Απαρίθμηση: Εισαγωγικά στοιχεία

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Απαρίθμηση: Εισαγωγικά στοιχεία"

Transcript

1 Απαρίθμηση: Εισαγωγικά στοιχεία

2 Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες ιδιότητες Για τη λύση πολλών διαφορετικών ειδών προβλημάτων πρέπει να μετράμε αντικείμενα Καθορισμός πολυπλοκότητας αλγορίθμων Προσδιορισμός του αν υπάρχουν αρκετοί τηλεφωνικοί αριθμοί ή διευθύνσεις Internet για την ικανοποίηση της ζήτησης Υπολογισμός πιθανοτήτων γεγονότων Εκτίμηση των διαφορετικών passwords σε σύστημα υπολογιστών Διαφορετικές κατατάξεις τερματισμού δρομέων σε αγώνα δρόμου

3 Βασικές τεχνικές απαρίθμησης Ο κανόνας γινομένου Έστω ότι μία διαδικασία μπορεί να διασπαστεί σε ακολουθία δύο εργασιών. Αν υπάρχουν n 1 τρόποι να γίνει η πρώτη εργασία και n 2 τρόποι να γίνει η δεύτερη εργασία μετά την εκτέλεση της πρώτης εργασίας, τότε υπάρχουν n 1 n 2 τρόποι εκτέλεσης της διαδικασίας Ο κανόνας αθροίσματος Αν μια εργασία μπορεί να εκτελεστεί με n 1 τρόπους και μια δεύτερη εργασία με n 2 τρόπους και αν αυτές οι εργασίες δεν μπορούν να εκτελεστούν ταυτόχρονα, τότε υπάρχουν n 1 +n 2 τρόποι εκτέλεσης μιας από τις εργασίες αυτές

4 Κανόνας γινομένου 3 επιλογές 2 επιλογές Συνολικά: 3 x 2 = 6 επιλογές ντυσίματος

5 Κανόνας γινομένου: παράδειγμα 1 Τα καθίσματα σε ένα αμφιθέατρο πρόκειται να ονομαστούν με ένα γράμμα του λατινικού αλφαβήτου που θα ακολουθείται από έναν θετικό ακέραιο όχι μεγαλύτερο από το 100. Ποιο είναι το μεγαλύτερο πλήθος καθισμάτων που μπορούν να ονομαστούν με διαφορετικό τρόπο; Γράμμα Θετικός ακέραιος εκδοχές 100 εκδοχές Συνολικά: 26 * 100 = 2600 εκδοχές

6 Κανόνας γινομένου: παράδειγμα 2 Πόσες διαφορετικές ακολουθίες bit με μήκος 7; Θέση 7 Θέση 6 Θέση 5 Θέση 4 Θέση 3 Θέση 2 Θέση 1 2 εκδοχές Συνολικά: 2*2*2*2*2*2*2 = 2 7 = 128 εκδοχές

7 Κανόνας γινομένου: παράδειγμα 3 Πόσες διαφορετικές πινακίδες αυτοκινήτων υπάρχουν αν κάθε πινακίδα περιέχει 3 (λατινικά) γράμματα ακολουθούμενα από 3 ψηφία (και δεν υπάρχουν απαγορευμένες ακολουθίες γραμμάτων); Γράμματα Αριθμοί 26 εκδοχές 10 εκδοχές Συνολικά: 26*26*26*10*10*10 = 26 3 *10 3 = εκδοχές

8 Κανόνας γινομένου: παράδειγμα 6 Υποθέστε ότι η μορφή των τηλεφωνικών αριθμών καθορίζεται από ένα σχέδιο αριθμοδότησης. Ο τηλεφωνικός αριθμός αποτελείται από 10 ψηφία που χωρίζονται σε: Κωδικό Περιοχής με 3 ψηφία Κωδικό Κομβικού Τηλεφωνικού Κέντρου με 3 ψηφία Αριθμό Τερματικού Τηλεφωνικού Κέντρου με 4 ψηφία Επιπλέον, υπάρχουν οι εξής περιορισμοί: Χ: συμβολίζει ψηφίο που μπορεί να πάρει οποιαδήποτε από τις τιμές 0 έως 9 Ν: συμβολίζει ψηφίο που μπορεί να πάρει οποιαδήποτε από τις τιμές 2 έως 9 Υ: συμβολίζει ψηφίο που μπορεί να είναι 0 ή 1 Εξετάζουμε 2 σχέδια αριθμοδότησης Σχέδιο 1: Οι τηλεφωνικοί αριθμοί έχουν τη μορφή ΝΥΧ-ΝΝΧ-ΧΧΧΧ Σχέδιο 2: Οι τηλεφωνικοί αριθμοί έχουν τη μορφή ΝΧΧ-ΝΧΧ-ΧΧΧΧ Πόσοι τηλεφωνικοί αριθμοί είναι δυνατοί με κάθε σχέδιο; Σχέδιο 1: ΝΥΧ-ΝΝΧ-ΧΧΧΧ : 8*2*10*8*8*10*10*10*10*10 = 160*640* = Σχέδιο 2: ΝΧΧ-ΝΧΧ-ΧΧΧΧ : 8*10*10*8*10*10*10*10*10*10 = 800*800* =

9 Κανόνας γινομένου: παράδειγμα 7 Με χρήση του κανόνα γινομένου, δείξτε ότι το πλήθος διαφορετικών υποσυνόλων πεπερασμένου συνόλου S είναι 2 S αυθαίρετο υποσύνολο συνόλου S Σύνολο S Για κάθε στοιχείο του S υπάρχουν 2 εκδοχές: Να περιλαμβάνεται ή να μην περιλαμβάνεται σε κάθε υποσύνολο που φτιάχνουμε Συνολικά: 2*2* *2 ( S φορές) = 2 S εκδοχές

10 Κανόνας γινομένου: παράδειγμα 8 Υπάρχουν n γλυκά σε μια σακούλα, έξι από τα γλυκά είναι πορτοκαλί και τα υπόλοιπα είναι κίτρινα. Η Χάνα πήρε ένα γλυκό από τη σακούλα και το έφαγε, μετά πήρε ένα ακόμα γλυκό. Η πιθανότητα η Χάνα να έφαγε δυο πορτοκαλί γλυκά είναι 1/3. Αποδείξτε το n²-n-90=0. 1/3 = 6/n * 5/(n-1) 1/3 = 30 / n(n-1) n(n 1)/3 = 30 n(n -1) = 90 n² -n = 90 n² n 90 = 0

11 Κανόνας αθροίσματος 3 επιλογές 2 επιλογές Συνολικά: = 5 επιλογές ρούχου

12 Κανόνας αθροίσματος: παράδειγμα 1 Υποθέστε ότι επιλέγεται είτε ένα μέλος ΔΕΠ είτε ένας τελειόφοιτος φοιτητής ενός Τμήματος για να εκπροσωπηθεί το Τμήμα σε Επιτροπή. Πόσες επιλογές υπάρχουν για τον εκπρόσωπο αυτόν όταν υπάρχουν 37 μέλη ΔΕΠ και 83 τελειόφοιτοι φοιτητές στο Τμήμα; Image source:

13 Κανόνας αθροίσματος: παράδειγμα 2 Υποθέστε ότι πρέπει να επιλέξετε ένα project από ένας από 3 διαθέσιμους καταλόγους, Α, Β και Γ, καθένας από τους οποίους περιέχει 23, 15 και 19 εργασίες, αντίστοιχα. Από πόσες εργασίες μπορείτε να επιλέξετε συνολικά; 23 εργασίες 15 εργασίες 19 εργασίες Συνολικά: = 57 εκδοχές Image source:

14 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 1 Σε μία βιβλιοθήκη, οι διαθέσιμες αίθουσες λαμβάνουν ετικέτες που είναι συμβολοσειρές με έναν ή δύο αλφαριθμητικούς χαρακτήρες Αλφαριθμητικοί χαρακτήρες: τα 26 γράμματα του λατινικού αλφαβήτου (κεφαλαία και μικρά θεωρούνται ίδια) και τα 10 ψηφία Κάθε συμβολοσειρά ετικέτας πρέπει να ξεκινάει με γράμμα Κάθε συμβολοσειρά ετικέτας για τις αίθουσες πρέπει να είναι διαφορετική από 5 συγκεκριμένες ετικέτες των 2 χαρακτήρων που έχουν αποδοθεί σε γραφεία διοίκησης Πόσες διαφορετικές ετικέτες υπάρχουν διαθέσιμες; 26 * 36 = 936 διαφορετικές εκδοχές 26 διαφορετικές εκδοχές 5 ετικέτες είναι δεσμευμένες Συνολικά: = 957 εκδοχές

15 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 2 Κάθε χρήστης ενός υπολογιστικού συστήματος έχει ένα password με μήκος από 6 έως 8 χαρακτήρες όπου κάθε χαρακτήρας είναι κεφαλαίο γράμμα του λατινικού αλφαβήτου ή ψηφίο και πρέπει να περιέχει τουλάχιστον 1 ψηφίο Πόσα δυνατά passwords υπάρχουν; πρέπει να περιέχει τουλάχιστον 1 ψηφίο αποκλείονται λέξεις που έχουν μόνο γράμματα passwords με 6 χαρακτήρες: 36*36*36*36*36*36=36 6 passwords με 6 χαρακτήρες που περιέχουν μόνο γράμματα: 26*26*26*26*26*26=26 6 passwords με 6 χαρακτήρες που περιέχουν τουλάχιστον 1 ψηφίο: Κατ αναλογία: passwords με 7 που περιέχουν τουλάχιστον 1 ψηφίο: passwords με 8 που περιέχουν τουλάχιστον 1 ψηφίο: Συνολικά: = εκδοχές

16 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 3 Πόσοι ακέραιοι υπάρχουν μεταξύ του 100 και του 199 οι οποίοι έχουν διαφορετικά ψηφία; Πόσοι από αυτούς τους ακεραίους είναι περιττοί; Οι ζητούμενοι αριθμοί αποτελούνται από 3 θέσεις στις οποίες το πρώτο ψηφίο είναι 1 και τα άλλα 2 προκύπτουν από τις διατάξεις 2 ψηφίων από τα 9 διαθέσιμα (δε συμπεριλαμβάνουμε το ψηφίο 1 που έχει ήδη χρησιμοποιηθεί): P(9,2)=9*8=72 Οι περιττοί αριθμοί θα καταλήγουν σε 3,5,7,9 (αφού έχουν διαφορετικά ψηφία και το 1 αποκλείεται) Για κάθε μία από αυτές τις επιλογές υπάρχουν 8 επιλογές για το μεσαίο ψηφίο Επομένως, συνολικά υπάρχουν 4*8=32 περιττοί ακέραιοι με διαφορετικά ψηφία μεταξύ 100 και 199

17 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 4 Πόσους περιττούς ακέραιους μπορούμε να σχηματίσουμε με τα ψηφία 1,2,3,4,5 οι οποίοι έχουν 4 ψηφία και τα ψηφία αυτά είναι διαφορετικά μεταξύ τους; Οι ζητούμενοι 4-ψήφιοι ακέραιοι πρέπει να έχουν 1 ή 3 ή 5 στη δεξιότερη θέση 4-ψήφιοι με 1 στη δεξιότερη θέση: 4*3*2=24 4-ψήφιοι με 3 στη δεξιότερη θέση: 4*3*2=24 4-ψήφιοι με 5 στη δεξιότερη θέση: 4*3*2=24 Επομένως, συνολικά 3*24=72 αριθμοί

18 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 6 Τα γράμματα Α,Β,Γ,Δ χρησιμοποιούνται για να σχηματιστούν λέξεις μήκους 3. (α) Πόσες λέξεις περιέχουν το γράμμα Α επιτρεπομένων επαναλήψεων; (β) Πόσες λέξεις αρχίζουν με Α επιτρεπομένων επαναλήψεων; (α) Όλες οι πιθανές λέξεις με 3 γράμματα από τα Α,Β,Γ,Δ είναι 4 3. Αυτές που δεν περιέχουν κανένα Α είναι 3 3. Επομένως, οι ζητούμενες προκύπτουν από τη διαφορά τους: =64-27=37 λέξεις (β) Το αριστερότερο γράμμα είναι Α. Οπότε ζητάμε λέξεις 2 γραμμάτων που σχηματίζονται από τα 4 δοσμένα γράμματα: 4 2 =16 λέξεις

19 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 7 Πόσοι τετραψήφιοι αριθμοί του δεκαδικού συστήματος δεν έχουν δύο ψηφία ίδια; Για να είναι τετραψήφιος κάποιος αριθμός δεν πρέπει να έχει 0 στην αριστερότερη θέση, στην οποία μπορεί να βρίσκεται ένα από τα εναπομείναντα 9 ψηφία (1,,9) Άρα, το πλήθος των ζητούμενων αριθμών είναι: 9*9*8*7=4.536

20 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 8 Πόσες είναι οι λέξεις της μορφής ww R μήκους 10 με κεφαλαία γράμματα του ελληνικού αλφαβήτου χωρίς τόνους; Τα πέντε πρώτα γράμματα (w) καθορίζουν και τα πέντε επόμενα (w R : w reversed) Επομένως, ασχολούμαστε μόνο με τα πέντε πρώτα γράμματα και υπολογίζουμε με πόσους διαφορετικούς τρόπους μπορώ να συνθέσω πεντάδες Η επιλογή του κάθε γράμματος είναι ανεξάρτητη και καθένα μπορεί να πάρει 24 διαφορετικές τιμές. Άρα, συνολικά μπορούμε να φτιάξουμε 24*24*24*24*24=24 5 διαφορετικές λέξεις των πέντε γραμμάτων (κανόνας γινομένου) Τόσες είναι και οι ζητούμενες λέξεις αφού τα πέντε πρώτα γράμματα καθορίζουν και τα πέντε επόμενα

21 Συνδυασμός κανόνων γινομένου και αθροίσματος: παράδειγμα 9 Έχουμε 24 αριθμημένες (διαφορετικές) πράσινες μπάλες και 24 αριθμημένες κόκκινες μπάλες. Με πόσους διαφορετικούς τρόπους μπορούμε να διαλέξουμε μία πράσινη και μία κόκκινη μπάλα; Πράσινη μπάλα μπορούμε να διαλέξουμε με 24 τρόπους Κόκκινη μπάλα μπορούμε να διαλέξουμε με 24 τρόπους Για να συμβαίνουν και τα δύο μαζί υπάρχουν 24*24=576 διαφορετικοί τρόποι (κανόνας γινομένου)

22 Αρχή Εγκλεισμού-Αποκλεισμού Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕN μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος για να απαριθμούμε τους τρόπους εκτέλεσης μιας από τις 2 εργασίες Πόσες συμβολοσειρές bit με μήκος 8 είτε αρχίζουν από 1 είτε τελειώνουν σε 00; Ενδιαφέρομαι για 8-bit συμβολοσειρές που αρχίζουν με 1: 2 7 που τελειώνουν σε 00: 2 6 που αρχίζουν με 1 και τελειώνουν σε 00: 2 5 ΠΡΟΣΕΧΩ ΝΑ ΜΗ ΔΙΠΛΟΜΕΤΡΑΩ Αυτές τις έχω μετρήσει 2 φορές από μία σε καθεμία από τις προηγούμενες κατηγορίες πρέπει να απομακρύνω τη μία φορά Συνολικά, οι ζητούμενες συμβολοσειρές είναι: = =160

23 Ασκήσεις (Ι) 18*325= =

24 Ασκήσεις (ΙΙ) έξι 6*7= =

25 Ασκήσεις (ΙΙΙ) 5*10 2 =500 3*9= =

26 Ασκήσεις (ΙV) (26-5) 8 21*20*19*18*17*16*15*14 5*26 7 5*8* *25*24*23*22*21*20*

27 έξι Ασκήσεις (V)

28 Ασκήσεις (VI) έξι a) 5! + 5! = 240

29 Ασκήσεις (VII) έξι b) Όλες οι δυνατές τοποθετήσεις 6 ατόμων: 6! Τοποθετήσεις στις οποίες γαμπρός και νύφη κάθονται δίπλα: 240 Η απάντηση είναι το αποτέλεσμα της αφαίρεσης: 6!-240=480

30 Ασκήσεις (VIII) έξι Καμία τοποθέτηση c) 1 εκδοχή για νύφη * 4! για τους υπόλοιπους 2 εκδοχές για νύφη * 4! για τους υπόλοιπους 3 εκδοχές για νύφη * 4! για τους υπόλοιπους εκδοχές 4 εκδοχές για νύφη * 4! για τους υπόλοιπους 5 εκδοχές για νύφη * 4! για τους υπόλοιπους

31 Αρχή Περιστεριώνα: ιδέα Αν υπάρχουν περισσότερα περιστέρια (k+1) από φωλιές (k), τότε υπάρχει τουλάχιστον μία φωλιά με τουλάχιστον δύο περιστέρια Αν k+1 ή περισσότερα αντικείμενα τοποθετηθούν σε k κουτιά, τότε τουλάχιστον ένα κουτί θα περιέχει τουλάχιστον δύο αντικείμενα Ονομάζεται και Αρχή του Dirichlet (19 ος αιώνας) Image source:

32 Αρχή Περιστεριώνα: διατύπωση f όχι ένα-προς-ένα

33 Παράδειγμα 1 Σε οποιαδήποτε ομάδα με 367 ανθρώπους υπάρχουν τουλάχιστον 2 που έχουν γεννηθεί την ίδια μέρα οι 367 άνθρωποι f οι 366 δυνατές ημέρες γέννησης όχι ένα-προς-ένα

34 Παράδειγμα 2 Σε οποιαδήποτε ομάδα 27 λέξεων στα αγγλικά υπάρχουν τουλάχιστον 2 που αρχίζουν με το ίδιο γράμμα οι 27 αγγλικές λέξεις f τα 26 γράμματα του αγγλικού αλφαβήτου όχι ένα-προς-ένα

35 Παράδειγμα 3 Πόσοι φοιτητές θα πρέπει να υπάρχουν σε μία τάξη για να εξασφαλιστεί ότι τουλάχιστον 2 θα πάρουν τον ίδιο βαθμό στην τελική εξέταση, αν η βαθμολογία είναι από 0 έως 100; Χρειαζόμαστε τουλάχιστον 101+1=102 φοιτητές f οι 101 δυνατές βαθμολογίες όχι ένα-προς-ένα

36 Ασκήσεις (Ι) 1. Σε οποιοδήποτε σύνολο 6 μαθημάτων, θα πρέπει να υπάρχουν 2 που πραγματοποιούνται την ίδια μέρα (δε γίνονται μαθήματα Σαββατοκύριακα) 3. Ένα συρτάρι περιέχει 12 καφέ και 12 μαύρες κάλτσες και κάποιος διαλέγει τυχαία κάλτσες στο σκοτάδι Πόσες κάλτσες πρέπει να πάρει για να έχει σίγουρα ζευγάρι του ίδιου χρώματος; 3 Πόσες τουλάχιστον κάλτσες πρέπει να πάρει για να έχει σίγουρα 2 μαύρες κάλτσες; 12+2=14

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Gutenberg

Gutenberg Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος

Διαβάστε περισσότερα

Εγκλεισμός Αποκλεισμός

Εγκλεισμός Αποκλεισμός Εγκλεισμός Αποκλεισμός Αρχή Εγκλεισμού Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕN μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος για να απαριθμούμε τους τρόπους εκτέλεσης μιας

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις

Διαβάστε περισσότερα

(n + r 1)! (n 1)! (n 1)!

(n + r 1)! (n 1)! (n 1)! Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Διακριτά Μαθηματικά Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Μεταθέσεις και Συνδυασμοί

Μεταθέσεις και Συνδυασμοί Μεταθέσεις και Συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις των στοιχείων του S 3,1,2 1,3,2

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018 HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Σύνθετο Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς)

Διαβάστε περισσότερα

Γενικευμένες Μεταθέσεις και Συνδυασμοί

Γενικευμένες Μεταθέσεις και Συνδυασμοί Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς) ή να διαλέξουμε και να βάλουμε

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί με απλά ή πολλαπλά αντίγραφα στοιχείων Διατάξεις Διάλεξε και βάλε σε σειρά 1 αντίγραφο κάθε στοιχείου n*n-1*n-2*

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 19/4/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα/ Συνδυαστική Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016 Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/206 Ο κανόνας του Pascal + = +,0 ή ισοδύναμα, = +,0 + Απόδειξη + =!!! +!!! = =!!! + =!!!! =!!!! = =!!!! = +!!! =!! = Το τρίγωνο του Pascal = + Για

Διαβάστε περισσότερα

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/2017

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/2017 Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 28/4/207 Ο κανόνας του Pascal + = +, 0 ή ισοδύναμα, = +, 0 + Απόδειξη + =!!( )! +! ( )!( )! = = ( )! ( )!( )! + = ( )!!!( )!! ( )!( )! = = ( )!!!( )! (

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί Διακριτά Μαθηματικά Ενότητα 4: Απαρίθμηση: Μεταθέσεις και Συνδυασμοί Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 5: Μεταθέσεις & Συνδυασμοί Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 8 Αυγούστου 2012 Η Αρχή του Dirichlet ή της περιστεροφωλιάς Aν γνωρίζουμε πως σε κάποια μέτρηση στις n ϕωλιές καταμετρήθηκαν συνολικά

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Ι Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙΙ 1 / 16 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

Φροντιστήριο #7 Λυμένες Ασκήσεις στη Συνδυαστική 24/4/2018

Φροντιστήριο #7 Λυμένες Ασκήσεις στη Συνδυαστική 24/4/2018 Φροντιστήριο #7 Λυμένες Ασκήσεις στη Συνδυαστική 24/4/2018 Ο κανόνας του Pascal ( n + 1 k ) = (n k ) + ( n ), 0 k n k 1 ή ισοδύναμα, ( n k ) = (n 1 k ) + (n 1 ), 0 k n + 1 k 1 Απόδειξη ( n k ) + ( n k

Διαβάστε περισσότερα

P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!

P( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2! HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εξεταστέα ύλη. Ιανουάριος και Σεπτέμβριος 2016

Διακριτά Μαθηματικά. Εξεταστέα ύλη. Ιανουάριος και Σεπτέμβριος 2016 Διακριτά Μαθηματικά Εξεταστέα ύλη Ιανουάριος και Σεπτέμβριος 2016 Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Λογική δήλωση σημασία κανόνες λογικής: διαχωρίζουν τα επιχειρήματα σε έγκυρα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Ασκήσεις στη Στοιχειώδη Συνδυαστική 1 / 12 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

t = (iv) A B (viii) (B Γ) A

t = (iv) A B (viii) (B Γ) A Διακριτά Μαθηματικά Review για τα Διακριτά Μαθηματικά 1. Να κατασκευάσετε το δένδρο ανάλυσης και τον πίνακα αλήθειας για τις παρακάτω προτάσεις: (i) (ϕ = ψ) ( ( ψ) ϕ ) (ii) (p q) = ( (p q) ) (iii) ( a

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση βασικών εννοιών από: Απαρίθμηση

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση

Συνδυαστική Απαρίθµηση Συνδυαστική Απαρίθµηση ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) Μέρος Ι (μέγιστος αριθμός μονάδων=40) Δώστε την κατάλληλη απάντηση (ΣΩΣΤΗ ή ΛΑΘΟΣ ) στις παρακάτω προτάσεις. Κάθε σωστή επιλογή παίρνει 5 μονάδες. Για κάθε λανθασμένη επιλογή

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 6: Απαρίθμηση: Γενικευμένες μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Ενότητα 6: Απαρίθμηση: Γενικευμένες μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Ενότητα 6: Απαρίθμηση: Γενικευμένες μεταθέσεις και συνδυασμοί Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ 50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

2 ) d i = 2e 28, i=1. a b c

2 ) d i = 2e 28, i=1. a b c ΑΣΚΗΣΕΙΣ ΘΕΩΡΙΑΣ ΓΡΑΦΩΝ (1) Εστω G απλός γράφος, που έχει 9 κορυφές και άθροισμα βαθμών κορυφών μεγαλύτερο του 7. Αποδείξτε ότι υπάρχει μια κορυφή του G με βαθμό μεγαλύτερο ή ίσο του 4. () Αποδείξτε ότι

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017 HY118-Διακριτά Μαθηματικά Πέμπτη, 27/4/2017 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200

N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200 Διακριτά Μαθηματικά Ι Φροντιστήριο Αρχή Εγκλεισμού-Αποκλεισμού 1 / 9 Σε ένα σχολείο υπάρχουν 1000 μαθητές. Απ αυτούς οι 400 μιλάνε Γαλλικά, οι 300 Ιταλικά και 200 μιλάνε Γερμανικά. Εάν υπάρχουν 200 μαθητές,που

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Προχωρημένη απαρίθμηση

Προχωρημένη απαρίθμηση Κεφάλαιο 4 Προχωρημένη απαρίθμηση Κύριες βιβλιογραφικές αναφορές για αυτό το Κεφάλαιο είναι οι C L Liu ad C Liu 1985, Graham, Kuth, ad Patashi 1994, Camero 1994 και Staley 1986 41 Διαμερίσεις και συνδυασμοί

Διαβάστε περισσότερα

Λύσεις 1ης Ομάδας Ασκήσεων

Λύσεις 1ης Ομάδας Ασκήσεων ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (

Διαβάστε περισσότερα

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations

1.7 Διατάξεις 1. Στην ελληνική βιβλιογραφία επικρατεί ο συμβολισμός. Permutations .7 Διατάξεις Είναι το σύνολο των συμπλεγμάτων που μπορεί να προκύψουν όταν επιλέγονται υποσύνολα που περιέχουν διακεκριμένα στοιχεία από ένα υπερσύνολο διακεκριμένων στοιχείων. Εδώ δεν ενδιαφέρουν οι θέσεις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β

Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β Θέματα Τ.Θ.Δ.Δ. ΘΕΜΑ Β 1. Δίνονται δύο ενδεχόμενα A, B ενός δειγματικού χώρου και οι πιθανότητες: 3 5 1 P( A), P( A B) και P( B) 4 8 4 α) Να υπολογίσετε την P( A B) β) i) Να παραστήσετε με διάγραμμα Venn

Διαβάστε περισσότερα

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διακριτά Μαθηματικά 3 η γραπτή εργασία, Σχέδιο Λύσεων Επιμέλεια: Δ. Φωτάκης, Δ. Σούλιου ΘΕΜΑ (Συνδυαστική,.6 μονάδες)

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική

Διαβάστε περισσότερα

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 3 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί

ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ. Διαιρετότητα. Πρώτοι αριθμοί ΟΜΙΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ 2013-14 Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is one country. David Hilbert ΒΑΣΙΚΕΣ ΥΠΕΝΘΥΜΙΣΕΙΣ ΘΕΩΡΙΑΣ ΑΡΙΘΜΩΝ Διαιρετότητα

Διαβάστε περισσότερα

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π.

Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, δέντρα κ.λ.π. Λέγονται οι αριθμοί που βρίσκονται καθημερινά στη φύση, γύρω μας. π.χ. 1 μήλο, 2 παιδιά, 5 αυτοκίνητα, 100 πρόβατα, 1.000 δέντρα κ.λ.π. Εκτός από πλήθος οι αριθμοί αυτοί μπορούν να δηλώσουν και τη θέση

Διαβάστε περισσότερα