Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ"

Transcript

1 Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι α: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής

2 Μαθηματικός Περιηγητής

3 Κεφάλαιο ο : Διανύσματα Περιεχόμενα Θέμα ο...5 Θέμα 4 ο... Κεφάλαιο ο : Ευθείες Θέμα ο...5 Θέμα 4 ο... Μαθηματικός Περιηγητής 3

4 Κ Ε Φ Α Λ Α Ι Ο ο Δ Ι Α Ν Υ Σ Μ Α Τ Α Μαθηματικός Περιηγητής 4

5 Θ Ε Μ Α ο Μαθηματικός Περιηγητής 5

6 ΘΕΜΑ Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Δίνονται τα διανύσματα και με, α) Να βρείτε το εσωτερικό γινόμενο. 3 και,. β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος και είναι κάθετα να βρείτε την τιμή του κ. ΘΕΜΑ Δίνονται τα διανύσματα i j και 7, 3, i 5 j α) Να αποδείξετε ότι τα διανύσματα,, είναι μη συγγραμμικά ανά δύο β) Να γραφεί το διάνυσμα ως γραμμικός συνδυασμός των διανυσμάτων και (Μονάδες 5) ΘΕΜΑ 3 Δίνονται τα σημεία Α(, 3), Β(-, 5) και Γ(-, -4). α) Να αποδείξετε ότι σχηματίζουν τρίγωνο. β) Να βρείτε το συμμετρικό Δ του Β ως προς το μέσο Μ της ΑΓ. γ) Τι σχήμα είναι το ΑΒΓΔ; Να αιτιολογήσετε τον ισχυρισμό σας. ΘΕΜΑ 4 Θεωρούμε τα σημεία Α(+α, 4α-) και Β(5α+, -α), a. α) Να γράψετε το AB συναρτήσει του α και να βρείτε το α ώστε AB 0. (Μονάδες ) Μαθηματικός Περιηγητής 6

7 β) Έστω α=. Να βρείτε σημείο Μ του άξονα x x ώστε το τρίγωνο ΜΑΒ να είναι ισοσκελές με βάση την ΑΒ. ΘΕΜΑ 5 Έστω, δύο διανύσματα του επιπέδου για τα οποία ισχύουν: 3 a 9, a και, 3 α) Να βρείτε τα μέτρα των διανυσμάτων, και το εσωτερικό γινόμενο (Μονάδες 3) β) Να υπολογίσετε το μέτρο του διανύσματος u 3. (Μονάδες ) (Μονάδες 3) ΘΕΜΑ 6 Δίνονται τα διανύσματα, 3 και,. α) Να βρείτε την προβολή του a πάνω στο. β) Να αναλύσετε το a σε δύο κάθετες συνιστώσες από τις οποίες η μία να είναι παράλληλη με το ΘΕΜΑ 7 Δίνονται τα διανύσματα, 3 και,. α) Να βρείτε τις συντεταγμένες του διανύσματος u. β) Να βρείτε τον θετικό αριθμό x για τον οποίο τα διανύσματα u και v x, x (Μονάδες 5) είναι κάθετα. (Μονάδες 5) ΘΕΜΑ 8 Μαθηματικός Περιηγητής 7

8 Δίνονται τα διανύσματα, 3 α) Τη γωνία, ˆ και 3, 3. Να υπολογίσετε: u. β) Το διάνυσμα (Μονάδες5) ΘΕΜΑ 9 Δίνονται τα διανύσματα, με, και, ˆ. Να υπολογίσετε τα εξής: 3 α) Το εσωτερικό γινόμενο των διανυσμάτων, και κατόπιν την τιμή της παράστασης β) Το συνημίτονο της γωνίας των διανυσμάτων και. (Μονάδες 5) ΘΕΜΑ 0 Έστω, δυο διανύσματα με, α) Να υπολογίσετε τα εσωτερικά γινόμενα 5,, ˆ και u. 6 και u β) Να βρείτε το μέτρο του διανύσματος u. (Μονάδες 6) (Μονάδες 9) ΘΕΜΑ Θεωρούμε τα σημεία Α(α+, 3), Β(α, 4) και Γ(-4, 5α+4), a. α) Να βρείτε τα διανύσματα AB, B. β) Να βρείτε για ποια τιμή του α, τα Α, Β, Γ είναι συνευθειακά. γ) Αν α=, να βρείτε αριθμό λ ώστε A AB Μαθηματικός Περιηγητής 8

9 ΘΕΜΑ Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Θεωρούμε τα σημεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση: 5P PK 3PM α) Να αποδείξετε ότι τα σημεία Κ, Λ και Μ είναι συνευθειακά. β) Για τα παραπάνω σημεία σημεία Κ, Λ και Μ να δείξετε ότι ισχύει: A 3, όπου Α και Β είναι σημεία του επιπέδου. ΘΕΜΑ 3 Δίνονται τα διανύσματα, με 4 και 8. α) Να υπολογίσετε τη γωνία, ˆ. (Μονάδες 5) β) Να αποδείξετε ότι 0. (Μονάδες 5) ΘΕΜΑ 4 Δίνονται τα διανύσματα, με 7, και. α) Να υπολογίσετε τα και. β) Να υπολογίσετε το μέτρο του διανύσματος. (Μονάδες 6) γ) Να βρείτε την προβολή του στο διάνυσμα. (Μονάδες 9) ΘΕΜΑ 5 Δίνονται τα διανύσματα, 7 και, 4 α) Να βρεθεί η προβολή του πάνω στο. Μαθηματικός Περιηγητής 9

10 α) Να βρείτε τις συντεταγμένες των και (Μονάδες ) Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών β) Να αναλύσετε το σε δύο κάθετες μεταξύ τους συνιστώσες, από τις οποίες, η μία να είναι παράλληλη στο. (Μονάδες 5) ΘΕΜΑ 6 Δίνονται τα διανύσματα i 4 j, 3i j και 5i 5 j, όπου i και j είναι τα μοναδιαία διανύσματα των αξόνων και αντίστοιχα. β) Να εξετάσετε αν τα σημεία Α, B και Γ μπορεί να είναι κορυφές τριγώνου. (Μονάδες 3) ΘΕΜΑ 7 Δίνεται παραλληλόγραμμο ΑΒΓΔ και E, Z σημεία τέτοια ώστε:, 5. 7 α) Να γράψετε τα διανύσματα και ως γραμμικό συνδυασμό των και. β) Να αποδείξτε ότι τα σημεία B, Z και E είναι συνευθειακά. (Μονάδες3) (Μονάδες ) ΘΕΜΑ 8 Δίνεται τρίγωνο ΑΒΓκαι σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και 5 α) Να γράψετε το διάνυσμα ως γραμμικό συνδυασμό των και. (Μονάδες 3) β) Να δείξετε ότι τα διανύσματα και είναι παράλληλα. (Μονάδες ) Μαθηματικός Περιηγητής 0

11 ΘΕΜΑ 9 Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Δίνονται τα διανύσματα 6 9, 3 α) Να βρείτε το εσωτερικό γινόμενο και, 6, όπου β) Να βρείτε τις τιμές του, ώστε τα διανύσματα και να είναι κάθετα. γ) Για να βρείτε το διάνυσμα. ΘΕΜΑ 0 Έστω τα διανύσματα και για τα οποία : α) Να αποδείξετε ότι β) Να υπολογίσετε τα μέτρα των διανυσμάτων και, ˆ 60 και 0 (Μονάδες 9) (Μονάδες 5) ΘΕΜΑ Σε τρίγωνο ΑΒΓ είναι: 4, 6,, 8 α) Να βρείτε τις συντεταγμένες του διανύσματος, όπου είναι η διάμεσος του τριγώνου ΑΒΓ. β) Να αποδείξετε ότι η γωνία ˆ είναι οξεία.. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει 3,, να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Μαθηματικός Περιηγητής

12 Θ Ε Μ Α 4 ο Μαθηματικός Περιηγητής

13 ΘΕΜΑ α) Να εξετάσετε πότε ισχύει καθεμιά από τις ισότητες: u v u v και u v u v β) Δίνονται τα διανύσματα a,, για τα οποία ισχύουν: a 0 i) Να αποδείξετε ότι: και ii) Να αποδείξετε ότι: και (Μονάδες0) a ΘΕΜΑ 3 Δίνονται τα διανύσματα, και για τα οποία ισχύουν: a,, ˆ a, 60 και a, όπου α) Να υπολογίσετε το εσωτερικό γινόμενο a β) Αν ισχύει, τότε: i) να αποδείξετε ότι: (Μονάδες 3) (Μονάδες 6) ii) να υπολογίσετε το μέτρο του διανύσματος iii) να αποδείξετε ότι τα διανύσματα 3 και είναι κάθετα. Μαθηματικός Περιηγητής 3

14 Κ Ε Φ Α Λ Α Ι Ο ο Η Ε Υ Θ Ε Ι Α Σ Τ Ο Ε Π Ι Π Ε Δ Ο Μαθηματικός Περιηγητής 4

15 Θ Ε Μ Α ο Μαθηματικός Περιηγητής 5

16 ΘΕΜΑ 4 Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Θεωρούμε μια ευθεία (ε) και ένα σημείο Α(6, -) εκτός της (ε). Έστω Μ(, ) η προβολή του Α στην (ε). Να βρείτε: α) Την εξίσωση της ευθείας (ε). β) Το συμμετρικό του Α ως προς την (ε). (Μονάδες 3) (Μονάδες ) ΘΕΜΑ 5 Δίνονται τα διανύσματα, και 3, 0 α) Να βρείτε τις συντεταγμένες του διανύσματος u 4. 3 β) Να βρείτε την εξίσωση της ευθείας που έχει συντελεστή διεύθυνσης το σημείο Aa,. u 5 και διέρχεται από (Μονάδες 5) ΘΕΜΑ 6 Θεωρούμε μια ευθεία (ε) και ένα σημείο Α(6, -) εκτός της (ε). Έστω Μ(, ) η προβολή του Α στην (ε). Να βρείτε: α) Την εξίσωση της ευθείας (ε). β) Το συμμετρικό του Α ως προς την (ε). ΘΕΜΑ 7 (Μονάδες 3) (Μονάδες ) Δίνεται τρίγωνο ΑΒΓ με A 5, 4, B, 6, 4, και σημείο Μ της πλευράς ΑΒ για το οποίο ισχύει AM AB. 4 α) Να βρείτε τις συντεταγμένες του διανύσματος AB. β) Να βρείτε τις συντεταγμένες του σημείου Μ. (Μονάδες 6) Μαθηματικός Περιηγητής 6

17 γ) Αν το σημείο Μ έχει συντεταγμένες που διέρχεται από τα σημεία Γ, Μ. ΘΕΜΑ 8 (Μονάδες 9) 9 4,, να υπολογίσετε την εξίσωση της ευθείας Δίνεται τρίγωνο ΑΒΓ με κορυφές τα σημεία A3,, B, και, 4. α) Να βρείτε την εξίσωση της πλευράς ΑΓ. β) Να βρείτε τις εξισώσεις του ύψους ΒΔ και της διαμέσου ΑΜ. (Μονάδες 8) ΘΕΜΑ 9 Δίνεται η ευθεία : x y 0 και το σημείο 5, A. α) Να βρείτε την εξίσωση της ευθείας, η οποία διέρχεται από το Α και είναι κάθετη προς την ευθεία ε. (Μονάδες 9) β) Να βρείτε την εξίσωση της ευθείας, η οποία διέρχεται από το Α και είναι παράλληλη προς τον άξονα x x. γ) Να βρείτε το σημείο τομής των ευθειών και και και την απόστασή του από την αρχή των αξόνων. ΘΕΜΑ 30 (Μονάδες 9) Θεωρούμε το ευθύγραμμο τμήμα ΑΒ με μέσο Μ και A,, M, 5 α) Να βρείτε τις συντεταγμένες του σημείου Β. β) Να βρείτε την εξίσωση της μεσοκαθέτου ε του ευθυγράμμου τμήματος ΑΒ, καθώς και τα κοινά σημεία αυτής με τους άξονες x x και y y. (Μονάδες 5) Μαθηματικός Περιηγητής 7

18 ΘΕΜΑ 3 Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Δίνονται τα σημεία A, και, 3 B. α) Να βρείτε την εξίσωση της ευθείας ε που διέρχεται από τα σημεία Α, Β. (Μονάδες ) β) Να υπολογίσετε το εμβαδόν του τριγώνου ΟΚΛ, όπου Ο είναι η αρχή των αξόνων και Κ, Λ είναι τα σημεία τομής της ε με τους άξονες x x και y y αντίστοιχα. ΘΕΜΑ 3 (Μονάδες 4) Δίνεται παραλληλόγραμμο ΑΒΓΔμε τρεις κορυφές τα σημεία A,, 4, 3 και, 3 α) Να υπολογίσετε τα μήκη των πλευρών του ΑΒΓΔ.. (Μονάδες 9) β) Να υπολογίσετε τις συντεταγμένες του σημείου τομής Κ των διαγωνίων ΑΓκαι ΒΔ, καθώς και τις συντεταγμένες της κορυφής Β. ΘΕΜΑ 33 Δίνονται οι ευθείες σημείο Α(, -). (Μονάδες 6) : x y 5 0, : 3 x y 5 0 με και το α) Να αποδείξετε ότι, για κάθε τιμή του οι ευθείες τέμνονται. β) Αν οι ευθείες τέμνονται στο σημείοα, να βρείτε την τιμή του. γ) Έστω λ= και Β, Γ τα σημεία που οι και τέμνουν τον άξονα y y. Να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. ΘΕΜΑ 34 Δίνεται η ευθεία (ε): ( ) : y x και το σημείο, 4 A. α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από το Α και είναι κάθετη στην (ε). β) Να βρείτε την προβολή του σημείου Α πάνω στην ευθεία ( ). (Μονάδες 5) Μαθηματικός Περιηγητής 8

19 ΘΕΜΑ 35 Έστω M 3, 5 το μέσο ευθυγράμμου τμήματος ΑΒ με, α) Να βρείτε: i) τις συντεταγμένες του σημείου Β. A. ii) την εξίσωση της ευθείας που διέρχεται από τα σημεία Α και Β. (Μονάδες 6) β) Να βρείτε τις συντεταγμένες σημείου Κ του άξονα x x έτσι, ώστε να ισχύει KA KB. (Μονάδες ) ΘΕΜΑ 36 Θεωρούμε την ευθεία B 0, 6 αντίστοιχα. α) Να βρείτε την εξίσωση της ευθείας. που τέμνει τους άξονες x x και y y στα σημεία 3, 0 A και β) Αν είναι η ευθεία που διέρχεται από την αρχή των αξόνων και είναι κάθετη στην, τότε να βρείτε: i) την εξίσωση της ευθείας, ii) τις συντεταγμένες του σημείου τομής των ευθειών και. (Μονάδες 9) ΘΕΜΑ 37 Δίνονται οι ευθείες : 3x y 3 0 και : x y 4 0 α) Να βρείτε τις συντεταγμένες του σημείου τομής Α των ευθειών και β) Αν η ευθεία τέμνει τον άξονα y y στο σημείο Β και η ευθεία τέμνει τον άξονα x x στο σημείο Γ, τότε: i) να βρείτε τις συντεταγμένες των σημείων Β και Γ. Μαθηματικός Περιηγητής 9

20 ii) να αποδείξετε ότι η ευθεία που διέρχεται από τα Β και Γέχει εξίσωση την 3x 4y 0 (Μονάδες 9) ΘΕΜΑ 38 Δίνονται οι ευθείες : x 3y 5 0 και : 3x y 5 0 α) Να αποδείξετε ότι οι ευθείες και είναι κάθετες μεταξύ τους. β) Να βρείτε τις συντεταγμένες του σημείου τομής Α των ευθειών και (Μονάδες 9) (Μονάδες 9) γ) Να βρείτε την εξίσωση της ευθείας που διέρχεται από το σημείο Α και την αρχή Ο των αξόνων. ΘΕΜΑ 39 Δίνονται οι ευθείες :8 x y 8 0 και : x y 0 οι οποίες τέμνονται στο σημείο Μ. α) Να βρείτε τις συντεταγμένες του σημείου Μ και, στη συνέχεια, να βρείτε την εξίσωση της ευθείας που διέρχεται από το Μ και είναι κάθετη στον άξονα x x. β) Να αποδείξετε ότι οι ευθείες που διέρχονται από το Μ και έχουν συντελεστή διεύθυνσης λ έχουν εξίσωση την: x y 3 4 0, όπου. (Μονάδες 5) ΘΕΜΑ 40 Δίνονται οι ευθείες : x 8y 6 0 και : x y 5 0 οι οποίες τέμνονται στο σημείο Μ. Αν οι ευθείες και τέμνουν τον άξονα y y στα σημεία Α και B αντίστοιχα, τότε: α) να βρείτε τις συντεταγμένες των σημείων Μ, A και B β) αν Κ είναι το μέσο του τμήματος ΑΒ, να βρείτε τον συντελεστή διεύθυνσης του διανύσματος (Μονάδες 5) Μαθηματικός Περιηγητής 0

21 ΘΕΜΑ 4 Δίνονται οι παράλληλες ευθείες : x y 8 0, : x 4y 0 0 και το σημείο Α της που έχει τετμημένη το 4. α) Να βρείτε τις συντεταγμένες του σημείου Α. (Μονάδες 5) β) Να βρείτε την εξίσωση της ευθείας η οποία διέρχεται από το σημείο Α και είναι κάθετη στην ευθεία. γ) Αν Β είναι το σημείο τομής των ευθειών και, τότε να βρείτε τις συντεταγμένες του Β. ΘΕΜΑ 4 Δίνονται τα σημεία A, και 5, 6 B. α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από τα σημεία A και B. β) Να αποδείξετε ότι η μεσοκάθετος του ευθυγράμμου τμήματος AB έχει εξίσωση την y x 7 (Μονάδες 5) Μαθηματικός Περιηγητής

22 Θ Ε Μ Α 4 ο Μαθηματικός Περιηγητής

23 ΘΕΜΑ 43 Δίνονται τα σημεία A,, B, και 4, 6,. α) Να βρείτε την μεσοκάθετο του τμήματος ΒΓ. β) Αν το σημείο Α ισαπέχει από τα σημεία Β και Γ, να βρείτε την τιμή του λ. γ) Για λ=4, να βρείτε σημείο Δ ώστε το τετράπλευρο ΑΒΔΓ να είναι ρόμβος. ΘΕΜΑ 44 Θεωρούμε ευθύγραμμο τμήμα ΑΒ που είναι παράλληλο προς τηνευθεία : y x, με,,, A x y B x y και x x. Αν το σημείο M 3, 5 είναι το μέσο του ευθυγράμμου τμήματος ΑΒκαι το γινόμενο των τετμημένων των σημείων Α και Β ισούται με 5, τότε: α) να υπολογίσετε τις συντεταγμένες των σημείων Ακαι Β. (Μονάδες 3) β) να αποδείξετε ότι OAB 4, όπου Οείναι η αρχή των αξόνων. γ) να αποδείξετε ότι τα σημεία K x, y για τα οποία ισχύει KAB OAB ευθείες με εξισώσεις τις: x y 0 και x y 6 0 (Μονάδες 5) ανήκουν στις ΘΕΜΑ 45 Δίνονται τα σημεία A3, 4, B 5, 7 και, 3, όπου α) Να βρείτε τις συντεταγμένες των διανυσμάτων και και, στη συνέχεια, να αποδείξετε ότι τα σημεία Α, B και Γ δεν είναι συνευθειακά για κάθετιμή του μ. β) Να αποδείξετε ότι: i) το εμβαδόν του τριγώνου ΑΒΓδεν εξαρτάται από το μ. (Μονάδες 5) ii) για κάθε τιμή του μτο σημείο Γ ανήκει σε ευθεία ε, της οποίας να βρείτε την εξίσωση. Μαθηματικός Περιηγητής 3

24 α) Να βρείτε τις συντεταγμένες των διανυσμάτων AB και B Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών γ) Να ερμηνεύσετε γεωμετρικά γιατί το εμβαδόν του τριγώνου ΑΒΓ παραμένει σταθερό, ανεξάρτητα από την τιμή του μ; (Μονάδες 5) ΘΕΜΑ 46 3 Δίνονται τα σημεία A,, B, και 4,, όπου. β) Να αποδείξετε ότι για κάθε το σημείο Γ ανήκει στην ευθεία που διέρχεται από τα σημεία Α και Β γ) Να βρείτε την τιμή του μ έτσι, ώστε B AB (Μονάδες 6) δ) Για την τιμή του μ που βρήκατε στο ερώτημα γ), να αποδείξετε ότι, όπου O είναι η αρχή των αξόνων. (Μονάδες 3) ΘΕΜΑ 47 Δίνονται οι ευθείες : x y 3 0 και x : 3 y 6 0, όπου α) Να εξετάσετε αν υπάρχει τιμή του κ, ώστε οι ευθείες να είναι παράλληλες. β) Να βρείτε την αμβλεία γωνία που σχηματίζουν οι ευθείες (ε) και (ζ). (Μονάδες 5) ΘΕΜΑ 48 Δίνονται τα διανύσματα a και b με μέτρα, 6 αντίστοιχα και 0, γωνία. ab x ab y 5 0 () Επίσης δίνεται η εξίσωση α) Να αποδείξετε ότι η () παριστάνει ευθεία για κάθε 0, η μεταξύ τους (Μονάδες 3) Μαθηματικός Περιηγητής 4

25 β) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα ψ ψ, να αποδείξετε ότι b 3 γ) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα χ χ, να αποδείξετε ότι b 3 δ) Αν η παραπάνω ευθεία είναι παράλληλη στην διχοτόμο πρώτης και τρίτης γωνίας των αξόνων, να αποδείξετε ότι b ΘΕΜΑ 49 Δίνονται οι ευθείες : 3x y 3 0 και : x y 4 0 α) Να βρείτε τις συντεταγμένες του σημείου τομής Α των ευθειών και (Μονάδες 5) β) Αν η ευθεία τέμνει τον άξονα y y στο σημείο Β και η ευθεία τέμνει τον άξονα x x στο σημείο Γ, τότε: i) να βρείτε εξίσωση της ευθείας που διέρχεται από τα σημεία Β και Γ ii) να βρείτε το εμβαδόν του τριγώνου ΑΒΓ γ) Να αποδείξετε ότι τα σημεία K x, y για τα οποία ισχύει KB AB (Μονάδες 5) (Μονάδες 5) ανήκουν σε δύο παράλληλες ευθείες, των οποίων να βρείτε τις εξισώσεις. ΘΕΜΑ 50 Δίνεται η εξίσωση x y xy 3x 3 y 0, με λ διαφορετικό του 0. α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει στο επίπεδο, δύο ευθείες παράλληλες μεταξύ τους, καθεμιά από τις οποίες έχει κλίση ίση με. (Μονάδες ) β) Αν το εμβαδόν του τετραγώνου του οποίου οι δύο πλευρές βρίσκονται πάνω στις ευθείες του ερωτήματος α) είναι ίσο με, να βρείτε την τιμή του λ. (Μονάδες 3) ΘΕΜΑ 5 Μαθηματικός Περιηγητής 5

26 Δίνεται η εξίσωση: x xy y x y α) Να αποδείξετε ότι η εξίσωση παριστάνει γεωμετρικά δύο ευθείες γραμμές και οι οποίες είναι παράλληλες μεταξύ τους. β) Αν : x y 0 και : x y 4 0, να βρείτε την εξίσωση της μεσοπαράλληλης των και. γ) Αν Α είναι σημείο της ευθείας με τεταγμένη το και Β σημείο της ευθείας με τετμημένη το, τότε: i) να βρείτε τις συντεταγμένες των σημείων Aκαι Β (Μονάδες ) ii) να βρείτε τις συντεταγμένες δύο σημείων Γ και Δ της ευθείας έτσι, ώστε το τετράπλευρο ΑΓΒΔ να είναι τετράγωνο. ΘΕΜΑ 5 Δίνονται τα διανύσματα 4, και, α) Να αποδείξετε ότι τα διανύσματα και, β) Αν, i) να αποδείξετε ότι: 3, 4 και 4,, όπου Ο είναι η αρχή των αξόνων. είναι κάθετα. είναι σημείο της ευθείας που διέρχεται από τα σημεία Α και Β, τότε: (Μονάδες 4) ii) να αποδείξετε ότι: (Μονάδες 5) (Μονάδες 6) iii) αν επιπλέον τα διανύσματα και είναι κάθετα, να βρείτε τις συντεταγμένες του σημείου Γ. ΘΕΜΑ 53 Δίνεται η ευθεία : x 4y 7 0 και τα σημεία A, 4 και B, 6 Μαθηματικός Περιηγητής 6

27 α) Να βρείτε τις συντεταγμένες σημείου M της ευθείας το οποίο ισαπέχει από τα σημεία A και B β) Να υπολογίσετε το εμβαδόν του τριγώνου ΜΑΒ γ) Να αποδείξετε ότι τα σημεία K x, y για τα οποία ισχύει KAB MAB ανήκουν στις ευθείες με εξισώσεις τις: x y 5 0 και x y 5 0 ΘΕΜΑ 54 Δίνονται οι ευθείες : x y και :0x y 4 0, όπου. α) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ οι ευθείες και τέμνονται, και να βρείτε τις συντεταγμένες του σημείου τομής τους M β) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ το σημείο M ανήκει στην ευθεία :8x y 6 0 γ) Αν η ευθεία τέμνει τους άξονες και στα σημεία Α και B αντίστοιχα, τότε: i) να βρείτε την εξίσωση της ευθείας ζ που διέρχεται από την αρχή Ο των αξόνων και είναι παράλληλη προς την ευθεία AB ii) αν Κ είναι τυχαίο σημείο της ευθείας ζ, να αποδείξετε ότι KAB 9 4 (Μονάδες 5) (Μονάδες 6) ΘΕΜΑ 55 Σε τρίγωνο ΑΒΓ είναι,, 3, το μέσο της πλευράς ΒΓ α) Να αποδείξετε ότι,, όπου 0 και, και Μ είναι Μαθηματικός Περιηγητής 7

28 β) Να βρείτε την τιμή του λ για την οποία το διάνυσμα είναι κάθετο στο διάνυσμα, γ) Για την τιμή του λ που βρήκατε στο ερώτημα (β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ Μαθηματικός Περιηγητής 8

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (39) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Δίνεται η ευθεία (ε) με εξίσωση: 2x y1 0 καθώς και το σημείο Μ(3,0). α. Να βρείτε την εξίσωση μιας ευθείας (η) που περνά από το Μ και είναι κάθετη στην ευθεία (ε). β. Να

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία

Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία 1 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Μέρος Α : Θεωρία ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Εξίσωση Γραμμής Μια εξίσωση με δύο αγνώστους, λέγεται εξίσωση μιας γραμμής C, όταν οι συντεταγμένες των σημείων της C, και μόνο αυτές, την επαληθεύουν.

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...

Διαβάστε περισσότερα

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ)

Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΥΘΕΙΑ Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστό (Σ) ή λάθος (Λ) 1. Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία με τον

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης ενός συστήματος συντεταγμένων για τον προσδιορισμό της θέσης ενός σημείου πάνω σε μια επιφάνεια προέρχεται από την Γεωγραφία και ήταν γνωστή στους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα.

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1.

Ασκήσεις στην ευθεία. 2. Θεωρούµε την γραµµή µε εξίσωση x 2 +y 2-2x+y-5=0. Βρείτε τα σηµεία της καµπύλης, αν υπάρχουν, µε τετµηµένη -1. Ασκήσεις στην ευθεία 1. Να βρείτε τα σηµεία τοµής των γραµµών µε εξισώσεις : α) 7x-11y+1=0, x+y-=0 β) y-3x-=0, x +y =4 γ) x +y =α, 3x+y+α=0. Θεωρούµε την γραµµή µε εξίσωση x +y -x+y-5=0. Βρείτε τα σηµεία

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

2 ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΥΘΕΙΑ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ 1. Να βρείτε τον συντελεστή διεύθυνσης μιας ευθείας ε, που σχηματίζει με τον άξονα x x γωνία: π 3 α) ω = β) ω = γ) ω = π 3. Να βρείτε τη γωνία ω που σχηματίζει με

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα Εξετάσεων

Επαναληπτικά Θέµατα Εξετάσεων Επαναληπτικά Θέµατα Εξετάσεων Καθηγητής : Νικόλαος. Κατσίπης 19 Απριλίου 2013 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας εύχοµαι καλό διάβασµα και...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Θετικής-Τεχνολογικής Κατεύθυνσης Β Λυκείου Θέμα A. Να αποδείξετε ότι η εξίσωση της εφαπτομένης του κύκλου στο σημείο του Α, ) είναι 8 μονάδες) Β. Να δώσετε τον ορισμό

Διαβάστε περισσότερα

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a=

32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= 32 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Α1) Έστω το διάνυσμα a= ( xy, ). Να ορίσετε τις έννοιες α)μέτρο του διανύσματος και β) συντελεστής διεύθυνσης του διανύσματος Α2) Να γράψετε τους τύπους

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3

1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: 2π 3 Ερωτήσεις ανάπτυξης 1. * Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = 2π 3 γ) ω = π 2. * Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Εφαρμογές Να βρείτε για καθεμιά από τις παρακάτω γραμμές αν είναι γραφική παράσταση κάποιας συνάρτησης. 4-1 1 () (1) (3) (4) (5) (6) Αν υπάρχει ευθεία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0

ΚΕΦΑΛΑΙΟ 3 Ο. Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 ΚΕΦΑΛΑΙΟ 3 Ο Ι) ΚΥΚΛΟΣ 1. Να βρεθεί η εξίσωση του κύκλου που έχει κέντρο το O(0,0) και ι) διέρχεται από το Α( 4, 3) και ιι) εφάπτεται στην 4x 3y+10=0 2. Να βρεθεί η εξίσωση της εφαπτομένης του κύκλου x

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα. ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Ο 863 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε: AΔ=AB+5AΓ και AΕ =5AB+AΓ α) Να γράψετε το διάνυσμα ΔΕ ως γραμμικό συνδυασμό των AB και AΓ ) Να δείξετε ότι τα διανύσματα

Διαβάστε περισσότερα

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R

ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Κεφάλαιο 4ο: Ερωτήσεις του τύπου «Σωστό - Λάθος» k R Κεφάλαιο 4ο: ΚΩΝΙΚΕΣ ΤΟΜΕΣ Α. ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό - Λάθος» 1. * Η εξίσωση ( x x ) + ( y y ) = k, k R είναι πάντοτε εξίσωση κύκλου. o o. * Η εξίσωση x + y + Ax + By + Γ = 0 παριστάνει κύκλο

Διαβάστε περισσότερα

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις)

Β Λυκείου- Μαθηματικά Κατεύθυνσης. Μέρος Α Θεωρία. (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) 1 Μέρος Α Θεωρία (Ορισμοί, θεωρήματα, αποδείξεις, παρατηρήσεις) Η έννοια του διανύσματος Ορισμός του Διανύσματος Διάνυσμα ονομάζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα του

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v,

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα v, ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 1. Δίνονται τα διανύσματα a, για τα οποία ισχύουν : 4, 5 και α)να αποδείξετε ότι 10 β)να βρείτε τη γωνία των και. 5. 8 γ)να υπολογίσετε το μέτρο του διανύσματος u. δ)αν το διάνυσμα

Διαβάστε περισσότερα

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8.

i. εστίες Ε' (-4, 0), Ε(4, 0) και η απόσταση των κορυφών είναι 5, ii. εστίες Ε'(0, -10), Ε(0, 10) και η απόσταση των κορυφών είναι 8. ΥΠΕΡΒΟΛΗ ΕΞΙΣΩΣΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΥΠΕΡΒΟΛΗΣ 1) Να βρεθεί η εξίσωση της υπερβολής αν έχει: i) Εστιακή απόσταση γ=0 και άξονα β=16, 5 ii) Άξονα α=16 και εκκεντρότητα ε=. 4 ) Να βρείτε την εξίσωση της υπερβολής,

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 1. Να σχεδιάσετε την καμπύλη που παριστάνει η εξίσωση x y x 2 y. x y 2. Να βρεθεί η εξίσωση της ευθείας, η οποία τέμνει : i) τον άξονα χ'χ σε σημείο με τετμημένη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ

ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ ΕΠΑΝΑΛΗΨΗ ΔΙΑΝΥΣΜΑΤΑ Στο ορθογώνιο σύστημα αξόνων Οxy θεωρούμε τα σημεία Α, Β, τα οποία έχουν τετμημένες τις ρίζες της εξίσωσης x - (4λ+6μ)x - 005 = 0 και τεταγμένες τις ρίζες της εξίσωσης y + ( 5λ + μ)y

Διαβάστε περισσότερα

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ

1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Θεωρία Αριθµ ών) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία θέµατα, επιλογής

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) :

Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) : Ε π ι μ έ λ ε ι α ( μ ε Α λ φ α β η τ ι κ ή σ ε ι ρ ά ) : Ανδριοπούλου Τασιάννα Ανδρονίκου Γιώργος Βασσάλου Γιάννα Βελλίκης Γιώργος Καρατσιώλης Δημήτρης Κασλής Κώστας Λαλούμης Νίκος Μπέκας Χρήστος Μπίτζας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ. ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Μαθηματικά Γενικής Παιδείας Γ.Λυκείου ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΑΣΚΗΣΕΙΣ ) Να βρείτε το πεδίο ορισμού των συναρτήσεων: ( ) 6+ 9, g ( ), h ( ) 5 +, k

Διαβάστε περισσότερα

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2

Ο κύκλος με κέντρο την αρχή των αξόνων και ακτίνα ρ έχει εξίσωση: B,- 2 A 2 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΚΥΚΛΟΣ Κύκλος είναι ο γεωμετρικός τόπος των σημείων του επιπέδου που απέχουν σταθερή απόσταση από ένα σταθερό σημείο του επιπέδου αυτού. Το σταθερό σημείο

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ

ΚΥΚΛΟΣ. και ακτίνα 1 3. Σ Λ 1 ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΚΥΚΛΟΣ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 1. Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά να κυκλώσετε

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ Α Α. Να αποδείξετε ότι ισχύει α + β α + β, για κάθε α, β R. Α. Τι ονομάζουμε νιοστή ρίζα ενός μη αρνητικού αριθμού α; Α. Να χαρακτηρίσεις

Διαβάστε περισσότερα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα

Σωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα

Διαβάστε περισσότερα

1.2 Συντεταγμένες στο Επίπεδο

1.2 Συντεταγμένες στο Επίπεδο 1 Συντεταγμένες στο Επίπεδο Τι εννοούμε με την έννοια άξονας; ΑΠΑΝΤΗΣΗ Πάνω σε μια ευθεία επιλέγουμε δύο σημεία και Ι έτσι ώστε το διάνυσμα OI να έχει μέτρο 1 και να βρίσκεται στην ημιευθεία O Λέμε τότε

Διαβάστε περισσότερα

Μαθηματικά προσαματολισμού Β Λσκείοσ

Μαθηματικά προσαματολισμού Β Λσκείοσ Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms. Τηλ 361653-3617784 - Fax: 364105 Tel 361653-3617784 - Fax: 364105 17 Ιανουαρίου 015 Β ΓΥΜΝΑΣΙΟΥ 7 49 3 4 3 6 11 Υπολογίστε την τιμή της παράστασης: Α= + + : 3 9 7 3 5 10 Πρόβλημα Μία οικογένεια αγόρασε

Διαβάστε περισσότερα

(Έκδοση: 06 12 2014)

(Έκδοση: 06 12 2014) (Έκδοση: 06 04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 04 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 ΣΑΒΒΑΤΟ, 19 ΟΚΤΩΒΡΙΟΥ 013 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7

ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7 ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 4 7. Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΕΠΑΝΑΛΗΨΗ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ. Δίνεται η συνάρτηση f (). Να βρείτε για ποιες τιμές του δεν ορίζεται η συνάρτηση f. Να βρείτε τον αριθμό f ( ). Να δείξετε ότι f () I. Δίνεται η εξίσωση με η οποία έχει ρίζες

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2

ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ. 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 2 ΑΠΟΣΤΑΣΗ ΣΗΜΕΙΟΥ ΑΠΟ ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ 1. Να βρείτε την απόσταση του σημείου Μ( ημθ, συνθ) από την ευθεία: i) ε : y = -xεφθ ii) ε : xσυνθ - yημθ = 4. α) Να βρεθεί η απόσταση του σημείου

Διαβάστε περισσότερα