Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές"

Transcript

1 Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές

2 Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί εμφανίζονται σα συντελεστές στο ανάπτυγμα δυνάμεων διωνυμικών εκφράσεων όπως η (α+b) n

3 Διώνυμο Ανάπτυγμα διωνύμου Αλγεβρική παράσταση με 2 όρους λέγεται διώνυμο 1+x x+y s+t Υψώνοντας το διώνυμο σε κάποια ακέραια δύναμη n λαμβάνω πολυώνυμο βαθμού n (1+x) n (x+y) n (s+t) n Κάνοντας τις πράξεις (δηλ., αναπτύσσοντας) λαμβάνω άθροισμα που λέγεται ανάπτυγμα διωνύμου

4 Ανάπτυγμα διωνύμου (1+x) 2 =(1+x)*(1+x)= 1+x+x+x 2 =1+2x+x 2 =1x 0 +2x 1 +1x 2 Για να σχηματίσω δυνάμεις του x, διαλέγω παρενθέσεις 1x 0 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 0 ; Με 1 τρόπο: διαλέγοντας καμία παρένθεση Διαλέγω 0 από 2 παρενθέσεις με C(2,0) τρόπους 2x 1 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 1 ; Με 2 τρόπους: διαλέγοντας τη μπλε παρένθεση ή την πράσινη παρένθεση Διαλέγω 1 από 2 παρενθέσεις με C(2,1) τρόπους 1x 2 : Με πόσους τρόπους μπορώ να παρενθέσεις για να σχηματίσω το x 2 ; Με 1 τρόπο: διαλέγοντας και τη μπλε παρένθεση και την πράσινη παρένθεση Διαλέγω 2 από 2 παρενθέσεις με C(2,2) τρόπους (C(2,2) = C(2,0))

5 Ανάπτυγμα διωνύμου (1+x) 3 = (1+x)*(1+x)*(1+x)= (1+2x+x 2 )*(1+x)= 1+x+2x+2x 2 +x 2 +x 3 = 1+3x+3x 2 +x 3 = 1x 0 +3x 1 +3x 2 +1x 3 Για να σχηματίσω δυνάμεις του x, διαλέγω παρενθέσεις 1x 0 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 0 ; Με 1 τρόπο: διαλέγοντας καμία παρένθεση Διαλέγω 0 από 3 παρενθέσεις με C(3,0) τρόπους 3x 1 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 1 ; Με 3 τρόπους: διαλέγοντας τη μπλε παρένθεση ή την πράσινη παρένθεση ή την καφέ παρένθεση Διαλέγω 1 από 3 παρενθέσεις με C(3,1) τρόπους 3x 2 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 2 ; Με 3 τρόπους: διαλέγοντας τη μπλε και την πράσινη παρένθεση ή διαλέγοντας τη μπλε και την καφέ παρένθεση ή διαλέγοντας την πράσινη και την καφέ παρένθεση Διαλέγω 2 από 3 παρενθέσεις με C(3,2) τρόπους (C(3,2) = C(3,1)) 1x 3 : Με πόσους τρόπους μπορώ να διαλέξω παρενθέσεις για να σχηματίσω το x 3 ; Με 1 τρόπο: διαλέγοντας και τη μπλε παρένθεση και την πράσινη παρένθεση και την καφέ παρένθεση Διαλέγω 3 από 3 παρενθέσεις με C(3,3) τρόπους (C(3,3) = C(3,0))

6 Ανάπτυγμα διωνύμου

7 Ανάπτυγμα διωνύμου

8 Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 3 στο ανάπτυγμα του (1+x) 4 ; C(4,3)=4!/3!*1!=4 Ποιος είναι ο συντελεστής του x 4 στο ανάπτυγμα του (1+x) 4 ; C(4,4)=1 Ποιος είναι ο συντελεστής του x 2 στο ανάπτυγμα του (1+x) 4 ; C(4,2)=4!/2!*2!=6 Κάνοντας τις πράξεις: (1+x) 4 =1+4x+6x 2 +4x 3 +x 4

9 Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 3 στο ανάπτυγμα του (1+x) 6 ; C(6,3)=6!/3!*3!=20 Ποιος είναι ο συντελεστής του x 4 στο ανάπτυγμα του (1+x) 6 ; C(6,4)=6!/4!*2!=15 Ποιος είναι ο συντελεστής του x 2 στο ανάπτυγμα του (1+x) 6 ; C(6,2)=C(6,4)=15 Ποιος είναι ο συντελεστής του x 5 στο ανάπτυγμα του (1+x) 6 ; C(6,5)=C(6,1)=6 Κάνοντας τις πράξεις: (1+x) 6 =1+6x+15x 2 +20x 3 +15x 4 +6x 5 +x 6

10 Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 2 y στο ανάπτυγμα του (x+y) 3 ; Μπορώ να σχηματίσω το x 2 με όσους τρόπους μπορώ να διαλέξω 2 από τις 3 παρενθέσεις του (x+y) 3 C(3,2)=C(3,1)=3 ΙΣΟΔΥΝΑΜΑ μπορώ να θέσω την ερώτηση για το y Μπορώ να σχηματίσω το y με όσους τρόπους μπορώ να διαλέξω 1 από τις 3 παρενθέσεις του (x+y) 3 C(3,1)=3 Κάνοντας τις πράξεις: (x+y) 6 =x 3 +3x 2 y+3xy 2 +y 3

11 Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 3 στο ανάπτυγμα του (x+y) 3 ; Μπορώ να σχηματίσω το x 3 με όσους τρόπους μπορώ να διαλέξω 3 από τις 3 παρενθέσεις του (x+y) 3 C(3,3)=1 ΙΣΟΔΥΝΑΜΑ μπορώ να θέσω την ερώτηση για το y Μπορώ να σχηματίσω το y 0 με όσους τρόπους μπορώ να διαλέξω 0 από τις 3 παρενθέσεις του (x+y) 3 C(3,0)=1 Κάνοντας τις πράξεις: (x+y) 6 =x 3 +3x 2 y+3xy 2 +y 3

12 Διωνυμικοί συντελεστές: παραδείγματα Ποιο είναι το ανάπτυγμα του (x+y) 4 ; Ο συντελεστής του όρου x 0 y 4 είναι C(4,0)=1 Ο συντελεστής του όρου x 1 y 3 είναι C(4,1)=4 Ο συντελεστής του όρου x 2 y 2 είναι C(4,2)=4!/2!*2!=6 Ο συντελεστής του όρου x 3 y 1 είναι C(4,3)=C(4,1)=4 Ο συντελεστής του όρου x 4 y 0 είναι C(4,4)=C(4,0)=1 Άρα: (x+y) 4 = C(4,0)*x 0 y 4 + C(4,1)*x 1 y 3 + C(4,2)*x 2 y 2 + C(4,3)*x 3 y 1 + C(4,4)*x 4 y 0 = 1*x 0 y 4 + 4*x 1 y 3 + 6*x 2 y 2 + 4*x 3 y 1 + 1*x 4 y 0 = y 4 + 4xy 3 + 6x 2 y 2 + 4x 3 y + x 4

13 Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 12 y 13 στο ανάπτυγμα του (x+y) 25 ; Μπορώ να σχηματίσω το x 12 με όσους τρόπους μπορώ να διαλέξω 12 από τις 25 παρενθέσεις του (x+y) 25 C(25,12)=25!/12!*13!= ΙΣΟΔΥΝΑΜΑ μπορώ να θέσω την ερώτηση για το y Μπορώ να σχηματίσω το y 13 με όσους τρόπους μπορώ να διαλέξω 13 από τις 25 παρενθέσεις του (x+y) 3 C(25,13)=C(25,12)

14 Διωνυμικοί συντελεστές: παραδείγματα Ποιος είναι ο συντελεστής του x 12 y 13 στο ανάπτυγμα του (2x- 3y) 25 ; Πρέπει να φτιάξω το ανάπτυγμα στη μορφή που γνωρίζω Οπότε το x στον τύπο είναι πλέον το 2x και το y στον τύπο είναι το -3y Για να ασχοληθώ με το συντελεστή του x 12 θέτω στον τύπο k=12 Ο όρος του αθροίσματος είναι: C(25,12)(2x) 12 (-3y) = -C(25,12) x 12 y 13 Επομένως, ο συντελεστής του όρου x 12 y 13 στο ανάπτυγμα του (2x-3y) 25 είναι: -C(25,12)

15 Διωνυμικοί συντελεστές: παραδείγματα Πρέπει να φτιάξω το ανάπτυγμα στη μορφή που γνωρίζω Μπορώ να γράψω το ανάπτυγμα ως: (x 3 +1) 12 *x -12 Ψάχνω το σταθερό όρο του αναπτύγματος δηλ., το συντελεστή του x 0 Για να προκύψει από το ανάπτυγμα (x 3 +1) 12 *x -12 το x 0 πρέπει από τον παράγοντα (x 3 +1) 12 να ασχοληθώ με το x 12 και να προσδιορίσω το συντελεστή του Οπότε το x στον τύπο είναι πλέον το x 3 και το y στον τύπο είναι το 1 Για να ασχοληθώ με το συντελεστή του x 12 θέτω στον τύπο k=4 Ο όρος του αθροίσματος είναι: C(12,4)(x 3 ) = C(12,4) x 12 Επομένως, ο συντελεστής του όρου x 0 =x 12* x -12 στο ανάπτυγμα του (x 2 +1/x) 12 είναι: C(12,4)=12!/4!*8!=12*11*10*9/4*3*2*1=45*11=495

16 Διωνυμικοί συντελεστές: παραδείγματα

17 Διωνυμικοί συντελεστές: παραδείγματα

18 Διωνυμικοί συντελεστές: παραδείγματα

19 Ιδιότητες διωνυμικών συντελεστών Τρόποι για να διαλέξω k από n αντικείμενα = Τρόποι για να διαλέξω n-k από n αντικείμενα C(n,r): πλήθος τρόπων να επιλέξω τα r άτομα από τα n στα οποία θα δώσω καπέλα Μα αυτό είναι ίδιο με το να επιλέξω σε ποια n-r άτομα από τα n δε θα δώσω καπέλο: C(n,n-r)

20 Ιδιότητες διωνυμικών συντελεστών Ταυτότητα του Pascal Πλήθος υποσυνόλων μεγέθους k ενός συνόλου Τ με n+1 στοιχεία Πώς σχηματίζονται αυτά τα υποσύνολα; Διαλέγω αυθαίρετο στοιχείο α του T Τα υποσύνολα του Τ με k στοιχεία μπορεί: να περιέχουν το α: οπότε διαλέγω k-1 στοιχεία από n+1-1 διαθέσιμα (αφού ήδη γνωρίζω ότι το α είναι στοιχείο των υποσυνόλων αυτών, διαλέγω τα υπόλοιπα k-1 στοιχεία τους από τα n+1-1 στοιχεία που μένουν εκτός του α) να μην περιέχουν το α: οπότε διαλέγω k στοιχεία από n+1-1 διαθέσιμα (αφού ήδη γνωρίζω ότι το α ΔΕΝ είναι στοιχείο των υποσυνόλων αυτών, διαλέγω και τα k στοιχεία τους από n στοιχεία εκτός του α)

21 Ιδιότητες διωνυμικών συντελεστών Ταυτότητα του Pascal = 4 5 5

22 Τρίγωνο του Pascal Αναδρομικός τύπος υπολογισμού διωνυμικών συντελεστών n n k = n 1 n 1 + k 1 k 1 αν 0 < k < n διαφορετικά

23 Τρίγωνο του Pascal: λειτουργία = V

24 Τρίγωνο του Pascal: λειτουργία Στο περίγραμμα μόνο Τρόποι να επιλέξω 0,1,2 από αυτά = V

25 Ασκήσεις (1) Πόσοι όροι υπάρχουν στο ανάπτυγμα (x+y) 100 ; Οι όροι προκύπτουν περιέχουν το x υψωμένο σε κάθε δυνατή δύναμη από 0 έως και 100 στο ανάπτυγμα υπάρχουν 101 όροι

26 Ασκήσεις (2) Ποιος είναι ο συντελεστής του x 9 στο ανάπτυγμα (2-x) 19 ; Φτιάχνω το ανάπτυγμα στη μορφή που ξέρω Οπότε όπου x στον τύπο θα έχω x και όπου y θα έχω 2 Για να βρω το συντελεστή του όρου που περιέχει το x 9, θέτω k=9 στον τύπο Ο ζητούμενος συντελεστής είναι: C(19,9)*(-1) 9 *2 10 = - C(19,9)*2 10

27 Ασκήσεις (3) Ποιος είναι ο συντελεστής του x 101 y 99 στο ανάπτυγμα (3x-2y) 200 ; Φτιάχνω το ανάπτυγμα στη μορφή που ξέρω Οπότε όπου x στον τύπο θα έχω 3x και όπου y θα έχω -2y Για να βρω το συντελεστή του όρου που περιέχει το x 101, θέτω k=101 στον τύπο Ο ζητούμενος συντελεστής είναι: C(200,101)*3 101 *(- 2) 99 = -C(200,101)*3 101 *2 99

28 Ασκήσεις (4)

29 Ασκήσεις (5) C(9,0) C(9,1) C(9,2) C(9,3) C(9,4) C(9,5) (C(9,6) C(9,7) C(9,8) C(9,9) C(9,0) C(9,1) C(9,2) C(9,3) C(9,4) C(9,4) (C(9,3) C(9,2) C(9,1) C(9,0)

30 Ασκήσεις (6)

31 Ασκήσεις (7) Διαλέγω πρώτα τα k στοιχεία από τα n και μετά ξεχωρίζω ένα από τα k Ξεχωρίζω ένα από τα n στοιχεία και μετά διαλέγω τα υπόλοιπα k-1 από τα υπόλοιπα n-1

32 Ασκήσεις (8) Κάνω πράξεις και υπολογίζω τις σχέσεις πριν και μετά το =

33 Ασκήσεις (9)

34 Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

35 Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων

36 Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς) ή να διαλέξουμε και να βάλουμε σε σειρά (διατάξεις) διακριτά (=διαφορετικά) αντικείμενα που μπορούσαν να χρησιμοποιηθούν το πολύ 1 φορά Τι γίνεται όταν υπάρχουν πολλά αντίγραφα των αντικειμένων που διαλέγουμε (συνδυάζουμε) ή διαλέγουμε και βάζουμε στη σειρά (διατάσσουμε); Τι γίνεται όταν καλούμαστε να απαριθμήσουμε συνδυασμούς ή διατάξεις στοιχείων που ΔΕΝ είναι διακριτά; Π.χ., με πόσους τρόπους μπορούν να αναδιαταχθούν τα γράμματα της λέξης SUCCESS;

37 Μεταθέσεις r από n στοιχείων όταν επιτρέπονται επαναλήψεις Πόσες λέξεις μήκους n μπορούμε να φτιάξουμε με σύμβολα του αγγλικού αλφαβήτου; Για κάθε μία από τις n θέσεις υπάρχουν 26 επιλογές (αφού δεν υπάρχουν περιορισμοί) 26*26* *26=26 n λέξεις Γενικεύοντας: αν έχω διαθέσιμα n αντικείμενα οι διαφορετικές λέξεις μήκους r που μπορώ να φτιάξω (όταν δεν υπάρχουν περιορισμοί όταν επιτρέπονται οι επαναλήψεις) είναι: n*n* *n=n r

38 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Δίνεται πιατέλα που περιέχει τουλάχιστον 4 μήλα, τουλάχιστον 4 πορτοκάλια και τουλάχιστον 4 αχλάδια Με πόσους τρόπους μπορώ να διαλέξω (δε με νοιάζει η σειρά) 4 φρούτα από την πιατέλα αυτή; Δεν υπάρχει διάκριση μεταξύ φρούτων του ίδιου είδους????

39 15 τρόποι????

40 15 τρόποι Τα στοιχεία είναι λίγα και δεν είναι χρονοβόρο να τα «μετρήσω» ψάχνοντας Όταν το πρόβλημα είναι πιο περίπλοκο ;;;????

41 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Δίνεται συρτάρι ταμείου που περιέχει χαρτονομίσματα 1$, 2$, 5$, 10$, 20$, 50$, 100$ Με πόσους τρόπους μπορώ να διαλέξω (δε με νοιάζει η σειρά) 5 χαρτονομίσματα από το συρτάρι αυτό, όταν: Δεν υπάρχει διάκριση μεταξύ χαρτονομισμάτων του ίδιου είδους Στο συρτάρι υπάρχουν τουλάχιστον 5 χαρτονομίσματα από κάθε είδος 100$ 50$ 20$ 10$ 5$ 2$ 1$

42 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Να κάποιοι πιθανοί τρόποι να διαλέξω

43 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Να κάποιοι πιθανοί τρόποι να διαλέξω

44 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις Να κάποιοι πιθανοί τρόποι να διαλέξω Χωρίσματα που ορίζουν διαφορετικές θέσεις στο συρτάρι Ένδειξη για το ότι διάλεξα χαρτονόμισμα από αυτή τη θέση του συρταριού

45 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις 100$ 50$ 20$ 10$ 5$ 2$ 1$ Χρειαζόμαστε 6 χωρίσματα για να ορίσουμε τις διαφορετικές θέσεις του συρταριού Στην αρχή ή στο τέλος ή ανάμεσά τους πρέπει να εμφανίσουμε 5 * * * * * Η ερώτηση γίνεται: με πόσους τρόπους μπορώ να ανακατέψω 11 αντικείμενα (6 χωρίσματα και 5 ενδείξεις *); Ή ισοδύναμα: με πόσους τρόπους μπορώ να διαλέξω τις 5 από τις 11 διαθέσιμες θέσεις που θα «φιλοξενήσουν» τις ενδείξεις *; Με C(11,5) τρόπους!!!

46 Συνδυασμοί r από n στοιχείων όταν επιτρέπονται επαναλήψεις 100$ 50$ 20$ 10$ 5$ 2$ 1$ Συμπέρασμα: το πλήθος των τρόπων να διαλέξω r από n στοιχεία όταν επιτρέπονται επαναλήψεις είναι C(n+r-1,r)

47 Παραδείγματα (I) Βρισκόμαστε σε ζαχαροπλαστείο με 4 διαφορετικά είδη γλυκισμάτων Με πόσους τρόπους μπορούμε να διαλέξουμε 6 γλυκίσματα; Δε μας ενδιαφέρει η σειρά επιλογής Δεν υπάρχει διάκριση μεταξύ γλυκισμάτων του ίδιου είδους Ουσιαστικά, θέλω να μετρήσω τους συνδυασμούς με επανάληψη 6 από 4 αντικειμένων Χρειάζομαι 3 «χωρίσματα» (= 4-1) για να ορίσω θέσεις για τα 4 αντικείμενα και διαθέτω 6 ενδείξεις * για τα γλυκίσματα που θα διαλέξω Με πόσους τρόπους μπορώ να διαλέξω τις 6 από τις 6+3=9 θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(9,6) Με πόσους τρόπους μπορώ να διαλέξω τις 3 από τις 6+3=9 θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(9,3) C(9,3)=C(9,6)=9!/(6!*3!)=9*8*7/3*2*1=3*4*7=84

48 Παραδείγματα (II) Μπορώ να βρίσκω το πλήθος λύσεων κάποιων γραμμικών εξισώσεων χρησιμοποιώντας την ιδέα απαρίθμησης συνδυασμών r από n αντικειμένων με επανάληψη ΠΩΣ; Πόσες λύσεις έχει η εξίσωση x1+x2+x3=11, όπου x1,x2,x3 είναι μη αρνητικοί ακέραιοι; Λύση της εξίσωσης = επιλογή 11 από 3 αντικείμενα όταν επιτρέπονται επαναλήψεις Σαν να θέλω να «μοιράσω» τις 11 μονάδες σε 3 θέσεις Θέλω 2 χωρίσματα για να ορίσω τις 3 θέσεις και διαθέτω 11 ενδείξεις * Με πόσους τρόπους μπορώ να διαλέξω τις 11 από τις 11+2=13 θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(13,11) Με πόσους τρόπους μπορώ να διαλέξω τις 2 από τις 11+2=13 θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(13,2) C(13,11)=C(13,2)=13!/(11!*2!)=13*12/2=13*6=78 τρόπους

49 Παραδείγματα (III) Μπορώ να βρίσκω το πλήθος λύσεων κάποιων γραμμικών εξισώσεων ακόμα και όταν υπάρχουν περιορισμοί για τις μεταβλητές τους χρησιμοποιώντας την ιδέα απαρίθμησης συνδυασμών r από n αντικειμένων με επανάληψη ΠΩΣ; Πόσες λύσεις έχει η εξίσωση x1+x2+x3=11, όπου x1,x2,x3 είναι μη αρνητικοί ακέραιοι με x1 1, x2 2, x3 3; Σαν να θέλω να «μοιράσω» τις 11 μονάδες σε 3 θέσεις μόνο που τώρα υπάρχουν και οι εξής περιορισμοί: Πρέπει να τοποθετήσω οπωσδήποτε: 1 από τα 11 αντικείμενα στην πρώτη θέση (αφού x1 1) 2 από τα 11 αντικείμενα στη τη δεύτερη θέση (αφού x2 2) 3 από τα 11 αντικείμενα στην τρίτη θέση (αφού x3 3) Οπότε μένουν =5 αντικείμενα για να τα «μοιράσω» ΧΩΡΙΣ περιορισμούς στις 3 θέσεις Θέλω 2 χωρίσματα για να ορίσω τις 3 θέσεις και διαθέτω 5 ενδείξεις * Με πόσους τρόπους μπορώ να διαλέξω τις 5 από τις 5+2=7 θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(7,5) Με πόσους τρόπους μπορώ να διαλέξω τις 2 από τις 11+2=13 θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(13,2) C(7,2)=C(7,5)=7!/(5!*2!)=7*6/2=7*3=21 τρόποι

50 Σύνοψη ΔΙΑΤΑΞΕΙΣ Με πόσους τρόπους μπορώ να διαλέξω και να βάλω σε σειρά (δηλαδή να διατάξω) r από n στοιχεία; Επιτρέπονται επαναλήψεις στοιχείων; Όχι Ναι n*(n-1)*(n-2)* *(n-r+1) n*n* *n=n r ΣΥΝΔΥΑΣΜΟΙ Με πόσους τρόπους μπορώ να διαλέξω r από n στοιχεία; Επιτρέπονται επαναλήψεις στοιχείων; Όχι C(n,r) Ναι C(n+r-1,r)

51 «Μπάλες σε κουτιά» ( Balls to Bins )

52 «Μπάλες σε κουτιά» Θα δούμε και πώς μετράμε τους τρόπους τοποθέτησης αντικειμένων σε κουτιά Π.χ., πώς μπορούν να μοιραστούν τα φύλλα μιας τράπουλας στους παίκτες ενός παιχνιδιού Π.χ., πώς μπορούν να χρονοπρογραμματιστούν διαφορετικές εργασίες σε επεξεργαστές (scheduling);

53 «Μπάλες σε κουτιά» όταν οι μπάλες είναι ίδιες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να διαλέξω r από n αντικείμενα με επανάληψη; C(n+r-1,r) Με πόσους τρόπους μπορώ να τοποθετήσω r μπάλες που δεν ξεχωρίζουν σε n διαφορετικά κουτιά; C(n+r-1,r)

54 «Μπάλες σε κουτιά» όταν οι μπάλες είναι ίδιες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να διαλέξω r από n αντικείμενα με επανάληψη; C(n+r-1,r) Με πόσους τρόπους μπορώ να τοποθετήσω r μπάλες που δεν ξεχωρίζουν σε n διαφορετικά κουτιά; C(n+r-1,r) Με πόσους τρόπους μπορώ να διαλέξω n-1 από τις n-1+r θέσεις για να «φιλοξενήσουν» τα χωρίσματα; C(n+r-1,n-1) Με πόσους τρόπους μπορώ να διαλέξω r από τις n-1+r θέσεις για να «φιλοξενήσουν» τις ενδείξεις *; C(n+r-1,r) (= C(n+r-1,n-1) ) r ενδείξεις * n-1 χωρίσματα για να ορίσω τα n κουτιά

55 Παράδειγμα Με πόσους τρόπους μπορώ να τοποθετήσω 10 όμοιες μπάλες σε 8 διαφορετικά κουτιά; Θέλω 7 χωρίσματα για να ορίσω τις 8 θέσεις και διαθέτω 10 ενδείξεις * για τις μπάλες: με πόσους τρόπους μπορώ να διαλέξω τις 10 από τις 10+7=17 θέσεις που θα «φιλοξενήσουν» τις ενδείξεις *; C(17,10) με πόσους τρόπους μπορώ να διαλέξω τις 7 από τις 10+7=17 θέσεις που θα «φιλοξενήσουν» τα χωρίσματα; C(17,7) C(17,7) = C(17,10) = 17!/(10!*7!) = τρόποι

56 Διατάξεις με ομάδες αντικειμένων που δεν ξεχωρίζουν Πόσες διαφορετικές λέξεις προκύπτουν με ανακάτεμα (δηλ., μετάθεση) των γραμμάτων της λέξης SUCCESS; Η λέξη SUCCESS περιέχει 7 γράμματα 7! Λέξεις ΛΑΘΟΣ ΓΙΑΤΙ; Οι 3 εμφανίσεις του S δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! Οι 2 εμφανίσεις του C δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! ΣΩΣΤΗ προσέγγιση: Θέλω να «γεμίσω» 7 θέσεις και διαθέτω 7 κάρτες: 3 ίδιες κάρτες που γράφουν S 2 ίδιες κάρτες που γράφουν C 1 κάρτα που γράφει U 1 κάρτα που γράφει Ε Διαλέγω 3 από τις 7 θέσεις για να «φιλοξενήσουν» τα S με C(7,3) τρόπους Διαλέγω 2 από τις 4 θέσεις που έμειναν για να «φιλοξενήσουν» τα C με C(4,2) τρόπους Διαλέγω 1 από τις 2 θέσεις που έμειναν για να «φιλοξενήσει» το U με C(2,1) τρόπους και η θέση που μένει «φιλοξενεί» (αναγκαστικά) το Ε που μένει οι διαφορετικές λέξεις είναι:

57 Διατάξεις με ομάδες αντικειμένων που δεν ξεχωρίζουν Πόσες διαφορετικές λέξεις προκύπτουν με ανακάτεμα (δηλ., μετάθεση) των γραμμάτων της λέξης SUCCESS; Η λέξη SUCCESS περιέχει 7 γράμματα 7! Λέξεις ΛΑΘΟΣ ΓΙΑΤΙ; Οι 3 εμφανίσεις του S δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! Οι 2 εμφανίσεις του C δεν αντιστοιχούν σε διαφορετικά γράμματα αλλά στο ίδιο!! ΣΩΣΤΗ προσέγγιση: Θέλω να «γεμίσω» 7 θέσεις και διαθέτω 7 κάρτες: 3 ίδιες κάρτες που γράφουν S 2 ίδιες κάρτες που γράφουν C 1 κάρτα που γράφει U 1 κάρτα που γράφει Ε Διαλέγω 3 από τις 7 θέσεις για να «φιλοξενήσουν» τα S με C(7,3) τρόπους Διαλέγω 2 από τις 4 θέσεις που έμειναν για να «φιλοξενήσουν» τα C με C(4,2) τρόπους Διαλέγω 1 από τις 2 θέσεις που έμειναν για να «φιλοξενήσει» το U με C(2,1) τρόπους και η θέση που μένει «φιλοξενεί» (αναγκαστικά) το Ε που μένει οι διαφορετικές λέξεις είναι:

58 Διατάξεις με ομάδες αντικειμένων που δεν ξεχωρίζουν Δεδομένο: Συλλογή n αντικειμένων όπου υπάρχουν n1 αντικείμενα που δεν ξεχωρίζουν από το είδος 1 n2 αντικείμενα που δεν ξεχωρίζουν από το είδος 2 nk αντικείμενα που δεν ξεχωρίζουν από το είδος k Ζητούμενο: Με πόσους τρόπους μπορώ να ανακατέψω τα n αντικείμενα αυτής της συλλογής;

59 «Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Είδαμε ότι οι τρόποι να κατανείμουμε r μπάλες που δεν ξεχωρίζουν σε n κουτιά που ξεχωρίζουν είναι C(n+r-1,r) Τι γίνεται αν και οι μπάλες ξεχωρίζουν; Ποιο είναι τότε το πλήθος των τρόπων τοποθέτησής τους στα κουτιά;

60 «Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να μοιράσω από 5 φύλλα σε 4 παίκτες από μια τράπουλα με 52 φύλλα; Και οι 4 παίκτες και τα 52 φύλλα ξεχωρίζουν Φανταστείτε: Παίκτες & αχρησιμοποίητα φύλλα κουτιά και Φύλλα μπάλες Μοιράζω φύλλα σε παίκτες ρίχνω μπάλες σε κουτιά Ο πρώτος παίκτης μπορεί να πάρει 5 φύλλα με C(52,5) τρόπους Ο δεύτερος παίκτης μπορεί να πάρει 5 φύλλα με C(47,5) τρόπους Ο τρίτος παίκτης μπορεί να πάρει 5 φύλλα με C(42,5) τρόπους» Ο τέταρτος παίκτης μπορεί να πάρει 5 φύλλα με C(37,5) τρόπους και μένουν 32 φύλλα που δε χρησιμοποιήθηκαν Συνολικά, οι ζητούμενοι τρόποι είναι:

61 «Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Με πόσους τρόπους μπορώ να μοιράσω από 5 φύλλα σε 4 παίκτες από μια τράπουλα με 52 φύλλα; Εναλλακτική θεώρηση Φανταστείτε ότι υπάρχει μια συλλογή 52 φύλλων όπου 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 1 ου παίκτη» 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 2 ου παίκτη» 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 3 ου παίκτη» 5 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα του 4 ου παίκτη» 32 αντικείμενα που δεν ξεχωρίζουν ανήκουν στο είδος «Φύλλα που δε χρησιμοποιήθηκαν» Σας θυμίζει κάτι;;; Δείτε την επόμενη διαφάνεια

62 Διατάξεις με αντικείμενα που δεν ξεχωρίζουν Δεδομένο: Συλλογή n αντικειμένων όπου υπάρχουν n1 αντικείμενα που δεν ξεχωρίζουν από το είδος 1 n2 αντικείμενα που δεν ξεχωρίζουν από το είδος 2 nk αντικείμενα που δεν ξεχωρίζουν από το είδος k Ζητούμενο: Με πόσους τρόπους μπορώ να ανακατέψω τα n αντικείμενα αυτής της συλλογής;

63 «Μπάλες σε κουτιά» όταν και οι μπάλες και τα κουτιά ξεχωρίζουν Το πλήθος των τρόπων με τους οποίους μπορώ να κατανείμω n μπάλες που ξεχωρίζουν σε k κουτιά που ξεχωρίζουν έτσι ώστε το κουτί ni να λάβει τελικά i αντικείμενα (i=1,2,,k) είναι: Ανακάτεψε και βάλε σε σειρά όλα τα φύλλα με όλους τους δυνατούς τρόπους έχοντας βάλει ένδειξη σε κάθε χαρτί για το σε ποιον «παίκτη» ανήκει

64 «Μπάλες σε κουτιά» όταν οι μπάλες ξεχωρίζουν και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 4 εργαζόμενους σε 3 ίδια γραφεία αν κάθε γραφείο χωράει οποιοδήποτε πλήθος εργαζομένων;

65 «Μπάλες σε κουτιά» όταν οι μπάλες ξεχωρίζουν και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 4 εργαζόμενους σε 3 ίδια γραφεία αν κάθε γραφείο χωράει οποιοδήποτε πλήθος εργαζομένων; Συμβολίζω με S(n,j) τους τρόπους να τοποθετήσω n αντικείμενα που ξεχωρίζουν σε j κουτιά που δεν ξεχωρίζουν S(4,1): τρόποι να τοποθετήσω 4 εργαζόμενους σε 1 γραφείο ώστε να μη μείνει άδειο (1 τρόπος) S(4,2): τρόποι να τοποθετήσω 4 εργαζόμενους σε 2 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,3)+C(4,2)/2=4+3=7 τρόποι) S(4,3): τρόποι να τοποθετήσω 4 εργαζόμενους σε 3 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,2)=6 τρόποι) Συνολικά: S(4,1)+S(4,2)+S(4,3) =1+7+6=14 τρόποι

66 «Μπάλες σε κουτιά» όταν οι μπάλες ξεχωρίζουν και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 4 εργαζόμενους σε 3 ίδια γραφεία αν κάθε γραφείο χωράει οποιοδήποτε πλήθος εργαζομένων; Συμβολίζω με S(n,j) τους τρόπους να τοποθετήσω n αντικείμενα που ξεχωρίζουν σε j κουτιά που δεν ξεχωρίζουν S(4,1): τρόποι να τοποθετήσω 4 εργαζόμενους σε 1 γραφείο ώστε να μη μείνει άδειο (1 τρόπος) S(4,2): τρόποι να τοποθετήσω 4 εργαζόμενους σε 2 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,3)+C(4,2)/2=4+3=7 τρόποι) S(4,3): τρόποι να τοποθετήσω 4 εργαζόμενους σε 3 γραφεία ώστε κανένα να μη μείνει άδειο (C(4,2)=6 τρόποι) Συνολικά: S(4,1)+S(4,2)+S(4,3) =1+7+6=14 τρόποι Αριθμός Stirling δεύτερης τάξης

67 «Μπάλες σε κουτιά» όταν οι μπάλες και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 6 αντίγραφα του ίδιου βιβλίου σε 4 ίδια πακέτα όταν κάθε πακέτο μπορεί να περιέχει το πολύ 6 βιβλία;

68 «Μπάλες σε κουτιά» όταν οι μπάλες και τα κουτιά δεν ξεχωρίζουν Με πόσους τρόπους μπορούμε να τοποθετήσουμε 6 αντίγραφα του ίδιου βιβλίου σε 4 ίδια πακέτα όταν κάθε πακέτο μπορεί να περιέχει το πολύ 6 βιβλία; Με πόσους τρόπους μπορώ να «πακετάρω» τα 6 αντίγραφα όταν δε θέλω να έχω άδειο πακέτο και χρησιμοποιώ: 1 από τα 4 διαθέσιμα πακέτα; Με 1 τρόπο όλα τα αντίγραφα στο 1 πακέτο 2 από τα 4 διαθέσιμα πακέτα; Με 3 τρόπους {5,1}, {4,2}, {3,3} 3 από τα 4 διαθέσιμα πακέτα; Με 3 τρόπους {1,1,4}, {1,2,3}, {2,2,2} 4 από τα 4 διαθέσιμα πακέτα; Με 2 τρόπους {1,1,1,3}, {1,1,2,2} Συνολικά: =9 τρόποι Υπολόγισα το πλήθος των διαμερίσεων (partitions) του συνόλου των αντιγράφων του βιβλίου στα διαθέσιμα πακέτα Δεν υπάρχει γενικός τύπος για τον υπολογισμό αυτόν

69 Σύνοψη «Μπάλες σε κουτιά» Τα κουτιά ξεχωρίζουν Οι μπάλες δεν ξεχωρίζουν Οι μπάλες ξεχωρίζουν C(n+r-1,r) Τα κουτιά δεν ξεχωρίζουν Οι μπάλες δεν ξεχωρίζουν Τύπος του Stirling Οι μπάλες ξεχωρίζουν Υπολογισμός διαμερίσεων

70 Ασκήσεις

71 Με πόσους τρόπους μπορούν να διαταχθούν 5 αντικείμενα από σύνολο με 3 αντικείμενα όταν επιτρέπονται οι επαναλήψεις; Θέση 1 Θέση 2 Θέση 3 Θέση 4 Θέση 5 3 επιλογές 3 επιλογές 3 επιλογές Συνολικά: 3*3*3*3*3=3 5 τρόποι

72 Με πόσους τρόπους μπορούν να διαταχθούν 5 αντικείμενα από σύνολο με 5 αντικείμενα όταν επιτρέπονται οι επαναλήψεις; Θέση 1 Θέση 2 Θέση 3 Θέση 4 Θέση 5 5 επιλογές 5 επιλογές 5 επιλογές Συνολικά: 5*5*5*5*5=5 5 τρόποι

73 Πόσες λέξεις των 6 γραμμάτων υπάρχουν (όταν χρησιμοποιούμε το λατινικό αλφάβητο); Θέση 1 Θέση 2 Θέση 3 Θέση 4 Θέση 5 Θέση 6 26 επιλογές 26 επιλογές 26 επιλογές Συνολικά: 26 6 τρόποι

74 Κάθε μέρα διαλέγετε για φαγητό ένα σάντουιτς. Υπάρχουν 6 είδη σάντουιτς. Πόσοι διαφορετικοί τρόποι υπάρχουν για να διαλέξετε φαγητό για τις 7 μέρες της εβδομάδας, αν έχει σημασία η σειρά επιλογής των σάντουιτς; Μέρα 1 Μέρα 2 Μέρα 3 Μέρα 4 Μέρα 5 Μέρα 6 Μέρα 6 6 επιλογές 6 επιλογές 6 επιλογές Συνολικά: 6 7 τρόποι

75 Πόσοι τρόποι υπάρχουν για ανάθεση 3 εργασιών σε 5 εργαζόμενους αν σε κάθε εργαζόμενο μπορούν να δοθούν περισσότερες από 1 εργασίες; Εργασία 1 Εργασία 2 Εργασία 3 5 επιλογές 5 επιλογές 5 επιλογές Συνολικά: 5*5*5=5 3 τρόποι

76 Με πόσους τρόπους μπορούμε να επιλέξουμε 3 από σύνολο με 5 στοιχεία όταν επιτρέπονται επαναλήψεις; Έχουμε 5 τύπους στοιχείων δηλαδή 5 θέσεις Για να τις ορίσουμε χρειαζόμαστε 4 χωρίσματα * * * Θέλουμε να διαλέξουμε 3 στοιχεία Αντιστοιχίζουμε κάθε στοιχείο σε ένα * οπότε έχουμε και 3 * Έχουμε επομένως 7 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(7,4)) είτε (ισοδύναμα) τις 3 που θα φιλοξενήσουν * (C(7,3)) Οι ζητούμενοι τρόποι είναι: C(7,4)=C(7,3)=35

77 Με πόσους τρόπους μπορούμε να επιλέξουμε 5 από σύνολο με 3 στοιχεία όταν επιτρέπονται επαναλήψεις; Έχουμε 3 τύπους στοιχείων δηλαδή 3 θέσεις Για να τις ορίσουμε χρειαζόμαστε 2 χωρίσματα * * * Θέλουμε να διαλέξουμε 5 στοιχεία Αντιστοιχίζουμε κάθε στοιχείο σε ένα * οπότε έχουμε και 5 * Έχουμε επομένως 7 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 2 που θα φιλοξενήσουν τα χωρίσματα (C(7,2)) είτε (ισοδύναμα) τις 5 που θα φιλοξενήσουν * (C(7,5)) Οι ζητούμενοι τρόποι είναι: C(7,2)=C(7,5)=21

78 Πόσοι τρόποι υπάρχουν για επιλογή 12 ντόνατς από τις 21 ποικιλίες ενός καταστήματος; Έχουμε 21 τύπους στοιχείων δηλαδή 21 θέσεις Για να τις ορίσουμε χρειαζόμαστε 20 χωρίσματα * * * Θέλουμε να διαλέξουμε 12 στοιχεία Αντιστοιχίζουμε κάθε στοιχείο σε ένα * οπότε έχουμε και 12 * Έχουμε επομένως 32 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 20 που θα φιλοξενήσουν τα χωρίσματα (C(32,20)) είτε (ισοδύναμα) τις 12 που θα φιλοξενήσουν * (C(32,12)) Οι ζητούμενοι τρόποι είναι: C(32,20)=C(32,12)

79 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 6 σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε 6 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+6 = 13 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(13,7)) είτε (ισοδύναμα) τις 6 που θα φιλοξενήσουν τα * (C(13,6)) Συνολικά, οι ζητούμενοι τρόποι είναι C(13,7)=C(13,6)=1.716

80 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε 12 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+12 = 19 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(19,7)) είτε (ισοδύναμα) τις 12 που θα φιλοξενήσουν τα * (C(19,12)) Συνολικά, οι ζητούμενοι τρόποι είναι C(19,7)=C(19,12)=50.388

81 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 24 σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε 24 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+24 = 31 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(31,7)) είτε (ισοδύναμα) τις 24 που θα φιλοξενήσουν τα * (C(31,24)) Συνολικά, οι ζητούμενοι τρόποι είναι C(31,7)=C(31,24)=

82 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, στα οποία υπάρχει τουλάχιστον 1 από κάθε είδος; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 1 σάντουιτς από κάθε είδος (λόγω του περιορισμού) Μένουν 12-8=4 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Φανταστείτε τα σαν 8 θέσεις για να οριστούν χρειαζόμαστε 7 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 4 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 7+4 = 11 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 7 που θα φιλοξενήσουν τα χωρίσματα (C(11,7)) είτε (ισοδύναμα) τις 4 που θα φιλοξενήσουν τα * (C(11, 4)) Συνολικά, οι ζητούμενοι τρόποι είναι C(11,7)=C(11,4)=330

83 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, από τα οποία τουλάχιστον 3 είναι με αυγό ενώ δεν υπάρχουν περισσότερα από 2 αλμυρά σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 3 σάντουιτς με αυγό (λόγω του περιορισμού) Μένουν 12-3=9 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Διακρίνουμε περιπτώσεις για να ικανοποιήσουμε και τον άλλον περιορισμό: Περίπτωση 1: υπάρχουν 0 αλμυρά σάντουιτς Τότε έχουμε 7 διαθέσιμα είδη δηλ. 7 θέσεις για να οριστούν χρειαζόμαστε 6 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 9 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 6+9 = 15 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 6 που θα φιλοξενήσουν τα χωρίσματα (C(15,6)) είτε (ισοδύναμα) τις 9 που θα φιλοξενήσουν τα * (C(15, 9)) Άρα για την Περίπτωση 1 οι ζητούμενοι τρόποι είναι C(15,6)=C(15,9)=5005

84 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, από τα οποία τουλάχιστον 3 είναι με αυγό ενώ δεν υπάρχουν περισσότερα από 2 αλμυρά σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 3 σάντουιτς με αυγό (λόγω του περιορισμού) Μένουν 12-3=9 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Διακρίνουμε περιπτώσεις για να ικανοποιήσουμε και τον άλλον περιορισμό: Περίπτωση 2: υπάρχει μόνο 1 αλμυρό σάντουιτς Τότε έχουμε 7 διαθέσιμα είδη δηλ. 7 θέσεις για να οριστούν χρειαζόμαστε 6 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 8 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 6+8 = 14 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 6 που θα φιλοξενήσουν τα χωρίσματα (C(14,6)) είτε (ισοδύναμα) τις 8 που θα φιλοξενήσουν τα * (C(14, 8)) Άρα για την Περίπτωση 2 οι ζητούμενοι τρόποι είναι C(14,6)=C(14,8)=3003

85 Ένα κατάστημα πουλάει σάντουιτς με κρεμμύδι, με σπόρους παπαρούνας, με αυγό, σίκαλης, με σουσάμι, με σταφίδες, αλμυρά σάντουιτς και σκέτα σάντουιτς. Με πόσους τρόπους μπορούμε να διαλέξουμε 12 σάντουιτς, από τα οποία τουλάχιστον 3 είναι με αυγό ενώ δεν υπάρχουν περισσότερα από 2 αλμυρά σάντουιτς; Υπάρχουν 8 είδη σάντουιτς κάθε είδος έχει πολλά «αντίγραφα» Παίρνουμε 3 σάντουιτς με αυγό (λόγω του περιορισμού) Μένουν 12-3=9 σάντουιτς που πρέπει να επιλέξουμε από τα 8 διαθέσιμα είδη Διακρίνουμε περιπτώσεις για να ικανοποιήσουμε και τον άλλον περιορισμό: Περίπτωση 3: υπάρχουν μόνο 2 αλμυρά σάντουιτς Τότε έχουμε 7 διαθέσιμα είδη δηλ. 7 θέσεις για να οριστούν χρειαζόμαστε 6 χωρίσματα Επιθυμούμε να διαλέξουμε (χωρίς περιορισμούς πλέον) 7 αντικείμενα - Φανταστείτε τα σαν * Άρα έχουμε 6+7 = 13 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 6 που θα φιλοξενήσουν τα χωρίσματα (C(13,6)) είτε (ισοδύναμα) τις 7 που θα φιλοξενήσουν τα * (C(13, 7)) Άρα για την Περίπτωση 3 οι ζητούμενοι τρόποι είναι C(13,6)=C(13,7)=1716 Συνολικά οι ζητούμενοι τρόποι είναι: =9724

86 Πόσοι τρόποι υπάρχουν για επιλογή 8 κερμάτων από κουμπαρά που περιέχει 100 ίδια κέρματα του 1 λεπτού και 80 ίδια κέρματα των 5 λεπτών; Έχουμε 2 είδη κερμάτων δηλ. 2 διαφορετικές θέσεις - για να τις ορίσουμε χρειαζόμαστε 1 χώρισμα Πρέπει να επιλέξουμε 8 κέρματα φανταστείτε τα σαν * Άρα έχουμε 1+8=9 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τη 1 που θα φιλοξενήσει το χώρισμα (C(9,1)) είτε (ισοδύναμα) τις 8 που θα φιλοξενήσουν * (C(9,8)) Συνολικά, οι ζητούμενοι τρόποι είναι C(9,1)= C(9,8)=9

87 Πόσους διαφορετικούς συνδυασμούς κερμάτων 1, 5, 10, 25, 50 λεπτών μπορεί να έχει ένας κουμπαράς αν περιέχει 20 κέρματα; Έχουμε 5 είδη κερμάτων δηλ. 5 διαφορετικές θέσεις - για να τις ορίσουμε χρειαζόμαστε 4 χωρίσματα Πρέπει να επιλέξουμε 20 κέρματα φανταστείτε τα σαν * Άρα έχουμε 4+20=24 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(24,4)) είτε (ισοδύναμα) τις 20 που θα φιλοξενήσουν * (C(24,20)) Συνολικά, οι ζητούμενοι τρόποι είναι C(24,4)= C(24,20)

88 Ένας εκδότης έχει αντίγραφα ενός βιβλίου. Πόσοι τρόποι υπάρχουν για αποθήκευση αυτών των (ίδιων) βιβλίων σε 3 αποθήκες; Έχουμε 3 διαφορετικές θέσεις - για να τις ορίσουμε χρειαζόμαστε 2 χωρίσματα Έχουμε ίδια αντίγραφα φανταστείτε τα σαν * Άρα έχουμε =3002 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 2 που θα φιλοξενήσουν τα 2 χωρίσματα (C(3002,2)) είτε (ισοδύναμα) τις 3000 που θα φιλοξενήσουν * (C(3002,3000)) Συνολικά, οι ζητούμενοι τρόποι είναι C(3002,2)= C(3002,3000)=3001*1501=

89 Πόσες λύσεις της εξίσωσης x1+x2+x3+x4=17 υπάρχουν όπου xi, i=1,,4 είναι μη αρνητικός ακέραιος; Έχουμε 4 θέσεις στις οποίες πρέπει να κατανείμουμε 17 μονάδες Με πόσους τρόπου γίνεται αυτό; Για να ορίσουμε τις 4 θέσεις χρειαζόμαστε 3 χωρίσματα Φανταζόμαστε τις 17 μονάδες σαν 17 * Άρα έχουμε 3+17=20 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 3 που θα φιλοξενήσουν τα χωρίσματα (C(20,3)) είτε (ισοδύναμα) τις 17 που θα φιλοξενήσουν τα * (C(20,17)) Συνολικά, το πλήθος των ζητούμενων λύσεων είναι C(20,3)=C(20,17)=1140

90 Πόσες λύσεις της εξίσωσης x1+x2+x3+x4+x5=21 υπάρχουν όπου xi, i=1,,5 είναι μη αρνητικός ακέραιος και x1 1; Έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 21 μονάδες Υπάρχει ο περιορισμός η θέση x1 να περιέχει τουλάχιστον 1 μονάδα της την αναθέτουμε Οπότε, πλέον, έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 20 μονάδες χωρίς περιορισμούς Με πόσους τρόπου γίνεται αυτό; Για να ορίσουμε τις 5 θέσεις χρειαζόμαστε 4 χωρίσματα Φανταζόμαστε τις 20 μονάδες σαν 20 * Άρα έχουμε 4+20=24 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(24,4)) είτε (ισοδύναμα) τις 20 που θα φιλοξενήσουν τα * (C(24,20)) Συνολικά, το πλήθος των ζητούμενων λύσεων είναι C(24,4)=C(24,20)=10.626

91 Πόσες λύσεις της εξίσωσης x1+x2+x3+x4+x5=21 υπάρχουν όπου xi, i=1,,5 είναι μη αρνητικός ακέραιος και xi 2 για i=1,,5; Έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 21 μονάδες Υπάρχει ο περιορισμός κάθε θέση να περιέχει τουλάχιστον 2 μονάδες τις αναθέτουμε Οπότε, πλέον, έχουμε 5 θέσεις στις οποίες πρέπει να κατανείμουμε 11 μονάδες χωρίς περιορισμούς Με πόσους τρόπου γίνεται αυτό; Για να ορίσουμε τις 5 θέσεις χρειαζόμαστε 4 χωρίσματα Φανταζόμαστε τις 11 μονάδες σαν 11 * Άρα έχουμε 4+11=15 θέσεις από τις οποίες πρέπει να διαλέξουμε είτε τις 4 που θα φιλοξενήσουν τα χωρίσματα (C(15,4)) είτε (ισοδύναμα) τις 11 που θα φιλοξενήσουν τα * (C(15,11)) Συνολικά, το πλήθος των ζητούμενων λύσεων είναι C(15,4)=C(15,11)=1.365

92 Πόσες λέξεις των 10 τριαδικών ψηφίων (0,1 ή 2) υπάρχουν που περιέχουν 2 «0», 3 «1» και 5 «2»; Διαλέγουμε τις 2 από τις 10 θέσεις που θα φιλοξενήσουν «0»: C(10,2) τρόποι Από τις 8 θέσεις που μένουν, διαλέγουμε τις 3 που θα φιλοξενήσουν «1»: C(8,3) τρόποι Οι 5 θέσεις που απομένουν αναγκαστικά θα φιλοξενήσουν τα «2» Άρα συνολικά μπορούμε να σχηματίσουμε C(10,2) * C(8,3) =2.520 λέξεις

93 Μια μεγάλη οικογένεια έχει 14 παιδιά μεταξύ των οποίων 2 ομάδες τριδύμων, 3 ομάδες διδύμων και 2 ακόμη παιδιά. Πόσοι τρόποι υπάρχουν να κάτσουν τα παιδιά σε σειρά από καθίσματα, αν τα τρίδυμα ή τα δίδυμα δεν ξεχωρίζουν μεταξύ τους; Διαλέγουμε 3 από τα 14 καθίσματα για την πρώτη ομάδα τριδύμων: C(14,3) τρόποι Από τα 11 καθίσματα που μένουν, διαλέγουμε 3 για την άλλη ομάδα τριδύμων: C(11,3) τρόποι Από τα 8 καθίσματα που μένουν, διαλέγουμε 2 για την πρώτη ομάδα διδύμων: C(8,2) τρόποι Από τα 6 καθίσματα που μένουν, διαλέγουμε 2 για τη δεύτερη ομάδα διδύμων: C(6,2) τρόποι Από τα 4 καθίσματα που μένουν, διαλέγουμε 2 για την τρίτη ομάδα διδύμων: C(4,2) τρόποι Από τα 2 καθίσματα που μένουν, διαλέγουμε 1 για το ένα παιδί: C(2,1) τρόποι Το κάθισμα που μένει δίνεται αναγκαστικά στο παιδί που έμεινε Άρα συνολικά, οι ζητούμενοι τρόποι είναι: C(14,3)*C(11,3)*C(8,2)*C(6,2)*C(4,2)*C(2,1)= 14!/(3!*3!*2!*2!*2!*1!*1!)= τρόποι

94 Με πόσους τρόπους μπορούμε να κατανείμουμε 6 ίδιες μπάλες σε 9 διαφορετικά κουτιά; Τα 9 κουτιά είναι 9 θέσεις που για να τις ορίσουμε χρειαζόμαστε 8 χωρίσματα Φανταζόμαστε τις 6 ίδιες μπάλες σαν * Άρα έχουμε 8+6=14 θέσεις από τις οποίες θέλουμε να διαλέξουμε είτε τις 8 που θα φιλοξενήσουν τα χωρίσματα (C(14,8)) είτε (ισοδύναμα) τις 6 που θα φιλοξενήσουν τα * (C(14,6)) Συνολικά, οι ζητούμενοι τρόποι είναι C(14,8)=C(14,6)=3.003

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: μεταθέσεις και συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: μεταθέσεις και συνδυασμοί Μεταθέσεις (permutations) Μετάθεση διακεκριμένων στοιχείων ενός συνόλου = Ανακάτεμα κάποιων ή όλων των στοιχείων του συνόλου S={1,2,3} Μεταθέσεις

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί

Διακριτά Μαθηματικά. Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διακριτά Μαθηματικά Απαρίθμηση: Γενικευμένες Μεταθέσεις και Συνδυασμοί Διατάξεις και Συνδυασμοί όταν υπάρχουν πολλαπλά αντίγραφα των αντικειμένων Μέχρι τώρα Μετράγαμε τρόπους να διαλέξουμε (συνδυασμούς)

Διαβάστε περισσότερα

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Μαθηματικά στην Πολιτική Επιστήμη:

Μαθηματικά στην Πολιτική Επιστήμη: ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά στην Πολιτική Επιστήμη: Εισαγωγή Ενότητα 3.2 : Απαρίθμηση Συνδυαστική (ΙΙ). Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Πράξεις με μονώνυμα και πολυώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 20 Νοεμβρίου 2012

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 20 Νοεμβρίου 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι ανανεωμένο στις 20 Νοεμβρίου 202 Τμήμα Θ Αποστολάτου & Π Ιωάννου Ακολουθίες - Όρια ακολουθιών Έστω η ακολουθία μια αριθμημένη σειρά δηλαδή) των αριθμών:

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Εισαγωγή Οι γεννήτριες συναρτήσεις είναι ένα από τα ισχυρά εργαλεία για μια ενοποιημένη αντιμετώπιση πολλών κατηγοριών προβλημάτων απαρίθμησης Ο Lplce έθεσε πρώτος τις

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016

ΗΥ118 Διακριτά Μαθηματικά. Εαρινό Εξάμηνο 2016 ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2016 6 η Σειρά Ασκήσεων - Λύσεις Άσκηση 6.1 [1 μονάδα] Πόσοι 3ψήφιοι αριθμοί σχηματίζονται από τα ψηφία 2,3,5,6,7 και 9, τέτοιοι που να διαιρούνται με το 5 και

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : 1 Η Διδακτική ώρα : Εισαγωγή

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με

, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με 5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις

ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ. 1. Συνδυαστική ανάλυση. 1.1. Μεταθέσεις 1 ΣΤΟΙΧΕΙΑ ΑΛΓΕΒΡΑΣ 1 Συνδυαστική ανάλυση Η συνδυαστική ανάλυση είναι οι διάφοροι μέθοδοι και τύποι που χρησιμοποιούνται στη λύση προβλημάτων εκτίμησης του πλήθους των στοιχείων ενός πεπερασμένου συνόλου

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016

Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/2016 Φροντιστήριο #6 Λυμένες Ασκήσεις στη Συνδυαστική 22/4/206 Ο κανόνας του Pascal + = +,0 ή ισοδύναμα, = +,0 + Απόδειξη + =!!! +!!! = =!!! + =!!!! =!!!! = =!!!! = +!!! =!! = Το τρίγωνο του Pascal = + Για

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ

και η εκλογή του ενός αποκλείει την ταυτόχρονη εκλογή του άλλου, ΤΟΤΕ 7/10/010 ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ ΑΝ ένα αντιείμενο A1 μπορεί να επιλεγεί με k1 αι ένα αντιείμενο A μπορεί να επιλεγεί με k αι η ελογή του ενός απολείει την ταυτόχρονη ελογή του άλλου, ΤΟΤΕ ένα οποιοδήποτε

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 4ο Συνδυασμοί 2 2.3 ΣΥΝΔΥΑΣΜΟΙ Έστω Χ= {x 1, x 2,..., x ν } ένα πεπερασμένο σύνολο με ν στοιχεία x 1, x 2,...,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την

Η διακριτή συνάρτηση μάζας πιθανότητας δίνεται από την Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Ενδιαφερόμαστε για την απλούστερη μορφή πειραματικής διαδικασίας, όπου η έκβαση των αποτελεσμάτων χαρακτηρίζεται μόνο ως "επιτυχής" ή "ανεπιτυχής" (δοκιμές Beroulli). Ορίζουμε λοιπόν

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων)

ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) ΣΥΝΔΥΑΣΤΙΚΗ (Δείγμα θεμάτων) Μέρος Ι (μέγιστος αριθμός μονάδων=40) Δώστε την κατάλληλη απάντηση (ΣΩΣΤΗ ή ΛΑΘΟΣ ) στις παρακάτω προτάσεις. Κάθε σωστή επιλογή παίρνει 5 μονάδες. Για κάθε λανθασμένη επιλογή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων

Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών. Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Κάνοντας ακριβέστερες μετρήσεις με την βοήθεια των Μαθηματικών Ν. Παναγιωτίδης, Υπεύθυνος ΕΚΦΕ Ν. Ιωαννίνων Αν κάναμε ένα τεστ νοημοσύνης στους μαθητές και θέταμε την ερώτηση: Πως μπορεί να μετρηθεί το

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr

Διακριτά Μαθηματικά. Εύη Παπαϊωάννου. papaioan@ceid.upatras.gr papaioan@upatras.gr Διακριτά Μαθηματικά Εύη Παπαϊωάννου papaioan@ceid.upatras.gr papaioan@upatras.gr https://www.ceid.upatras.gr/webpages/faculty/papaioan/dchmnt/2014-2015/dm/index.html Πότε και πού; Παρασκευή, 15.00 18.00,

Διαβάστε περισσότερα

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015

Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Φροντιστήριο #5 Ασκήσεις σε Συναρτήσεις Αρχή του Περιστερώνα 23/04/2015 Άσκηση Φ5.1: (α) Έστω οι συναρτήσεις διάγραμμα. f : A B, : g B C και h: C D που ορίζονται στο παρακάτω Υπολογίστε την συνάρτηση h

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ

1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1.4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ 59 1. 4 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΠΟΛΥΩΝΥΜΩΝ Πολλαπλασιασμός μονωνύμου με πολυώνυμο Ο πολλαπλασιασμός μονώνυμου με πολυώνυμο γίνεται ως εξής: Πολλαπλασιάζουμε το μονώνυμο με

Διαβάστε περισσότερα

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων

Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων Αλγεβρικές παραστάσεις - Αναγωγή οµοίων όρων 1. Μια παράσταση που περιέχει πράξεις µόνο µε αριθµούς, λέγεται αριθµητική παράσταση. Παράδειγµα: + + 1 =. είναι µια αριθµητική παράσταση, το αποτέλεσµα των

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΜΕΡΟΣ Α 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 51 1. ΠΟΛΥΩΝΥΜΑ-ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ Πολυώνυμα Όπως είδαμε στην προηγούμενη ενότητα Το άθροισμα όμοιων μονώνυμων είναι ένα μονώνυμο όμοιο

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016

Συνδυαστική. Που το πάµε. Πείραµα Συνδυαστική. Το υλικό των. ΗΥ118 ιακριτά Μαθηµατικά, Άνοιξη Πέµπτη, 21/4/2016 HY118- ιακριτά Μαθηµατικά Πέµπτη, 21/4/2016 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ

5. 2 ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ ΜΕΡΟΣ Α 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ-ΕΝΔΕΧΟΜΕΝΑ 69 5. ΔΕΙΜΑΤΙΟΣ ΧΩΡΟΣ- ΕΝΔΕΧΟΜΕΝΑ Πείραμα τύχης- Δειγματικός χώρος Ένα πείραμα το οποίο όσες φορές και αν το επαναλάβουμε, δεν μπορούμε να προβλέψουμε το αποτέλεσμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις: ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού

ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ

Διαβάστε περισσότερα

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n

O n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές

Διαβάστε περισσότερα

Τιμή Τιμή. σκορ. ζωές

Τιμή Τιμή. σκορ. ζωές Εισαγωγή στην έννοια των μεταβλητών Οι μεταβλητές Θα πρέπει να έχετε παρατηρήσει ότι έχουμε φτιάξει τόσα παιχνίδια μέχρι αυτό το σημείο και δεν έχουμε αναφερθεί πουθενά για το πως μπορούμε να δημιουργήσουμε

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες

Σημεία τομής της ευθείας αx+βy=γ με τους άξονες ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ).

P (A 1 A 2... A n ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A n A 1 A 2 A n 1 ). Υπενθυμίσεις Παραδείγματα Ασκήσεις Μελέτη 31 Οκτωβρίου 2014 Πιθανότητες και Στατιστική Διάλεξη 7 Ασκήσεις ΙΙ Δεσμευμένη πιθανότητα, Συνδυαστικά επιχειρήματα Αντώνης Οικονόμου Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ Έννοια συνάρτησης Παραγώγιση Ακρότατα Ασκήσεις Βασικές έννοιες Στην Οικονομία, τα περισσότερα από τα μετρούμενα μεγέθη, εξαρτώνται από άλλα μεγέθη. Π.χ η ζήτηση από την τιμή,

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ασκήσεις σχολικού βιβλίου σελίδας 9-3 A Oμάδας.i) Να βρείτε το ν-οστό όρο της αριθμητικής προόδου 7, 0, 3,... = + (ν ) ω = 7 + (ν ) 3 = 7 + 3ν 3 = 3ν + 4.ii) Να βρείτε το ν-οστό όρο

Διαβάστε περισσότερα

Ασκήσεις Κεφαλαίου 1

Ασκήσεις Κεφαλαίου 1 Ασκήσεις Κεφαλαίου 1 1. Αν συμβολίζει τη συμμετρική διαφορά των γεγονότων Α και Β, δηλ. δείξτε ότι ισχύει 0 και επαληθεύστε με αριθμητικό παράδειγμα ότι δεν ισχύει το αντίστροφο. 2. Για τα γεγονότα Α και

Διαβάστε περισσότερα

Εισαγωγικά Παραδείγματα: Παρατηρήσεις:

Εισαγωγικά Παραδείγματα: Παρατηρήσεις: 1 Εισαγωγικά Η έννοια του συνόλου είναι πρωταρχική στα Μαθηματικά, δεν μπορεί δηλ. να οριστεί από άλλες έννοιες. Γενικά, μπορούμε να πούμε ότι σύνολο είναι μια συλλογή αντικειμένων. υτά λέμε ότι περιέχονται

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Μονώνυμα. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Μονώνυμα Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πράξεις με μονώνυμα Ενότητα 2 η Πράξεις με μονώνυμα και πολυώνυμα Σκοπός Ο σκοπός της 2 ης ενότητας είναι να μάθουν

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ www.askisopolis.gr 3 4 .5381 Ένα κουτί περιέχει άσπρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 0, οι κόκκινες είναι 7, ενώ όλες οι μπάλες μαζί είναι

Διαβάστε περισσότερα

Πολυώνυµα - Πολυωνυµικές εξισώσεις

Πολυώνυµα - Πολυωνυµικές εξισώσεις 4 ΚΕΦΑΛΑΙΟ Πολυώνυµα - Πολυωνυµικές εξισώσεις Ορισµός πολυωνύµου Ονοµάζoυµε ΠΟΛΥΩΝΥΜΟ του κάθε παράσταση της µορφής α ν ν +α ν- ν- + +α +α 0, ν ΙΝ και α 0, α,, α ν-, α ν ΙR. Παρατηρήσεις α. Τα α ν ν, α

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα