MJERENJE TEMPERATURE

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MJERENJE TEMPERATURE"

Transcript

1 Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva Zavod za osnove elektrotehnike i električka mjerenja MJERENJE TEMPERATURE MUTP Prof.dr.sc. Roman Malarić Dr.sc. Alan Šala Dr.sc. Petar Mostarac Zagreb,

2 Uvod Temperatura je posljedica kinetičke energije molekula, a istražuje ju, kao i ostale toplinske varijable, posebna grana fizike nazvana termodinamika. Temperatura je vjerojatno najčešće mjerena i upravljana procesna veličina. Radi jednoobraznosti mjerenja temperature potrebno je definirati temperaturnu razliku između dviju čvrstih temperaturnih točaka. To je zapravo definicija temperature pomoću mjerenja temperaturne razlike, slično kao što se i prostor definira pomoću mjerenja razmaka, dviju točaka bez da se ulazi u bit prostora, ili vrijeme koje se definira kao interval između dva trenutka. 2

3 Temperaturne ljestvice Kao temeljni temperaturni razmak ranije se uzimala razlika između ledišta i vrelišta vode određenog kemijskog sastva. I ledište i vrelište definiraju se u odnosu na normalni tlak (Pa). Ako se navedeni temperaturni raspon podijeli na sto dijelova, dobije se veličina stupnja celzija ( C). Pridjeljivanje nule temperaturne ljestvice stvar je dogovora, međutim postoji i stvarna donja granica temperature koja je i teorijski najniža dostiživa temperatura. Taj novi način predložio je lord Kelvin, pa se njemu u čast od 1954 jedinica u SI sustavu zove kelvin (K). Kelvin je 273,16-ti dio termodinamičke temperature trojne točke vode. 3

4 Temperaturne ljestvice Apsolutni prikaz temperature Rankin-ova ( o R) (1859.) i Kelvin-ova (K) skala (1848.) T(K) = (5/9) T( o R) Relativni prikaz temperature Celsius i Fahrenheit T ( o F) = T ( o R) T ( o C) = T (K) T ( o F) = 1.8 T ( o C)

5 Temperaturne ljestvice 1. Fahrenheit (F) ~ Imperijalni sustav jedinica ~ Točka vrelišta vode : 212 o ~ Točka ledišta vode : 32 o 2. Celsius (C) ~ Metrički sustav jedinica ~ Točka vrelišta vode: 100 o ~ Točka ledišta vode: 0 o 5

6 Trojna točka Trojna točka neke tvari je točka u faznom dijagramu određena temperaturom i tlakom na kojoj tvar istovremeno postoji u tri agregatna stanja (plin, kapljevina i krutina) u međusobnoj termodinamičkoj ravnoteži. Trojna točka vode koristi se za definiranje kelvina, osnovne jedinice SI za termodinamičku temperaturu tako da je njezin iznos utvrđen kao točno 273,16 K. 6

7 Ledište vode Ledište vode je temperaturna točka u kojoj se voda nalazi u samo dvije faze: krutoj i tekućoj. Nalazi se kod termodinamičke temperature 273,15 K tj. oko 10 mk ispod trojne točke vode. Temperaturni interval od 1K odgovara intervalu od 1 C. 7

8 Višekratnici Za razliku od metra i sekunde za koje se jednostavno mogu izvesti višekratnici, tako da se pouzdano i točno mogu mjeriti ogromni rasponi veličina, kod temperature je to mnogo složenije. Kako bi se pouzdano mogle mjeriti temperature između dviju definicijskih točaka kao i one iznad trojne točke vode, potrebno je definirati još nekoliko fiksnih točaka. 8

9 Višekratnici Iz tog razloga 1927 uvedena je međunarodna temperaturna ljestvica (ITS-27), koja se nekoliko puta mijenjala, a danas je na snazi ITS-90. ITS-90 pokriva područje od 0,65 K do 1357,77 K unutar kojeg je definirano još dvadesetak čvrstih točaka, uglavnom ledišta ili trojnih točaka kemijskih elemenata. 9

10 Uvod 10

11 Temperaturni opseg Između tih točaka vrijede interpolacijske jednadžbe, kojima se mogu opisati ponašanja slijedećih termometara: Temperaturni Tip termometra opseg 0,65 K- 5 K Manometarski termometri na načelu tlaka para helijevih izotopa 3K- 24,5561 K Plinski termometri na načelu konstantnog volumena izotopa helija 13,8033K - Platinasti otpornički termometar 1234,93 K 1234,93 K - Radijacijski termometri na načelu Planckova zakona 11

12 Mjerni pretvornici temperature Temperatura utječe na mnoga fizikalna svojstva plinova, tekućina i krutih tijela, a u vezi s tim postoji veliki broj mjernih pretvornika s različitim mjernim signalima: gibanja produljenje, širenje sile tlak, napon (struja) termoelemenata električnog otpora otpornički pretvornici zračenja radijacijski, itd. 12

13 Osjetila temperature Kontaktno mjerenje temperature Termistori (poluvodiči na bazi keramike) Otporna osjetila (na bazi čistih metala ili slitina) Termoparovi (spojišta dvaju različitih materijala) Poluvodička osjetila (PN spojevi kao osjetila temp. ) Beskontaktno mjerenje temperature IC Poluvodička osjetila (fotodiode, fotootpornici...) Bolometri Piroelektrička osjetila Termovizija (CCD osjetila) 13

14 Temperaturni koeficijent Označava se oznakom TC ili α te označava promjenu otpora ili napona po C. Predstavlja nagib pravca dobiven pravcem regresije kroz točke izmjerenih pravih vrijednosti. Može biti negativan ili pozitivan. Primjer: Platinski RTD (Pt100): R 100 = 138,5 Ω R 0 = 100,0 Ω α = 0,00385 K -1 (prema IEC ili DIN) 1 dr R100 R0 R dt 100 C R C 0 0 α Nikal RTD ima TC ~ 0,005 K -1 Bakar RTD ima TC ~ 0,0039 K -1 14

15 Kontaktno mjerenje termistorima Termistori Temperaturno promjenjivi otpornici na bazi metalnih oksida (Fe 2 O 3, MgCr 2 O 4 ) NTC (eng. Negative Temperature Coefficient) koriste se samo za mjerenje temperature Napajanje 220 V AC R PTC (eng. Positive Temperature Coefficient) koriste se samo kao element za zaštitu zbog vrlo strme karakteristike (npr. zaštita elektromotora) S M 0 PTC Zavojnica releja S 24 V DC ω 15

16 Kontaktno mjerenje termistorima Fe 2 O 3, MgCr 2 O 4,... Ostvaruje se kontakt s površinom čiju temperaturu želimo mjeriti Nazivna vrijednost im se obično daje kao R 25 (otpor na 25 C) Mjerni opseg temperature od 50 C do +150 C Negative Temp. Coefficient 16

17 Termistori + Velika osjetljivost odnosno promjena otpora s temperaturom pa se u nekim primjenama otpori spojnih vodova mogu zanemariti Male dimenzije Brzi odziv na promjenu temp. zbog male mase Jeftini R / prikladna exp. Data: Data1_C aproksimacija Model: Exponencijalni pad R = R 0 + a*e (-T/b) R 0 0 a b 15.4 Nelinearna karakteristika (linearizacija polinomima ili log krivuljama) Široke granice pogrešaka (± 10 %) osim za specijalne izvedbe (± 0,1 %) Mali opseg mjerenja temperature od 50 C do +150 C R = , ,92*T pravac regresije neprikladan za čitav temp. opseg T / C za manje promjene temperature, promjene otpora se ipak pokušavaju koliko je to moguće aproksimirati pravcem regresije 17

18 Kovinska osjetila ili RTD (Resistor Temperature Detector) RTD osjetila temperature Kovine (Platina, Nikal, Bakar, Volfram, Iridij) čiji je otpor s promjenom temperature dan linearnim izrazom. 2 R R 1 T T T za većinu čistih kovina vrijedi približenje: R R T 0 1 R 0 otpor osjetila pri referentnoj temperaturi 0 C. imaju svojstvo dobre linearnosti i postojanosti u čitavom temperaturnom opsegu za razliku od termistora

19 Kovinska osjetila u pogledu pogrešaka, podijeljena su u dva razreda: A, za temperaturni opseg od 200 C do 650 C (pr 0 = ±0,15 Ω) i B, za opseg od 200 C do 850 C (pr 0 = ±0,30 Ω). oznaka platinskih osjetila sastoji se od otpora R 0, razreda, načina spajanja i mjernog opsega: npr. Pt 100/A/3-100/+200 za mjerenje se koristi Wheatstoneov most u dvožičnom, trožičnom i četverožičnom spoju ili neka od metoda za mjerenje otpora 19

20 Kovinska osjetila + Linearna karakteristika Uske granice pogrešaka Izuzetno postojani na starenje Širok opseg mjerenja temperature Materijal Tempera turni opseg TC/K -1 Standardne vrijednosti otpora pri 0 ºC, R 0 Manja osjetljivost odnosno promjena otpora s temperaturom pa se otpori spojnih vodova ne smiju zanemariti Spori odziv na promjenu temp. zbog velike mase Relativno skupi Većih dimenzija, a moraju se i dodatno oklopiti Zahtijevaju strujni izvor Platina (Pt) Nikal (Ni) Bakar (Cu) -200 do +850 ºC -80 do +320 ºC -200 do +260 ºC , 50, 100, 200, 400, 500, 1000, , 100, Ω pri 20 C 20

21 Termoparovi Termoelektrička osjetila Temelje svoj rad na načelu Seebeck-ovog efekta. Služe za relativno mjerenje temperature jer se mora znati temperatura referentnog spojišta. Termoelektrični napon (TEMS) E koji se može izmjeriti milivoltmetrom približno je razmjeran razlici temperatura (T 2 T 1 ) toplog spojišta i hladnih krajeva termopara načinjenog od dvaju kovina A i B : * samo za male promjene E ( T2 T1) temperatura I 21

22 Tipični spojevi termoparova kada se termopar spoji izravno na mikrovoltmetar, mikrovoltmetar će mjeriti razliku napona proporcionalnu razlici temperatura hladnog i toplog spojišta. To znači da ne možemo odrediti temperaturu T 1 ako ne znamo apsolutnu vrijednost T 2. ako se u sljedećem koraku spoj J 2 stavi u ledenu kupku dobiti će se pokazivanje direktno proporcionalno temperaturi T 1. 22

23 Tipični spojevi termoparova no ipak želimo izbjeći stavljanje ledene kupke pa će se spajanje u sljedećem koraku obaviti prema sljedećoj slici: ovdje se mjerenje referentne temperature T ref ili T 2 izvodi pomoću termistora. Ovo je jedan od načina kompenzacije temp. referentnog spojišta jer za sobne temperature termistori imaju vrlo stalne i ponovljive karakteristike. Mjeriteljski instituti nam daju tablice napona iz kojih se za spoj dvaju različitih metala dade iščitati karakteristični napon pri temperaturi od 0 C. ovdje se kompenzacija referentne temperature T ref ili T 2 izvodi pomoću malog izvora napona. Ovo je najčešći način kompenzacije temp. referentnog spojišta jer se u voltmetrima takav sklop dade vrlo jednostavno realizirati. 23

24 Termoparovi različiti spojevi materijala daju različite osjetljivosti na promjene temperature linearniji od termistora ali nelinearniji od RTD-a 24

25 Termoparovi + Ne trebaju dodatno napajanje Izuzetno postojani na starenje Širok opseg mjerenja temperature Jeftini i vrlo robusni Vrlo mala osjetljivost Zahtijevaju kompenzaciju referentnog spojišta Spori odziv na promjenu temp. zbog velike mase Mijenjaju karakteristiku tokom vremena Tip termopara Temperaturno područje / ºC B 1370 do 1700 C 1650 do 2315 E 95 do 900 J -40 do 850 K -200 do 1100 R -50 do 1350 S 980 do 1450 T -250 do

26 Termoparovi 26

27 Poluvodička osjetila temperature Integrirani sklopovi Analogni i digitalni Vrlo linearan izlaz ovisan o temperaturi Najčešći tipovi AD594, DS1624, DS18B20... Mogućnost povezivanja na mikrokontroler (putem RS232) digitalnom vezom Načelo rada temelje na temperaturnoj ovisnosti PN spoja baza-emiter. Temp. koeficijent im se kreće u rasponu od 2 do 10 mv/ C. Osjetljivost je mala i ima vrijednost od 0,4 C. Vrlo jeftini Linearniji od RTD i termoparova Točnost im je osrednja i kreće se 2% u rasponu od -25 C do +100 C. Nisu namijenjeni za visoke temperature Integrirana kompenzacija referentne točke u slučaju spajanja termoparova. 27

28 Poluvodička osjetila temperature Primjer analognog poluvodičkog osjetila temperature: AD590 radi kao strujni izvor i daje na svom izlazu struju od 300 μa pri 25 C koja se linearno povećava ili smanjuje za 1μA / K. 28

29 Poluvodička osjetila temperature Primjer analognog osjetila temperature AD594: 29

30 Poluvodička osjetila temperature Primjer digitalnog osjetila temperature: 30

31 Usporedba kontaktnih osjetila temperature SVOJSTVO Poluvodički Termoparovi RTD Termistori Temperaturni opseg Točnost mjerenja apsolutne temparature Točnost mjerenja malih temperaturnih razlika -50 do +180 C Osrednja -270 do C Srednja zbog referentnog spoja -260 do C Visoka -50 do +150 C Visoka Osrednja Visoka Osrednja Osrednja TC 2 10 mv/k 0,05 1 mv /K 0,4 %/K 5 %/K Linearnost Linearan Linearni Linearan Nelinearni Izlazna veličina Napon Napon Otpor Otpor 31

32 Tipični problemi Termistori NTC i PTC Uslijed samozagrijavanja dolazi do pogreške mjerenja temperature. Pobudna struja iz omometra ne bi trebala prelaziti 1 ma ili ako je veća treba ju puštati kroz NTC u vrlo kratkim vremenskim intervalima (~20ms). Podložni su promjeni karakteristika uslijed procesa starenja. Kovinska osjetila Također pate od problema samozagrijavanja mjernom strujom. Imaju manju promjenu otpora u ovisnosti o temp. od termistora, pa je potrebno uračunati i pogrešku zbog otpora spojnih vodova od mjernog uređaja do osjetila. Termoparovi Treba pripaziti na promjene temperaturne karakteristike ovisno o vremenu jer su podložni starenju. Prilikom mjerenja upotrijebiti galvanski izolirano mjerno mjesto (izolacijski transformatori i izolacijska pojačala) prema voltmetru zbog velike osjetljivosti na šum (u idealnom slučaju se mjere vrlo mali istosmjerni naponi pa svaka smetnja jako utječe na pogrešku mjerenja). Potrebno je često pratiti ukupan otpor termopara jer se na taj način provjerava i uočava moguć kratki spoj između dolaznih vodiča. Svi spojevi moraju biti čisti od oksida jer se inače unose dodatni termonaponi. Impedancija dolaznih vodova zbog induciranja mogućih smetnji također mora biti što manja. 32

33 Pirometri Pirometri su instrumenti za mjerenje visokih temperatura (od crvenog žara pa nadalje). Neposredan kontakt mjernog osjetila i vrućeg tijela u tim slučajevima često nije moguć pa se za mjerenje koristi svojstvo objekta da zrači elektromagnetske valove čija energija i valna dužina ovisi o temperaturi. U bilo kojem objektu svaki atom i svaka molekula vibrira. Prosječna kinetička energija vibrirajućih čestica predstavlja temperaturu. Svaki atom sadrži jezgru i elektronski oblak, koji je zapravo električni naboj u orbiti. Prema zakonima elektrodinamike, električni naboj koji se kreće stvara promjenjivo električno polje koje stvara promjenjivo magnetsko polje. 33

34 Pirometri Tako je vibrirajuća čestica izvor elektromagnetskog polja koje propagira brzinom svjetlosti i za koje vrijede zakoni optike, tako da se, elektromagnetski valovi mogu reflektirati, filtrirati, fokusirati, itd. Elektromagnetsko zračenje povezano s toplinom naziva se toplinsko zračenje. Elektromagnetski valovi koji potječu od mehaničkog gibanja čestica mogu se opisati pomoću intenziteta i valne duljine. Ove karakteristike su usko povezane sa temperaturom, što je toplije tijelo, kraća je valna duljina zračenja koje emitira. 34

35 Pirometri Veoma vrući objekti zrače elektromagnetsku energiju u vidljivom dijelu spektra valnih duljina od 0.4μm (plavo) do 0.7 μm (crveno). Na primjer, wolframova nit u žarulji je tako vruća da emitira vidljivu svjetlost. Pretpostavimo da možemo kontrolirati intenzitet svjetla promjenom struje žarulje pomoću potenciometra. Smanjivanjem intenziteta vidimo da svjetlost poprima najprije žućkaste nijanse, pa crvenkaste, i na kraju nestaje. U tom trenutku, dok potenciometar kojim kontroliramo intenzitet još nije na nuli, možemo osjetiti da je žarulja još vruća na dodir, ali ne svijetli, zato što emitira infracrveno svjetlo koje ne vidimo (iznad 0.8 μm). 35

36 Beskontaktno mjerenje temperature Slika prikazuje ukupno spektar zračenja od gama zraka do radio valova. Toplinsko zračenje pretežno se nalazi u srednjem i dalekom infracrvenom (IC) području spektra. Veći dio zračenja tijela na temperaturama manjim od 3000K pripada infracrvenom području. Pri sobnim temperaturama 300K cijeli spektar je u infracrvenom području (2 25 m) s maksimumom oko 10 m. 36

37 Wien s displacement law 37

38 Pirometri Hladniji objekti zrače elektromagnetske valove u infracrvenom dijelu spektra, koje ne možemo vidjeti. Kada bi mogli vidjeti infracrveni dio spektra, svi bi ljudi (ljudska koža zrači svjetlost valnih duljina 5 do 15 μm) svijetlili u mraku, i mogli bi raspoznati one sa povišenom temperaturom, koji bi svijetlili intenzivnije. 38

39 Pirometri Kako je temperatura mjera prosječne kinetičke energije atoma, a gibanje subatomskih čestica izaziva emisiju elektromagnetskih valova, možemo zaključiti da je moguće mjeriti temperaturu nekog objekta tako da mjerimo intenzitet emitiranog elektromagnetskog zračenja ili njegove spektralne značajke. Ova pretpostavka je osnova beskontaktnog mjerenja temperature. Beskontaktno mjerenje temperature možemo podijeliti na dvije veće cjeline: Pirometrija, riječ koja dolazi od grčkog pyr, što označava vatru, odnosi se na mjerenja većih temperatura i infracrvena termometrija, termin koji se koristi za mjerenja nižih temperatura. 39

40 Pirometri Pirometri se mogu podijeliti na: Radijacijski pirometri mjere energiju koju zrači vruće tijelo. A mogu se podijeliti na: pirometre ukupnog zračenja (mjere ukupnu emitiranu energiju) pirometre parcijalnog zračenja (reagiraju samo na zračenje unutar određenog opsega valnih dužina). Optički pirometri uspoređuju vidljivo svjetlo koje zrači vruće tijelo sa svjetlom standardnog izvora poznate temperature. 40

41 IC Beskontaktno mjerenje temperature Definicija pirometra: Svaki instrument koji mjeri visoke temperature (600 C do 3000 C) po načelu kvantiziranja izračene energije vrućeg tijela Optički IR pirometar DVIJE VRSTE PIROMETARA Laserski pirometar Planckov zakon: ovisnost spektralne gustoće zračenja o valnoj duljini λ i apsolutnoj temperaturi crnog tijela T: gdje je c brzina svjetlosti, k Boltzmanova konstanta (k = 1.38*10-23 JK-1) i h Planckova konstanta (h = 6.626*10-34 Js) 41

42 IC Beskontaktno mjerenje temperature Infra-crveno beskontaktno mjerenje ima i svoje mane: - Valna duljina izračene energije ovisi o temperaturi, dok njezin intenzitet ovisi i o svojstvu površine tijela. Pogreška mjerenja ovisi o koeficijentu emisije ε i refleksije ρ koji ima sivo tijelo (nijedno tijelo nije idealno crno). Koeficijent emisije ε i refleksije ρ može biti između 0 i 1 (bijelo i crno tijelo). Za svaku neprozirnu površinu ε + ρ = 1. - npr. polirani bakar ili aluminij ima ε 0,09 crno bojano željezo ima ε 0,9 - Pogreška mjerenja je najmanja kada je ε = 1, odnosno kada imamo idealno crno tijelo i nema refleksije. - Pogrešku često unose i prašina, dim jer maskiraju izračenu energiju s površine. 42

43 Termovizija ili termografija Dvodimenzionalni prikaz raspodjele temperature po površini. Nije dovoljan jedan osjetnik, nego se osjetnici slažu u matrice sa ukupnim brojem elemenata koji prelazi Svaki osjetnik tada predstavlja jedan temeljni element ili piksel (engl. pixel). Tipičan predstavnik mikroosjetnika za 2D prikaz raspodjele temperature jest mikrobolometar. To je u većini slučajeva mali temperaturno osjetljivi poluvodič ili pak temperaturno osjetljivi otpornik. 43

44 Termovizija FLIR sensor Forward looking infrared cameras 44

45 Termovizija Kiowa Warrior 45

46 Termovizija 46

47 Termovizija 47

konst. Električni otpor

konst. Električni otpor Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost

Διαβάστε περισσότερα

TERMISTORI (1) Termistor = temperaturno osjetljivi poluvodič ( na bazi keramike ) Standardna vrijednost otpora na 25 ºC: Temperaturni opseg: simbol

TERMISTORI (1) Termistor = temperaturno osjetljivi poluvodič ( na bazi keramike ) Standardna vrijednost otpora na 25 ºC: Temperaturni opseg: simbol TERMISTORI (1) Termistor = temperaturno osjetljivi poluvodič ( na bazi keramike ) simbol Standardna vrijednost otpora na 25 ºC: 2252 Ω Temperaturni opseg: - 40 ºC + 150 ºC 1 TERMISTORI (2) NTC Negative

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

BIPOLARNI TRANZISTOR Auditorne vježbe

BIPOLARNI TRANZISTOR Auditorne vježbe BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

- Mjerenje i regulacija temperature je najčešći oblik u regulaciji nekoga procesa

- Mjerenje i regulacija temperature je najčešći oblik u regulaciji nekoga procesa 4. TEMPERATURNI SENZORI - Mjerenje i regulacija temperature je najčešći oblik u regulaciji nekoga procesa - Za kvalitetno mjerenje temperature potrebno je definirati temperaturnu skalu - Najčešće temperaturne

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA. IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

TOLERANCIJE I DOSJEDI

TOLERANCIJE I DOSJEDI 11.2012. VELEUČILIŠTE U RIJECI Prometni odjel OSNOVE STROJARSTVA TOLERANCIJE I DOSJEDI 1 Tolerancije dimenzija Nijednu dimenziju nije moguće izraditi savršeno točno, bez ikakvih odstupanja. Stoga, kada

Διαβάστε περισσότερα

UVOD U KVANTNU TEORIJU

UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU UVOD U KVANTNU TEORIJU 1.) FOTOELEKTRIČKI EFEKT 2.) LINIJSKI SPEKTRI ATOMA 3.) BOHROV MODEL ATOMA 4.) CRNO TIJELO 5.) ČESTICE I VALOVI Elektromagnetsko zračenje UVOD U KVANTNU TEORIJU

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ

Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ Alarmni sustavi 07/08 predavanja 12. i 13. Detekcija metala, izvori napajanja u sustavima TZ pred.mr.sc Ivica Kuric Detekcija metala instrument koji detektira promjene u magnetskom polju generirane prisutnošću

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

VJEŽBA 2: MJERENJE TEMPERATURE

VJEŽBA 2: MJERENJE TEMPERATURE VJEŽBA 2: MJERENJE TEMPERATURE 4. OPĆENITO O MJERENJU TEMPERATURE 4.1 Temperatura i mjerenje S termodinamičkog stajališta moglo bi se reći da je najprikladnija definicija temperature po kojoj "dva tijela

Διαβάστε περισσότερα

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I

Elektrodinamika ( ) ELEKTRODINAMIKA Q t l R = ρ R R R R = W = U I t P = U I Elektrodinamika ELEKTRODINAMIKA Jakost električnog struje I definiramo kao količinu naboja Q koja u vremenu t prođe kroz presjek vodiča: Q I = t Gustoća struje J je omjer jakosti struje I i površine presjeka

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

PT ISPITIVANJE PENETRANTIMA

PT ISPITIVANJE PENETRANTIMA FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova

, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici

Διαβάστε περισσότερα

Mjerenja u tehnici II dio

Mjerenja u tehnici II dio Mjerenja u tehnici II dio prof.dr.sc. Frano Barbir Katedra za termodinamiku, termotehniku i toplinske strojeve soba 708 Tel. 305-889 E-mail: Frano.Barbir@fesb.hr Konzultacije: Ponedjeljak 11-12 ili po

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Sortiranje prebrajanjem (Counting sort) i Radix Sort

Sortiranje prebrajanjem (Counting sort) i Radix Sort Sortiranje prebrajanjem (Counting sort) i Radix Sort 15. siječnja 2016. Ante Mijoč Uvod Teorem Ako je f(n) broj usporedbi u algoritmu za sortiranje temeljenom na usporedbama (eng. comparison-based sorting

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo

Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora. Sadržaj predavanja: 1. Operacijsko pojačalo Mehatronika - Metode i Sklopovi za Povezivanje Senzora i Aktuatora Sadržaj predavanja: 1. Operacijsko pojačalo Operacijsko Pojačalo Kod operacijsko pojačala izlazni napon je proporcionalan diferencijalu

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

TEHNIČKA TERMODINAMIKA

TEHNIČKA TERMODINAMIKA UVOD TEHNIČKA TERMODINAMIKA dr. sc. Dražen Horvat, dipl.ing. Zagreb, ožujak 2006. TERMODINAMIKA = znanost o energiji ENERGIJA = sposobnost da se izvrši rad ili mogućnost da se uzrokuju promjene PRINCIP

Διαβάστε περισσότερα

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER

L E M I L I C E LEMILICA WELLER WHS40. LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm Tip: LEMILICA WELLER. Tip: LEMILICA WELLER L E M I L I C E LEMILICA WELLER SP25 220V 25W Karakteristike: 220V, 25W, VRH 4,5 mm LEMILICA WELLER SP40 220V 40W Karakteristike: 220V, 40W, VRH 6,3 mm LEMILICA WELLER SP80 220V 80W Karakteristike: 220V,

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

NAPREDNI FIZIČKI PRAKTIKUM 1 SMJER: ISTRAŽIVAČKI STUDIJ FIZIKE STEFAN-BOLTZMANNOV ZAKON

NAPREDNI FIZIČKI PRAKTIKUM 1 SMJER: ISTRAŽIVAČKI STUDIJ FIZIKE STEFAN-BOLTZMANNOV ZAKON NAPREDNI FIZIČKI PRAKTIKUM 1 SMJER: ISTRAŽIVAČKI STUDIJ FIZIKE STEFAN-BOLTZMANNOV ZAKON ZRAČENJA ISTRAŽIVAČKI STUDIJ FIZIKE NFP1 1 ZADACI 1. Odredite otpor volframove niti za razne struje i izračunajte

Διαβάστε περισσότερα

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa

Tranzistori s efektom polja. Postupak. Spoj zajedničkog uvoda. Shema pokusa Tranzistori s efektom polja Spoj zajedničkog uvoda U ovoj vježbi ispitujemo pojačanje signala uz pomoć FET-a u spoju zajedničkog uvoda. Shema pokusa Postupak Popis spojeva 1. Spojite pokusni uređaj na

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Klizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug

Klizni otpornik. Ampermetar. Slika 2.1 Jednostavni strujni krug 1. LMNT STOSMJNOG STJNOG KGA Jednostavan strujni krug (Slika 1.1) sastoji se od sljedećih elemenata: 1 Trošilo Aktivni elementi naponski i strujni izvori Pasivni elementi trošilo (u istosmjernom strujnom

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα