MATRIX INVERSE EIGENVALUE PROBLEM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "MATRIX INVERSE EIGENVALUE PROBLEM"

Transcript

1 English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ) Abstract In this paper we will analyze the perturbation quality for a new algorithm of the (k) Jacobi matrix inverse eigenvalue problem. Key words eigenvalue, Jacobi matrix, (k) inverse problem. AMS(2000)subject classifications 65F 18 1 Introduction Let T n = α 1 β 1 0 β 1 α 2 β 2 β β 0 β α n be an n n unreduced symmetric tridiagonal matrix, and denote its submatrix T p,q, (p <q)as follows α p β p 0 β p α p+1 β p+1. T p,q = β..... p+1 p<q βq 1 0 β q 1 α q We call an unreduced symmetric tridiagonal matrix with β i > 0asaJacobimatrix. Consider T 1,n and T p,q to be Jacobi matrices. The matrix ( ) T 1, 0 W k = 0 T k+1,n is obtained by deleting the k th row and the k th column (k =1, 2,..., n) fromt n. Received: Mar. 15, 2003.

2 116 Hou Wenyuan Jiang Erxiong Problem If we don t know the matrix T 1,n, but we know all eigenvalues of matrix T 1,, all eigenvalues of matrix T k+1,n, and all eigenvalues of matrix T 1,n,could we construct the matrix T 1,n. Let S1 =(µ 1,µ 2,,µ ), S2 =(µ k,µ k+1,,µ ), λ =(λ 1,λ 2,,λ n ) are the eigenvalues of matrices T 1,,T k+1,n and T 1,n respectively. The problem is that from above 2n-1 data to find other 2n-1 data: α 1,α 2,,α n, and β 1,β 2,,β. Obviously, when k =1ork = n this problem has been solved and there are many algorithms to construct T 1,n [3][6], and its stability analysis can be founded in [2]. While k =2, 3...n 1, a new algorithm has been put forward to construct T 1,n [1]. In this paper we will give some stability properties of the new algorithm in case k =2, 3...n 1. 2 Basic Theorem Theorem 2.1 [1] If there is no common number between µ 1,µ 2,,µ and µ k,µ k+1,,µ, then the necessary and sufficient condition for the (k) problem having a solution is: λ 1 <µ j1 <λ 2 <µ j2 < <µ j <λ n, (2.1) where µ =(µ j1,µ j2...µ j ), and µ i, (i =1, 2...n 1) are recorded as µ ji, (i =1, 2...n 1) such that µ j1 <µ j2 < <µ j. (2.2) Furthermore, if a given (k) problem has a solution, then the solution is unique. Algorithm 2.2 [1] Given three vectors λ =(λ 1,λ 2 λ n ) T,S1 =(µ 1,µ 2 µ ) T and S2 =(µ k, µ k+1 µ ) T which are satisfied with (2.1), then we can solve (k) problem by following algorithm: Step 1 Find α k as α k =trace(t 1,n ) trace(w k )= n λ i µ i. (2.3)

3 A Stability Analysis of the (k)-jacobi Matrix Inverse Eigenvalue Problem 117 Step 2 Find x =(x 1,x 2,,x )as x j = n (µ j λ i ), j > 0,j =1, 2,n 1. (2.4) (µ j µ i ) Step 3 Compute β and β k as β = x i, (2.5) β k = x i. (2.6) Step 4 Compute S (1),i,, 2,,k 1andS(2) 1,i i = k, k +1,,n 1. as: S (1),j = x j /β,j =1, 2,,k 1, (2.7) S (2) 1,i = x i /β k,i= k, k +1,,n 1, (2.8) where S (1),j is the last element of the unit eigenvector of T 1,, corresponding to the eigenvalue µ j,and S (2) 1,i is the first element of the unit eigenvector of T k+1,n, corresponding to the eigenvalue µ i. Step 5 Compute T 1, from S (1),i,i =1, 2,,k 1andµ 1,µ 2,,µ by Lanczos Process or Givens Orthogonal Reduction Process [3],[6],[7]. Compute T k+1,n from S (2) 1,i,i= k, k+1,,andµ k,µ k+1,,µ by Lanczos Process or Givens Orthogonal Reduction Process [3],[6],[7]. 3 Stability Analysis Let λ =(λ 1,λ 2 λ n ) T,S1=(µ 1,µ 2 µ ) T,S2=(µ k,µ k+1 µ ) T (3.1) and λ =( λ 1, λ 2 λ n ) T, S1 =( µ 1, µ 2 µ ) T, S2 =( µ k, µ k+1 µ ) T (3.2) are satisfied with (2.1) to be that λ 1 <µ j1 <λ 2 <µ j2 < <µ j <λ n,

4 118 Hou Wenyuan Jiang Erxiong and λ 1 < µ j1 < λ 2 < µ j2 < < µ j < λ n. By using the Algorithm 2.2, we can get a matrix T 1,n by the date (3.1) and a matrix T 1,n by the data (3.2), now we will analyze the bound of T 1,n T 1,n F. is Lemma 3.1 The derivative of the function f(t) defined as f (t) =f(t)( f(t) = n n (a i + b i t), j (c i + d i t) b i a i + b i t, j d i c i + d i t ). Proof Start by noticing that f (t) = = ( n (a k + b k t)) k=1 k=1, j n = f(t)( (c k + d k t) b i n k=1 (a i + b i t) n Defined a function f j (t) as f j (t) = +( n (a k + b k t))( k=1 (a k + b k t) k=1, j (c k + d k t) b i a i + b i t, j d i c i + d i t )., j k=1, j n [µ j λ i + t( µ j µ j + λ i λ i )], j By the Lemma 3.1, we get that f j(t) =f j (t)( [µ j µ i + t( µ j µ j + µ i µ i )], j n 1 (c k + d k t) d i (c i + d i t) n ) (a k + b k t) k=1 µ j µ j + λ i λ i µ j λ i + t( µ j µ j + λ i λ i ) k=1, j (c k + d k t), t [0, 1]. (3.3) µ j µ j + µ i µ i ). (3.4) µ j µ i + t( µ j µ j + µ i µ i )

5 A Stability Analysis of the (k)-jacobi Matrix Inverse Eigenvalue Problem 119 Using the mean value formula for differential calculus, we have f j (1) f j (0) = f j(τ),τ (0, 1). (3.5) Symbolized A j = B j = n, j F j = max t (0,1) f j(t), (3.6) 1 min{ µ j λ i, µ j λ i }, (3.7) 1 min{ µ j µ i, µ j µ i }, (3.8) θ j =max{a j,b j }, (3.9) thus from (3.4) we get f j (t) F j + + n, j n, j A j µ j µ j + λ i λ i µ j λ i + t( µ j µ j + λ i λ i ) µ j µ j + µ i µ i µ j µ i + t( µ j µ j + µ i µ i ) ) µ j µ j + λ i λ i min{ µ j λ i, µ j λ i } n µ j µ j + µ i µ i min{ µ j µ i, µ j µ i } µ j µ j + λ i λ i +B j, j n n A j ( µ j µ j + λ i λ i ) + B j (, j µ j µ j +, j µ i µ i ) θ j [2(n 1) µ j µ j + µ µ 1 + λ λ 1 ] µ j µ j + µ i µ i (2n 1)θ j ( µ µ 1 + λ λ 1 ). (3.10) Theorem 3.2 Let x j, β, β k, x j, β and β k are the matrix element defined by (2.4),(2.5) and (2.6) from the data (3.1) and (3.2) respectively, then we have x j x j ϱ j ( µ µ 1 + λ λ 1 ) (3.11) β β ρ 1 ( µ µ 1 + λ λ 1 ) (3.12) β k β k ρ 2 ( µ µ 1 + λ λ 1 ), (3.13)

6 120 Hou Wenyuan Jiang Erxiong where ϱ j,ρ 1 and ρ 2 are defined as ϱ j = (2n 1)F jθ j xj + x j, (3.14) ρ 1 = (2n 1) F i θ i β + β, (3.15) ρ 2 = (2n 1) F i θ i β k + β k. (3.16) Proof Start by observing that x j x j = x j x j xj + x j = f j(1) f j (0) xj + x j (2n 1)F jθ j xj + x j ( µ µ 1 + λ λ 1 ), so it is easy to prove that β β = x x i i x i x i x i + x i (2n 1) F i θ i β + β ( µ µ 1 + λ λ 1 ), β k β k = x x i i x i x i x i + x i (2n 1) F i θ i β k + β k ( µ µ 1 + λ λ 1 ). Theorem 3.3 Let q 1 =(S (1),1,S(1),2 S(1), )T and q 1 =( S (1) (1),1, S S (1), )T, where S (1) (1),j and S,j,j =1, 2...k 1 are defined by (2.7), then,2 q 1 q 1 2 η 1 ( µ µ 1 + λ λ 1 ), (3.17)

7 A Stability Analysis of the (k)-jacobi Matrix Inverse Eigenvalue Problem 121 where η 1 is defined as ϱ 2 i + ρ 1 η 1 = β (3.18) and ϱ i, ρ 1 are defined as (3.14),(3.15). Proof q 1 q 1 2 =( =( =( ( S (1) (1),i S,i 2 ) 1 2 ϱ 2 i xi β xi β xi β 2 ) 1 2 xi β + xi β xi x i 2 ) 1 2 +( β x i ρ 1 xi β 2 ) 1 2 xi (β β ) β β 2 ) 1 2 ( + )( µ µ 1 + λ β λ 1 ) β β ϱ 2 i + ρ 1 = β ( µ µ 1 + λ λ 1 ). So by the same method, we can get the theorem below immediately. Theorem 3.4 Let q 2 =(S (2) 1,k,S(2) 1,k+1 S(2) S (2) 1, )T, where S (2) 1,j where η 2 is defined as and S (2) 1,j and ϱ i, ρ 2 are defined as (3.14),(3.16). 1, )T and q 2 =( S (2) (2) 1,k, S,j = k, k +1...n 1 are defined by (2.8), then 1,k+1 q 2 q 2 2 η 2 ( µ µ 1 + λ λ 1 ), (3.19) η 2 = ϱ 2 i + ρ 2 β k (3.20) Lemma 3.5 [2] Let q 1 =(S (1),1,S(1),2 S(1), )T and q 2 =(S (2) 1,k,S(2) 1,k+1 S (2) 1, )T with S (1),i > 0(i =1, 2 k 1), S(2) 1,i > 0(i = k, k +1 n 1) and q 1 2 =1, q 2 2 =1,letΛ 1 =diag(µ 1,µ 2 µ )andλ 2 =diag(µ k,µ k+1 µ ). Then the matrices K 1 =[Λ 1 q 1, Λ k 3 1 q 1, q 1 ] R () (), (3.21)

8 122 Hou Wenyuan Jiang Erxiong K 2 =[q 2, Λ 2 q 2, Λ n 1 q 2 ] R (n k) (n k) (3.22) are nonsingular, and K α 1, K α 2, where Lemma 3.6 [4] E R n n satisfy α 1 = k 1 α 2 = n k max 1i,i j max ki,i j 1+ λ i λ j λ i / min 1i S(1),i, (3.23) 1+ λ i λ j λ i / min ki S(2) 1,i. (3.24) Let A = QR be the QR factorization of A R n n with rank(a) =n. Let A 1 2 E 2 < 1. (3.25) Then there is a unique QR factorization A + E =(Q + W )(R + F ) (3.26) and W F (1 + 2) A A 1 2 E 2 E F. (3.27) By the same way, we can get the result on the condition that A = QL be the QL factorization of A R n n with rank(a)=n. Let E R n n satisfy A 1 2 E 2 < 1. (3.28) Then there is a unique QL factorization A + E =(Q + W )(L + F ) (3.29) and W F (1 + 2) A A 1 2 E 2 E F. (3.30) Theorem 3.7 Let T 1,,and T 1, are the solution by the data (3.1) and (3.2) respectively. If α 1 ζ 1 < 1, then where α 1 are defined as (3.23) and T 1, T 1, F l 1 ( µ µ 1 + λ λ 1 ), (3.31) ζ 1 =( k 1δ 1 η 1 + δ k 3 1 )( µ µ 1 + λ λ 1 ), (3.32)

9 A Stability Analysis of the (k)-jacobi Matrix Inverse Eigenvalue Problem 123 l 1 =1+2 (δ1η i 1 + iδ1 i 1 (1 + 2)α 1 ) S1 2, (3.33) 1 α 1 ζ 1 δ 1 =max{ S1, S1, 1}. (3.34) Proof Start by observing that T 1, = Q 1 Λ 1 Q T 1, T 1, = Q 1 Λ1 QT 1 and Q T 1 e = q 1, Q T 1 ẽ = q 1. (3.35) Let W 1 = Q 1 Q 1, Ω 1 =Λ 1 Λ 1. (3.36) Thus T 1, T 1, = Q 1 Λ 1 Q T 1 Q 1 Λ1 QT 1 = Q 1 Λ 1 W T 1 +(Q 1 Λ 1 Q 1 Λ1 ) Q T 1 = Q 1 Λ 1 W T 1 +(Q 1 Λ 1 Q 1 Λ 1 + Q 1 Λ 1 Q 1 Λ1 ) Q T 1 = Q 1 Λ 1 W T 1 + W 1Λ 1 QT 1 + Q 1 Ω 1 QT 1. (3.37) Hence we have T 1, T 1, F Ω 1 F +2 Λ 1 F W 1 F. (3.38) As K 1 =[Λ 1 q 1, Λ k 3 1 q 1, q 1 ] R () (), it is easy to get that Q 1 K 1 =[T 1, e,t k 3 1, e, e ]=L 1, (3.39) where L 1 is an lower triangular matrix with positive diagonal elements, and K 1 = Q T 1 L 1 is the QL factorization of K 1. From the same reason, we can get the QL factorization of K 1 as K 1 = Q T 1 L 1. Let E 1 = K 1 K 1. (3.40) Then E 1 2 = K 1 K 1 2

10 124 Hou Wenyuan Jiang Erxiong = [Λ 1 q 1 Λ 1 q 1, Λ k 3 k 3 1 q 1 Λ 1 q 1,,q 1 q 1 ] 2 On the other hand we notice that max 0i Λi 1q 1 Λ i 1 q 1 1 Thus by Lemma 3.5 and 3.6 we know if then max ( 0i Λi 1 1 q 1 q Λ i 1 Λ i 1 1) δ1 q 1 q 1 1 +δ1 k 3 Λ 1 Λ 1 1 ( k 1δ1 η 1 + δ1 k 3 )( µ µ 1 + λ λ 1 ) = ζ 1. (3.41) K 1 +( E 1 )=(Q T 1 +( W 1 ) T )(L 1 + F 1 ). K E 1 2 α 1 ζ 1 < 1. W 1 F (1 + 2) K K E 1 2 E 1 F (1 + 2)α 1 E 1 F. (3.42) 1 α 1 ζ 1 So by the Lemma 3.3 we can get that E 1 F = K 1 K 1 F = [Λ 1 q 1 Λ 1 q 1, Λ k 3 1 q 1 Λ k 3 1 q 1,,q 1 q 1 ] F Λ i 1 q 1 Λ i 1 q 1 2 Λ i 1 2 q 1 q δ1 i q 1 q Λ i 1 Λ i 1 2 iδ i 1 1 Λ 1 Λ 1 2 (δ1 i η 1 + iδ1 i 1 )( µ µ 1 + λ λ 1 ). (3.43) Thus substituting (3.42) and (3.43) into (3.38) we get the inequality that T 1, T 1, F Ω 1 F +2 Λ 1 F W 1 F [1 + 2 (δ1η i 1 + iδ1 i 1 (1 + 2)α 1 ) S1 2 ] 1 α 1 ζ 1 ( µ µ 1 + λ λ 1 ) = l 1 ( µ µ 1 + λ λ 1 ). (3.44)

11 A Stability Analysis of the (k)-jacobi Matrix Inverse Eigenvalue Problem 125 From this we have proved the Theorem 3.7. Theorem 3.8 Let T k,,and T k, are the solution by the data (3.1) and (3.2) respectively. If α 2 ζ 2 < 1, then where α 2 are defined as (3.24) and T k, T k, l 2 ( µ µ 1 + λ λ 1 ), (3.45) ζ 2 =( n kδ1 n η 2 + δ2 n )( µ µ 1 + λ λ 1 ) (3.46) n l 2 =1+2 (δ2η i 2 + iδ2 i 1 (1 + 2)α 2 ) S2 2 1 α 2 ζ 2 (3.47) δ 2 =max{ S2, S2, 1}. (3.48) Proof The proof of this theorem are absolutely similar to the theorem above. The only difference we need to notice is the (3.39) change to Q 2 K 2 =[e 1,T k, e 1 T n k, e 1]=R 2, where R 2 is an upper triangular matrix and K 2 = Q T 2 R 2 is the QR factorization of K 2. Theorem 3.9 Let T 1,n,and T 1,n are the solution by the data (3.1) and (3.2) respectively. If max{α 1 ζ 1,α 2 ζ 2 } < 1, then T 1,n T 1,n F L( µ µ 1 + λ λ 1 ) (3.49) where L =1+ρ 1 + ρ 2 + l 1 + l 2 (3.50) and ρ 1, ρ 2, l 1, l 2 are defined by (3.15)(3.16)(3.33)(3.47) respectively. Proof By the theorem (3.2)(3.7) and (3.8) we obtain that T 1,n T 1,n F T 1, T 1, F + T k, T k, F + β β + β k β k + a k ã k (1 + ρ 1 + ρ 2 + l 1 + l 2 )( µ µ 1 + λ λ 1 ). Theorem 3.10 The algorithm 2.2 is Lipschitz continuous. Proof By the Cauchy-Schwarz inequality n n x i y i ( x 2 i ) n 1 2 ( yi 2 ) 1 2 we get from the Theorem 3.9 immediately that T 1,n T 1,n F 2n 1L( µ µ λ λ 2 2 ) 1 2. Thus we obtain our result.

12 126 Hou Wenyuan Jiang Erxiong 4 Numerical Example Now we will solve a practical example by using the algorithm 2.2 and look its stability. Let T 1,9 = (4.1) Its eigenvalues are λ = (4.2) Pick k = 5, and delete 5th row and 5th column from T 1,9. There are two submatrices T 1,4 and T 6,9. The eigenvalues of them are S1 = , (4.3) respectively. S2 = Thus we can construct a Jacobi matrix T (1) 1, (4.4) by algorithm 2.2 from the data λ,s1 ands2. Note ε 1 = (1, 1, 1, 1, 1, 1, 1, 1, 1), ε 2 = (1, 1, 1, 1) and ε 3 = (1, 1, 1, 1), so we can construct T (2) 1,9 by the data λ + ε 1,S1 +ε 2, S2+ε 2 and T (3) 1,9 by the data λ + ε 1, S1+ε 3, S2+ε 3 respectively. Now we get a table to compare the difference between T (1) (2) (3) 1,9,T 1,9 and T 1,9.

13 A Stability Analysis of the (k)-jacobi Matrix Inverse Eigenvalue Problem 127 α i T 1,9 T (1) 1,9 T (2) 1,9 T (3) 1, β i T 1,9 T (1) 1,9 T (2) 1,9 T (3) 1, References 1 Jiang E X. An inverse eigenvalue problem for Jacobi Matrices. J. Comput. Math., Vol. 21, No. 3, Sept. 2003, 21: Xu S F. A stability analysis of the Jacobi matrix inverse eigenvalue problem. BIT, 1993, 33: Hald O H. Inverse eigenvalue problems for Jacobi matrices. Linear Algebra Appl., 1976, 14: Sun J G. Perturbation bounds for the Cholesky and QR factorizations. BIT, 1991, 33: Gautschi W. Norm estimate for inverse of Vandermonde matrices. Numer. Math., 1975, 23: Jiang E X. Symmetrical Matrix Computing (Chinese). Shanghai: Shanghai Science and Technology Press, Wilkinson J H. The algebraic eigenvalue problem (Chinese). Beijing: Science Press, 2001 Hou Wenyuan Dept. of Math., Shanghai University, Shanghai , PRC. Jiang Erxiong Dept. of Math., Shanghai University, Shanghai , PRC.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

On Numerical Radius of Some Matrices

On Numerical Radius of Some Matrices International Journal of Mathematical Analysis Vol., 08, no., 9-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ijma.08.75 On Numerical Radius of Some Matrices Shyamasree Ghosh Dastidar Department

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

Appendix to Technology Transfer and Spillovers in International Joint Ventures

Appendix to Technology Transfer and Spillovers in International Joint Ventures Appendix to Technology Transfer and Spillovers in International Joint Ventures Thomas Müller Monika Schnitzer Published in Journal of International Economics, 2006, Volume 68, 456-468 Bundestanstalt für

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα