεις στοιχείων δίνονται από τη σχέση. P(n, n)=n!

23 Όταν το σύμπλεγμα έχει κυκλική δομή, δεν παρατηρείται αρχή και τέλος, σε αντίθεση με τα γραμμικά συμπλέγματα. Στην περίπτωση αυτή, το πλήθος των συμπλε Παράδειγμα Κυκλικών Μεταθέσεων Κυκλικές Μεταθέσεις Όταν το σύμπλεγμα έχει κυκλική δομή, δεν παρατηρείται αρχή και τέλος, σε αντίθεση με τα γραμμικά συμπλέγματα. Στην περίπτωση αυτή, το πλήθος των συμπλεγμάτων συμβολίζεται Ρ ο ν και είναι Ρ ο ν = (ν-1)!. Παράδειγμα : Με πόσους τρόπους 4 αγόρια και 4 κορίτσια μπορούν να καθίσουν : (1) εναλλάξ σε κυκλικό τραπέζι οκτώ θέσεων; (2) εναλλάξ σε «ουρά»; Παράδειγμα : Πόσες λέξεις δημιουργούνται με τα γράμματα της λέξης επαναληψη ; (Θέμα Σεπτεμβρίου 2014)

24 Ασκήσεις Να υπολογισθεί το πλήθος των τρόπων που n ανδρόγυνα μπορούν να καθίσουν σε (α) ευθύγραμμο ή (β) σε κυκλικό τραπέζι, έτσι ώστε σε k συγκεκριμένα ανδρόγυνα, οι σύζυγοι να κάθονται ο ένας δίπλα στον άλλο. Κατά πόσους τρόπους μπορούμε να τοποθετήσουμε σε σειρά έξι άτομα Α,Β,Γ,Δ,Ε,Ζ, έτσι ώστε α) ο Β να μην προηγείται του Ζ, β) ο Β να είναι ακριβώς μπροστά από τον Ζ, γ) ο Ζ να είναι ακριβώς μπροστά από τον Β, δ) ο Β και ο Ζ να είναι μαζί;

25 Μεταθέσεις σε ομάδες Μεταθέσεις n αντικειμένων σε k ομάδες ιδίων αντικειμένων με πληθικούς αριθμούς n 1, n 2,, n k P(n; n 1, n 2,, n k )=n!/(n 1!n 2!...n k!) Παράδειγμα Kατά πόσους διαφορετικούς τρόπους 20 νεοσύλλεκτοι μπορούν να τοποθετηθούν σε 4 διαφορετικά σώματα στρατού, 5 σε κάθε σώμα; Έχουμε n=20 και και k 1 =k 2 =k 3 =k 4 =5 άρα υπάρχουν 20!(5!) 4 διαφορετικοί τρόποι.

26 Ασκήσεις Κατά πόσους τρόπους μπορούν να μπουν σε ένα ράφι 3 βιβλία Γαλλικά, 5 Ελληνικά και 6 Γερμανικά αν α) είναι διαφορετικών συγγραφέων β) τα βιβλία κάθε γλώσσας είναι του ίδιου συγγραφέα; Πόσοι είναι οι 9-ψήφιοι αριθμοί του δυαδικού συστήματος αρίθμησης (με ψηφία 0 και 1), που έχουν 4 μηδενικά και 5 μονάδες; Πόσοι από αυτούς αρχίζουν από 1 και τελειώνουν σε 0;

27 Διατάξεις Διατάξεις P(n,k): k από n διακεκριμένα αντικείμενα σε k διακεκριμένες θέσεις (1 αντικείμενο σε κάθε θέση). P(n,k) = αριθμός τρόπος να πληρωθούν k διακεκριμένες θέσεις από n διακεκριμένα αντικείμενα P(n,k)=n(n-1)( (n-k+1)=n!/(n-k)! ιατάξεις n αντικειμένων ανά k, (kn), ονομάζονται οι διάφοροι τρόποι με τους οποίους μπορούμε να επιλέξουμε τα k από τα n αντικείμενα και να τα τοποθετήσουμε το ένα μετά το άλλο σε μία γραμμή, διατηρώντας τη σειρά επιλογής τους. Αν επιτρέπεται επανάληψη των ψηφίων τότε έχουμε επαναληπτικές διατάξεις και το πλήθος τους συμβολίζεται με Ε m κ Αν δεν ενδιαφέρει η σειρά των k αντικειμένων που επιλέξαμε από τα n, τότε έχουμε αντίστοιχα συνδυασμούς των n ανά k, που πλήθος τους συμβολίζεται ή και επαναληπτικούς συνδυασμούς των n ανά k που πλήθος τους συμβολίζεται C n k

28 Αναλυτική προσέγγιση του συμπλέγματος To πρώτο στοιχείο μιας διάταξης στοιχείων που επιλέγεται από σύνολο στοιχείων, μπορεί να επιλεγεί με τρόπους. Όταν επιλεγεί το πρώτο στοιχείο, το δεύτερο μπορεί να επιλεγεί από τα υπόλοιπα στοιχεία κατά τρόπους. Το τρίτο στοιχείο μπορεί να επιλεγεί κατά τρόπους και τελικά το στοιχείο μπορεί να επιλεγεί κατά τρόπους. Η εφαρμογή της πολλαπλασιαστικής αρχής δίνει τότε την προηγούμενη σχέση του.

29 Διατάξεις με Επανάληψη Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν από τη χρήση κ διακεκριμένων προς άλληλα στοιχείων σε συμπλέγματα m στοιχείων. Η χρήση κάθε στοιχείου επαναληφθεί μέχρι και m φορές και για το λόγο αυτό αναφερόμαστε σε επαναληπτική διαδικασία. Ο αριθμός των επαναληπτικών διατάξεων κ από m στοιχεία ενός συνόλου προσδιορίζεται με τη σχέση Ε m κ = m κ. Παράδειγμα

30 Συνδυασμοί Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν από τις εναλλαγές των θέσεων ενός υποσυνόλου κ διακεκριμένων στοιχείων που ανήκουν σε ένα υπερσύνολο ν διακεκριμένων στοιχείων. Εδώ δεν ενδιαφέρουν οι θέσεις των ν-κ στοιχείων του υπερσυνόλου αλλά ενδιαφέρει η θέση των κ στοιχείων του υπό θεώρηση υποσυνόλου. Αυτό σημαίνει ότι συμπλέγματα συγκεκριμένου πλήθους κ στοιχείων του υπερσυνόλου, που διαφέρουν ως προς τη θέση τους στο σύμπλεγμα, καταμετρούνται ως διαφορετικά στοιχεία του συνόλου των συμπλεγμάτων. Οι συνδυασμοί των κ στοιχείων από το δοσμένο σύνολο ν στοιχείων, δίνονται με τη σχέση C!!!

31 P( n, k) C( n, k) k! Συνδυασμοί C C(n,k)=P(n,k)/k! Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν από τις εναλλαγές των θέσεων ενός υποσυνόλου!! διακεκριμένων! στοιχείων που ανήκουν σε ένα υπερσύνολο διακεκριμένων στοιχείων. Εδώ δεν ενδιαφέρουν οι θέσεις των στοιχείων του υπερσυνόλου, αλλά ενδιαφέρει η θέση των στοιχείων του υπό θεώρηση υποσυνόλου. Αυτό σημαίνει ότι συμπλέγματα συγκεκριμένου πλήθους στοιχείων του υπερσυνόλου, που διαφέρουν ως προς τη θέση τους στο σύμπλεγμα, καταμετρούνται ως διαφορετικά στοιχεία του συνόλου των συμπλεγμάτων. Παράδειγμα Παράδειγμα

32 P( n, k) C( n, k) k! Συνδυασμοί με επανάληψη στοιχείων C(n,k)=P(n+k-1, k) Ένας συνδυασμό με επαναλήψεις των k στοιχείων από n του συνόλου S δίδεται από μία αλληλουχία από k (όχι απαραίτητα διακριτά στοιχεία του S), όπου η σειρά δεν λαμβάνεται υπόψη: π.χ. δύο ακολουθίες των οποίων η μία μπορεί να είναι που λαμβάνεται από την άλλη με μετάθεση των όρων που ορίζουν το ίδιο πολυσύνολο.

33 Συνδυασμοί (συνέχεια) Με άλλα λόγια, είναι ο αριθμός των τρόπων να ληφθούν k στοιχεία από ένα σύνολο n στοιχείων, που επιτρέπουν μεν την εις διπλούν (δηλαδή, με αντικατάσταση) λήψη, αλλά δεν λαμβάνουν υπόψη την διαφορετική διάταξη (π.χ. {2,1,2} = {1,2,2}). Παράδειγμα Παράδειγμα ΠΑΡΑΠΟΜΠΗ ΣΤΟ 2 ο ΚΕΦΑΛΑΙΟ ΤΟΥ ΗΛ. ΒΙΒΛΙΟΥ

34

35 ΛΟΓΙΚΗ & ΚΥΚΛΩΜΑΤΑ 1. Διακόπτες & Πύλες 2. Κυκλώματα & Προτάσεις 3. Άλγεβρα του Boole 4. Ελάχιστες Μορφές

36 ΘΕΜΑ 1 ο /1 : Με πόσους τρόπους μπορείτε να οργανώσετε 4 ομάδες των 4 ατόμων από 16 διαθέσιμα άτομα; Απάντηση: 4)*C(4,4) C(16, 4)*C(12, 4)*C(8,

37 ΘΕΜΑ 3 ο /1 : Πόσες διαφορετικές λέξεις μπορείτε να παράγετε με τα γράμματα της λέξης «επανάληψη»; Answer: 9!/2!2!

38 ΘΕΜΑ 2 ο /1 : Πόσες τετραψήφιους αριθμούς του τριαδικού συστήματος αρίθμησης μπορείτε να παράγετε αν τεθεί ο περιορισμός να περιέχουν τουλάχιστον δυο 1; Απάντηση: Το σύνολο των τετραψήφιων αριθμών του τριαδικού συστήματος είναι 3*3*3*3 = 3 4 = 81 Το σύνολο των τετραψήφιων αριθμών του τριαδικού συστήματος με λιγότερα από δυο 1 είναι εκείνα με ένα 1 και εκείνα με κανένα 1. Αυτά είναι : Κανένα 1 : C(4, 0) + C(4, 1) + C(4, 2) + C(4, 3) + C(4, 4) = = 16 Μοναδικό 1 : 4 διαφορετικές θέσεις (τοποθετήσεις) για το 1 επί C(3, 0) + C(3, 1) + C(3, 2) + C(3, 2) για το 0 (τις λοιπές θέσεις καταλαμβάνει το 2. Συνολικά, 24 θεσεις. Αποτέλεσμα = 40 μη επιθυμητές καταστάσεις Άρα η απάντηση είναι = 41 τετραψήφιους αριθμούς, που διαθέτουν τις περιγραφείσες ιδιότητες, μπορεί να απαριθμήσουμε.

39

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations .7 Διατάξεις Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν όταν επιλέγονται υποσύνολα που περιέχουν διακεκριμένα στοιχεία από ένα υπερσύνολο διακεκριμένων στοιχείων. Εδώ δεν ενδιαφέρουν οι θέσεις

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

επιτροπή πρόεδρος k, ( k = 1, 2,..., m)

επιτροπή πρόεδρος k, ( k = 1, 2,..., m) ΤΕΧΝΙΚΕΣ ΑΠΑΡΙΘΜΗΣΗΣ ΘΕΜΕΛΙΩ ΗΣ ΑΡΧΗ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΤΑΘΕΣΕΙΣ - ΙΑΤΑΞΕΙΣ - -ΣΥΝ ΥΑΣΜΟΙ Μωυσιάδης Χρόνης Η Εξάµηνο Μαθηµατικών 1. Παραδείγµατα Ρίχνουµε διαδοχικά δύο ζάρια και καταγράφουµε τις ενδείξεις τους

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

Απαρίθμηση: Εισαγωγικά στοιχεία

Απαρίθμηση: Εισαγωγικά στοιχεία Απαρίθμηση: Εισαγωγικά στοιχεία Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Gutenberg

Gutenberg Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Μεταθέσεις και Συνδυασμοί

Μεταθέσεις και Συνδυασμοί Μεταθέσεις και Συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις των στοιχείων του S 3,1,2 1,3,2

Διαβάστε περισσότερα

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). ιαφορετικές 6άδες Lotto (από 1-49): #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: #τρόπων στελέχωσης

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Ασκήσεις Συνδυαστικής

Ασκήσεις Συνδυαστικής Ασκήσεις Συνδυαστικής Με πόσους τρόπους μπορούν τα 24 γράμματα του ελληνικού αλφαβήτου να αντιμετατεθούν σχηματίζοντας μια λέξη η οποία δεν θα περιέχει την λέξη φως; Στο ένα δίκτυο υπολογιστών οι διευθύνσεις

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Ασκήσεις στη Στοιχειώδη Συνδυαστική 1 / 12 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Ι Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙΙ 1 / 16 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.Σύνολα Σύνολο είναι μια ολότητα από σαφώς καθορισμένα και διακεκριμένα αντικείμενα. Τα φωνήεντα

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Συνδυαστικά Λογικά Κυκλώματα

Συνδυαστικά Λογικά Κυκλώματα Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική

Διαβάστε περισσότερα

(n + r 1)! (n 1)! (n 1)!

(n + r 1)! (n 1)! (n 1)! Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:

Διαβάστε περισσότερα

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n! Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016

Βιομαθηματικά BIO-156. Θεωρία Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2016 Βιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 06 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολο υποθέσεων και του οποίου

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή

Επαναληπτικές Ασκήσεις. Ρίζου Ζωή Επαναληπτικές Ασκήσεις Ρίζου Ζωή email: zrizou@ee.duth.gr Άσκηση 1 Τι πραγματεύεται το θεώρημα Euler; Απάντηση Ψευδογραφήματα που περιέχουν ένα κύκλωμα στο ψευδογραφήματα, των οποίων ο βαθμός κάθε κορυφής

Διαβάστε περισσότερα

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version

Συστήματα Αρίθμησης. Συστήματα Αρίθμησης 1. PDF created with FinePrint pdffactory Pro trial version Συστήματα Αρίθμησης Στην καθημερινή μας ζωή χρησιμοποιούμε το δεκαδικό σύστημα αρίθμησης. Στο σύστημα αυτό χρησιμοποιούμε δέκα διαφορετικά σύμβολα τα :,, 2, 3, 4, 5, 6,7 8, 9. Για τον αριθμό 32 θα χρειαστούμε

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200

N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200 Διακριτά Μαθηματικά Ι Φροντιστήριο Αρχή Εγκλεισμού-Αποκλεισμού 1 / 9 Σε ένα σχολείο υπάρχουν 1000 μαθητές. Απ αυτούς οι 400 μιλάνε Γαλλικά, οι 300 Ιταλικά και 200 μιλάνε Γερμανικά. Εάν υπάρχουν 200 μαθητές,που

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Εγκλεισμός Αποκλεισμός

Εγκλεισμός Αποκλεισμός Εγκλεισμός Αποκλεισμός Αρχή Εγκλεισμού Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕN μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος για να απαριθμούμε τους τρόπους εκτέλεσης μιας

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Σηµειώσεις για το µάθηµα ΣΥΝ ΥΑΣΤΙΚΗ Θεοδόσης ηµητράκος e-mail: dimitheo@aegean.gr

Διαβάστε περισσότερα

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις

Διαβάστε περισσότερα

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a

i) Για να δείξουμε την επιθυμητή ισότητα, δείχνουμε πως A B {A x : x B} και πως {A x : x B} A B. Για τον πρώτο εγκλεισμό, έστω a A B, δηλάδη a A και a Θεωρία Συνόλων Χειμερινό Εξάμηνο 2016 2017 Λύσεις 1. Άσκηση 1.9 (σελ. 17), από τις σημειώσεις του Σκανδάλη. Εστω A, B δεδομένα σύνολα. Θα χρησιμοποιήσουμε τα αξιώματα αλλά αναφερόμενοι, αποκλειστικά, είτε

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και

Διαβάστε περισσότερα

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη

Διαβάστε περισσότερα

1.1. Εισαγωγικά Προβλήματα

1.1. Εισαγωγικά Προβλήματα KΕΦΑΛΑΙΟ 1 ΤΕΧΝΙΚΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1. Εισαγωγικά Προβλήματα Ο όρος συνδυαστική (combiatorics) περιλαμβάνει ένα μεγάλο πλήθος μαθηματικών εννοιών οι οποίες αφορούν πεπερασμένα, δηλαδή διακριτά, σύνολα αριθμών.

Διαβάστε περισσότερα

Αθροιστές. Ημιαθροιστής

Αθροιστές. Ημιαθροιστής Αθροιστές Η πιο βασική αριθμητική πράξη είναι η πρόσθεση. Για την πρόσθεση δύο δυαδικών ψηφίων υπάρχουν τέσσερις δυνατές περιπτώσεις: +=, +=, +=, +=. Οι τρεις πρώτες πράξεις δημιουργούν ένα άθροισμα που

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016 Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/206 Ο κανόνας του Pascal + = +,0 ή ισοδύναμα, = +,0 + Απόδειξη + =!!! +!!! = =!!! + =!!!! =!!!! = =!!!! = +!!! =!! = Το τρίγωνο του Pascal = + Για

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 2 η : Δεσμευμένη Πιθανότητα. Ολική Πιθανότητα-Θεώρημα Bayes, Ανεξαρτησία και Συναφείς Έννοιες. Γεώργιος Ζιούτας Τμήμα

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο

Τι είναι σύνολο; Ο ορισμός αυτός είναι σύμφωνος με τη διαισθητική μας κατανόηση για το τι είναι σύνολο ΣΥΝΟΛΑ Τι είναι σύνολο; Ένας ορισμός «Μια συλλογή αντικειμένων διακεκριμένων και πλήρως καθορισμένων που λαμβάνονται από τον κόσμο είτε της εμπειρίας μας είτε της σκέψης μας» (Cantor, 19 ος αιώνας) Ο ορισμός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 ιομαθηματικά IO-56 Θεωρία Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lika@biology.uo.gr Ορισμοί Τυχαίο Πείραμα: κάθε πείραμα που είναι δυνατόν να επαναληφθεί με το ίδιο σύνολουποθέσεωνκαιτουοποίουτο αποτέλεσμα

Διαβάστε περισσότερα

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς.

Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς. Πιθανότητες Α Λσκείοσ Στέλιος Μιταήλογλοσ Δημήτρης Πατσιμάς www.askisopolis.gr Πιθανότητες Εφαρμογές στον ορισμό πιθανότητας. Ρίχνουμε ένα νόμισμα τρεις φορές. Ποια είναι η πιθανότητα να φέρουμε και τις

Διαβάστε περισσότερα

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016

Συνδυαστική. Σύνθετο Πείραµα. Πείραµα. 19 -Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Τρίτη, 19/04/2016 HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Σύνθετο Πείραµα Πείραµα:Οποιαδήποτε διαδικασίαπου µπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις

Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Κ15 Ψηφιακή Λογική Σχεδίαση 2: Δυαδικό Σύστημα / Αναπαραστάσεις Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δυαδικό Σύστημα Αρίθμησης Περιεχόμενα 1 Δυαδικό

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών

ΣΥΝ ΥΑΣΤΙΚΗ ΑΝΑΛΥΣΗ. Θεωρία Πιθανοτήτων και Στοχαστικές ιαδικασίες, Κ. Πετρόπουλος. Τµ. Επιστήµης των Υλικών Τµ. Επιστήµης των Υλικών Χώρος Πιθανότητας Συµµετρικός Χώρος Πιθανότητας 1 Θεωρούµε ότι ο δειγµατοχώρος Ω είναι πεπερασµένος, Ω= {ω 1,ω 2,...,ω n }. 2 Κάθε δειγµατοσηµείο έχει τις ίδιες ευκαιρίες εµφάνισης

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH

ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ

Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ1 ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ 1. Ποια είναι η βάση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί Διακριτά Μαθηματικά Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί

Διαβάστε περισσότερα

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, }

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, } ΣΥΝΟΛΑ Ένα σύνολο είναι µία συλλογή διακεκριµένων αντικειµένων, τα δε αντικείµενά του οµάζονται στοιχεία του συνόλου. Γράφουµε S { a, b, } =, όταν θέλουμε να δηλώσουµε ότι το σύνολο που ονοµάζεται είναι

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα