Να αποδείξετε ότι αυτή η τοποθέτηση των ακεραίων είναι δυνατή αν και μόνο αν οι ευθείες δεν είναι όλες παράλληλες.
|
|
- Κλειώ Νικολαΐδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 Μάιος 004, Πλέβεν Βουλγαρία Επιμέλεια: Ανδρέας Φιλίππου Ανδρέας Σαββίδης Πρόβλημα. Η ακολουθία πραγματικών αριθμών a0, a, a, ικανοποιεί την σχέση am+ n+ am n m+ n = ( am+ an) για όλους τους μη αρνητικούς ακέραιους m και n, m τον a 004. n. Αν a = να υπολογίσετε Πρόβλημα. Να βρείτε τους πρώτους αριθμούς x, y που ικανοποιούν την εξίσωση x y xy y x = 9. Πρόβλημα. Έστω O ένα εσωτερικό σημείο του οξυγωνίου τριγώνου ABC. Οι κύκλοι με κέντρα τα μέσα των πλευρών του, που διέρχονται από το O, τέμνονται ανά δύο στα σημεία K, L και M, διαφορετικά από το O. Να αποδείξετε ότι το O είναι το κέντρο του εγγεγραμμένου κύκλου του τριγώνου KLM αν και μόνον αν το O είναι το κέντρο του περιγεγραμμένου κύκλου του τριγώνου ABC. Πρόβλημα 4. Το επίπεδο χωρίζεται σε περιοχές από ένα πεπερασμένο αριθμό ευθειών που ανά τρεις δεν διέρχονται από το ίδιο σημείο. Δύο περιοχές ονομάζονται γειτονικές αν η τομή των συνόρων τους είναι είτε ευθύγραμμο τμήμα, είτε ημιευθεία, είτε ευθεία(ένα σημείο δε θεωρείται ευθύγραμμο τμήμα). Ένας ακέραιος αριθμός τοποθετείται σε κάθε περιοχή με τον παρακάτω τρόπο: (i) το γινόμενο των ακεραίων που τοποθετούνται σε οποιεσδήποτε δύο γειτονικές περιοχές είναι μικρότερο από το άθροισμά τους. (ii) για κάθε μια από τις δοσμένες ευθείες και καθένα από τα δύο ημιεπίπεδα που αυτή ορίζει, το άθροισμα των ακεραίων που τοποθετούνται σε όλες τις περιοχές που βρίσκονται σε καθένα από τα δύο ημιεπίπεδα ξεχωριστά, είναι ίσο με το μηδέν. Να αποδείξετε ότι αυτή η τοποθέτηση των ακεραίων είναι δυνατή αν και μόνο αν οι ευθείες δεν είναι όλες παράλληλες. Διαθέσιμος χρόνος: 4 ώρες και 0 λεπτά. Κάθε πρόβλημα βαθμολογείται με 0 μονάδες. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 9
2 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Πρόβλημα. Η ακολουθία πραγματικών αριθμών a0, a, a, ικανοποιεί την σχέση am+ n+ am n m+ n = ( am+ an) για όλους τους μη αρνητικούς ακέραιους m και n, m τον a 004. A Λύση. Αντικαθιστώντας έχουμε: m, n a = n a = 4a m m m= a = 7 m= a = 4 m=, n= a = = + +, το οποίο μπορεί να αποδειχθεί με μαθη- Μπορούμε να υποθέσουμε ότι ματική επαγωγή. 0 m an n n Έστω ότι n= a =. Ισχύει. n. Αν a = να υπολογίσετε Δεχόμαστε ότι η πρόταση ισχύει για n= k δηλ. Θα αποδείξουμε ότι ισχύει ότι για n= k+ δηλ. a k k k k = ( + ) + + k + + = ( + ) + + Ισχύει am+ n+ am n m+ n = ( am+ an) για m k n 0 =, = ( ) k k k 0 k k ak k k = + + a + a k = a + a 4a k = a + 4( k + k+ ) k = a + a = 4k + k+ k k k+ k+ k a = a = k+ + ( k+ ) + k+ k+ k+ για ( ) ( ) ( ) δηλ. η πρόταση ισχυεί για n= k+, άρα ισχύει n N. Άρα έχουμε: a Β Λύση. Εάν θέσουμε m = n, n a am a0 am am a0 + = ( ) 0 + = Για 0 am + am = am + a0 am = 4am () Εάν m= n+ an+ + a = ( an+ 4 + an ) () Από την () an+ = 4an+ και a = 4a = 4 a + a = 4a + 4a = 4 a + () n = ( ) ( ) n+ n+ n+ 40 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
3 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 Από την () και () ( ) a 4 4 n+ + a = an+ + an = an+ + an (4) Από την () και (4) an+ = an+ an +, a0, a =. Έχουμε a = 4, a = 9, a 4 = 6,... υποθέτουμε ότι μαθηματική επαγωγή. Για n και n = η πρόταση ισχύει. an n = και το αποδεικνύουμε με Έστω ότι ισχύουν οι προτάσεις an n a = + + για n 0. = και n n Άρα, a 00 0 = a ( n ) n n 4n 4 ( n ) n+ = + + = + + = +. Πρόβλημα. Να βρείτε τους πρώτους αριθμούς x, y που ικανοποιούν την εξίσωση x y xy y x = 9. () Λύση. Εάν x = y 0 x 9 = x = 9 αδύνατη ( x ) Παίρνουμε και στα δύο μέλη της () mod( y ) και mod( x ) έχουμε x + 9 0( mody) () και 9 y 0( modx) () Από () και () έχουμε xy/ ( x y + 9) (4) Τώρα έχουμε x+ y+ 9 x y+ 9 xy ( x )( y ) < 0 x y < 9 x y+ 9 xy ( x+ )( y ) 8 (5) Από την (5) εάν x 5 τότε έχουμε y = ή y =, xy 9 > 0. Άρα οι μοναδικές λύσεις είναι (,) και (,7). x x < 0, x x < 0, Πρόβλημα. Έστω O ένα εσωτερικό σημείο του οξυγωνίου τριγώνου ABC. Οι κύκλοι με κέντρα τα μέσα των πλευρών του, που διέρχονται από το O, τέμνονται ανά δύο στα σημεία K, L και M, διαφορετικά από το O. Να αποδείξετε ότι το O είναι το κέντρο του εγγεγραμμένου κύκλου του τριγώνου KLM αν και μόνον αν το O είναι το κέντρο του περιγεγραμμένου κύκλου του τριγώνου ABC. Λύση. Έστω A, B, C είναι τα μέσα των πλευρών BC, CAAB, του τριγώνου ABC αντίστοιχα. Έστω Ο είναι το κέντρο του περιγεγραμμένου κύκλου του τριγώνου ABC το τρίγωνο ABC είναι οξυγώνιο. ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 4
4 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 Από τις ισότητες: ACO = LCO = LO= LKO, ABO = MBO = MO = MKO A C O = A B O = 90 o BAC άρα έχουμε ότι LKO = MKO KO είναι διχοτόμος της γωνίας LKM. Ανάλογα έχουμε MO είναι διχοτόμος της LMK άρα το σημείο O είναι το κέντρο του εγγεγραμμένου κύκλου του τριγώνου KLM. Έστω O είναι το κέντρο του εγγεγραμμένου κύκλου στο τρίγωνο KLM άρα LKO = MKO. Όπως και πιο πάνω ισχύει LKO = A C O και MKO = A B O A CO = ABO. Ανάλογα έχουμε: CAO = CBO και B AO = BCO o CAO + ACO + BCO = 80 = 90 AO BC( BC // BC) AO BC. Ανάλογα B O AC O είναι το κέντρο του περιγεγραμμένου κύκλου του τριγώνου ABC. Ανάλογα B O AC O είναι το κέντρο του περιγεγραμμένου κύκλου του τριγώνου ABC. Πρόβλημα 4. Το επίπεδο χωρίζεται σε περιοχές από ένα πεπερασμένο αριθμό ευθειών που ανά τρεις δεν διέρχονται από το ίδιο σημείο. Δύο περιοχές ονομάζονται γειτονικές αν η τομή των συνόρων τους είναι είτε ευθύγραμμο τμήμα, είτε ημιευθεία, είτε ευθεία(ένα σημείο δε θεωρείται ευθύγραμμο τμήμα). Ένας ακέραιος αριθμός τοποθετείται σε κάθε περιοχή με τον παρακάτω τρόπο: () i το γινόμενο των ακεραίων που τοποθετούνται σε οποιεσδήποτε δύο γειτονικές περιοχές είναι μικρότερο από το άθροισμά τους. o 4 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
5 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 ( ii ) για κάθε μια από τις δοσμένες ευθείες και καθένα από τα δύο ημιεπίπεδα που αυτή ορίζει, το άθροισμα των ακεραίων που τοποθετούνται σε όλες τις περιοχές που βρίσκονται σε καθένα από τα δύο ημιεπίπεδα ξεχωριστά, είναι ίσο με το μηδέν. Να αποδείξετε ότι αυτή η τοποθέτηση των ακεραίων είναι δυνατή αν και μόνο αν οι ευθείες δεν είναι όλες παράλληλες. Λύση. Εάν όλες οι ευθείες είναι παράλληλες ελέγχουμε ότι όλοι οι αριθμοί είναι ίσοι με μηδέν και τότε η συνθήκη () i δεν ισχύει. Έστω ότι το επίπεδο χωρίζεται σε περιοχές από κ παράλληλες ευθείες. Από την συνθήκη ( ii ) ισχύουν: a = a + a + + ak a+ a = a + + ak a+ a + a = + ak a+ a + a + = ak a + a + a + + a = a k k+ a = a = a = = ak = a k + δεν ισχύει η συνθήκη () i, άρα οι ευθείες δεν μπορεί να είναι παράλληλες. Εάν υπάρχουν δύο μη παράλληλες ευθείες τότε θα δείξουμε πως θα προσδιορίσουμε τους ζητούμενους αριθμούς. Αρχικά μπορούμε να τοποθετήσουμε πρόσημα + και -, σε κάθε περιοχή, έτσι ώστε τα πρόσημα στις γειτονικές περιοχές να είναι διαφορετικά, και αυτό αποδεικνύεται ότι ισχύει με την μέθοδο της μαθηματικής επαγωγής. για n = ευθεία έχουμε: ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 4
6 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ BMO 004 Υποθέτουμε ότι ισχύει στην περίπτωση κατά την οποία το επίπεδο χωρίζεται σε περιοχές από n= k ευθείες. Για n= k+ ευθείες θα αλλάξουμε τα πρόσημα σε όλες τις περιοχές που βρίσκονται στην μια πλευρά της ευθείας που έχουμε προσθέσει ( k + ευθείες) και να κρατήσουμε τα ίδια πρόσημα στην άλλη πλευρά της ευθείας. Σε κάθε περιοχή τοποθετούμε αριθμούς s a, όπου s είναι ήδη το ορισμένο πρόσημο σε αυτή την περιοχή και a είναι ο αριθμός των κορυφών στην περιοχή. Ελέγχουμε ότι οι ζητούμενες συνθήκες ικανοποιούνται. Σε κάθε ζεύγος γειτονικών περιοχών έχουμε δύο ακέραιους αριθμούς, π.χ. a και b, έτσι ώστε ο ένας από αυτούς είναι θετικός και ο άλλος αρνητικός. Έστω a< 0 < b. Είναι προφανές ότι ab < a + b, δηλαδή ισχύει η πρώτη συνθήκη. Σε κάθε σημείο τομής μετρούμε δύο ή τέσσερις φορές (σε ή 4 γωνίες στις γειτονικές περιοχές) με διαφορετικά πρόσημα (+ και στην περίπτωση των δύο περιοχών και +,+,-,- στην περίπτωση τεσσάρων περιοχών) π.χ. 44 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 3645 e-mail : ifo@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Paepistimiou (Εleftheriou Veizelou)
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr, GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 2012 7 Απριλίου 2012
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός 0 7 Απριλίου 0 ΠΡΟΒΛΗΜΑ Να προσδιορίσετε όλες τις τριάδες p n όπου p πρώτος και αρνητικοί ακέραιοι που είναι λύσεις της εξίσωσης: p n Λύση Η δεδομένη εξίσωση
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και
Β ΓΥΜΝΑΣΙΟΥ. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και α + β = 4. (β) Για το μικρότερο από τα κλάσματα του προηγούμενου ερωτήματος να βρείτε την τιμή της παράστασης:
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 21/01/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου 2015. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - Fax: 605 e-mail : info@hmsgr, wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ. 665-677 - Fax: 605 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Γ' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Γ' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ «Ευκλείδης» Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις σας. 2.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 23 ΙΑΝΟΥΑΡΙΟΥ 2010
Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 Τηλ. 6165-617784 - Fax: 64105 4, Panepistimiou (Εleftheriou Venizelou) Street Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-al : fo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepstou (Εleftherou Vezelou) Street
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 10 6165-10617784 - Fax: 10 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-mail : ifo@hms.gr, www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Paepistimiou (Εleftheriou Veizelou)
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017 Α ΓΥΜΝΑΣΙΟΥ Ημερομηνία: 02/12/2017 Ώρα Εξέτασης: 09:30-12:30 ΟΔΗΓΙΕΣ: 1. Να λύσετε όλα τα θέματα, αιτιολογώντας πλήρως τις απαντήσεις
Πολλαπλασιάζοντας και τα δύο μέλη της σχέσης (1) επί 2, λαμβάνουμε = k+ ), (2) οπότε με αφαίρεση της (1) από τη (2) κατά μέλη, λαμβάνουμε:
6 Θέματα μεγάλων τάξεων ΠΡΟΒΛΗΜ Δίνεται η ακολουθία πραγματικών αριθμών ( a ), =,,, με + a = και a = ( a+ a + + a ), Να προσδιορίσετε τον όρο a 0 Λύση ( ος τρόπος) Παρατηρούμε ότι: 4 4 a =, a = a =, a
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 06 79 ΑΘΗΝΑ Τηλ. 665-67784 - Fax: 6405 e-ail : ifo@hs.gr, www.hs.gr GREEK MATHEMATICAL SOCIETY 4, Paepistiiou (Εleftheriou Veizelou)
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ος ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ Ημερομηνία: /0/05 Ώρα εξέτασης: 0:00 -:0 ΟΔΗΓΙΕΣ:. Να λύσετε όλα τα θέματα.κάθε θέμα βαθμολογείται με 0 μονάδες.. Να γράφετε με μπλέ ή μαύρο
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30
ΟΔΗΓΙΕΣ: ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Γ ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΚΑΤΩ ΤΩΝ 15 1/2 ΕΤΩΝ «Ευκλείδης» Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 28 ΙΑΝΟΥΑΡΙΟΥ 2017
ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 8 ΙΑΝΟΥΑΡΙΟΥ 017 Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Panepistimiou (Εleftheriou Venizelou) Street
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-6778 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
ΣΗΜΕΙΩΣΕΙΣ. Από προηγούμενες τάξεις γνωρίζουμε ότι το τετράγωνο οποιουδήποτε πραγματικού αριθμού
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i ΙΔΙΟΤΗΤΕΣ
Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012
ΕΛΛΗΝΙΚΗ ΜΘΗΜΤΙΚΗ ΕΤΙΡΕΙ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 06 79 ΘΗΝ Τηλ 665-677 - F: 605 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY, Panepistimiou (Εleftheriou Venizelou) Street GR 06
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,
Τηλ 36653-367784 - Fa: 36405 Tel 36653-367784 - Fa: 36405 Νοεμβρίου 04 Β ΓΥΜΝΑΣΙΟΥ 3 74 3 3 Να υπολογίσετε την τιμή της παράστασης: :8 9 9 37 4 Πρόβλημα Ένας έμπορος συλλεκτικών αντικειμένων αγόρασε δύο
Ασκήσεις σχ. Βιβλίου σελίδας Α ΟΜΑ ΑΣ 1.
.. Ασκήσεις σχ. Βιβλίου σελίδας 94 97 Α ΟΜΑ ΑΣ. Να βρείτε τις τιµές του λ R, ώστε ο z (λ )( ) να είναι : πραγµατικός αριθµός φανταστικός αριθµός z λ λ 6 (λ ) (6 λ) z πραγµατικός 6 λ 0 λ 6 z φανταστικός
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 9ο ΑΣΚΗΣΕΙΣ 801-900 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μικρών τάξεων ΠΡΟΒΛΗΜΑ 1 Έστω τρίγωνο ΑΒΓ με ˆ ΒΑΓ = 10. Αν Δ είναι το μέσον της
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 6 ΦΕΒΡΟΥΑΡΙΟΥ 011 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ 1 Να λύσετε στους ακέραιους την εξίσωση 4 xy y x =
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
Τηλ. 36653-367784 - Fax: 36405 ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 04 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ. Παρακαλούμε να διαβάσετε προσεκτικά τις
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 6 79 ΑΘΗΝΑ Τηλ 665-67784 - Fax: 645 e-mail : ifo@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 4 Paepistimiou (Εleftheriou Veielou) Street
Κυπριακή Μαθηματική Εταιρεία
Κυπριακή Μαθηματική Εταιρεία Στασίνου 6, Γραφ. 0, Στρόβολος 00, Λευκωσία Τηλέφωνο: 57 780, Φαξ: 57 79 cms@cms.org.cy, www.cms.org.cy ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ Ο Κωδικός: OLY07-B Επιμέλεια: Δημήτρης Χριστοφίδης
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
x 2 + y 2 x y
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 014-15 Τμήμα Μαθηματικών και Διδάσκων: Χρήστος Κουρουνιώτης Εφαρμοσμένων Μαθηματικών ΜΕΜ0 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ Φυλλάδιο Προβλημάτων Κύκλος, Ελλειψη, Υπερβολή, Παραβολή
ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79
V (F ) = {(u 1, u 2, u 3 ) P 2 K F (u 1, u 2, u 3 ) = 0}
1 Θεώρημα BEZOU T Ο δακτύλιος K[x 1,..., x n ] είναι περιοχή μονοσήμαντης ανάλυσης. Άρα κάθε πολυώνυμο f K[x 1,..., x n ] (που δεν είναι σταθερά, δηλαδή f / K) αναλύεται σε γινόμενο αναγώγων πολυωνύμων,
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα
Τρίγωνο λέγεται το σχήμα που ορίζεται από τρία σημεία A,B και Γ, μη περιεχόμενα σε μία και μόνον ευθεία, καθώς και τα ευθύγραμμα τμήματα που τα ενώνουν. Τα τρία σημεία αυτά λέγονται κορυφές του τριγώνου.
Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.
Τηλ. 6165-617784 - Fa: 64105 Tel. 6165-617784 - Fa: 64105 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 5 5 4 : 6 5 8 8:, 11 : 1 11 7 και να τις συγκρίνετε. Ένα ορθογώνιο έχει μήκος
OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου 2014. Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει
8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y
ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ
ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Χεμερινό εξάμηνο 2006-07 ΗΜΕΡΟΛΟΓΙΟ 1 ΔΕΥΤΕΡΑ, 9-10-06, 11-13. ΓΩΝΙΕΣ ΚΑΙ ΚΥΚΛΟΙ. Θεώρημα 1. Το άθροισμα των γωνιών τριγώνου είναι ίσο με 180 o. Θεώρημα 2. Κάθε εξωτερική γωνία τριγώνου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου
Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν
Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας
Τηλ 6165-617784 - Fax: 64105 Tel 6165-617784 - Fax: 64105 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΑΒΒΑΤΟ, 1 ΙΑΝΟΥΑΡΙΟΥ 01 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)
Αρχιμήδης Μεγάλοι 1996-1997. 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.
Αρχιμήδης Μεγάλοι 1996-1997 1. Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν = 1 4 για κάθε ν φυσικό διαφορετικό του 0. ii) α n 1 α n Να αποδείξετε: α ν 1 =1 για κάθε n - ν 1 α ν α) ότι
Ιωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ
06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 0 Οκτωβρίου 0 Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 36653-367784 - Fax: 36405 e-mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou)
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
: :
Τηλ. 361653-3617784 - Fax: 364105 Tel. 361653-3617784 - Fax: 364105 19 Οκτωβρίου 013 Β ΓΥΜΝΑΣΙΟΥ Να υπολογίσετε την τιμή της παράστασης: 16 1 74 3 1 : 4 53 3 4 :. 9 8 9 Πρόβλημα Ένας οικογενειάρχης πήρε
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης
Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
20 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α (ΒΜΟ) ΤΙΡΑΝΑ, ΑΛΒΑΝΙΑ. Επιµέλεια: Ανδρέας Φιλίππου Θεόκλητος Παραγυιού. Να λυθούν και τα τέσσερα προβλήµατα.
0 η ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α (ΒΜΟ) ΤΙΡΑΝΑ, ΑΛΒΑΝΙΑ Μάιος 003 Χρόνος: 4 ½ Ώρες Επιµέλεια: Ανδρέας Φιλίππου Θεόκλητος Παραγυιού Να λυθούν και τα τέσσερα προβλήµατα. Πρόβληµα. Υπάρχει σύνολο Β µε στοιχεία
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE
ΘΕΩΡΗΜΑ ROLLE ΘΕΩΡΗΜΑ ROLLE Αν μια συνάρτηση f είναι : συνεχής στο κλειστό [α,β] παραγωγίσιμη στο ανοιχτό (α,β) f(α)=f(β) f 0 τότε υπάρχει ένα τουλάχιστον, τέτοιο ώστε ΓΕΩΜΕΤΡΙΚΑ : σημαίνει ότι υπάρχει
ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4) Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος
1 m z. 1 mz. 1 mz M 1, 2 M 1
Σύνοψη Κεφαλαίου 6: Υπερβολική Γεωμετρία Υπερβολική γεωμετρία: το μοντέλο του δίσκου 1. Στο μοντέλο του Poincaré της υπερβολικής γεωμετρίας, υπερβολικά σημεία είναι τα σημεία του μοναδιαίου δίσκου, D =
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ
ΕΥΘΕΙΕΣ ΠΟΥ ΤΕΜΝΟΝΤΑΙ ΑΠΟ ΜΙΑ ΑΛΛΗ ΕΥΘΕΙΑ Έχουµε 2 ευθείες ε 1,ε 2 και τουλάχιστον µία ευθεία που τέµνει αυτές τις 2 ευθείες, εδώ τη (δ). Ονοµάζουµε τις γωνίες µε βάση το: 1. Πού βρίσκονται σε σχέση µε
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία.
ΜΑΘΗΜΑ 2 Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία. Κυρτή γωνία ή απλά γωνία λέγεται το σχήμα που συμβολίζουμε
Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
ΣΥΣΤΗΜΑΤΑ. Για την επίλυση ενός γραμμικού συστήματος με την χρήση των οριζουσών βασική είναι η παρακάτω επισήμανση:
ΣΥΣΤΗΜΑΤΑ Η επίλυση συστήματος εμφανίστηκε για πρώτη φορά σε αρχαία κινέζικη συλλογή προβλημάτων και αργότερα στο έργο «Αριθμητικά» του Έλληνα μαθηματικού της Αλεξανδρινής περιόδου Διόφαντου όπου για πρώτη
Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;
Αρχιμήδης Μικροί 1994-1995 Θεωρούμε τους αριθμούς Ποιος είναι μεγαλύτερος; A= 2 0 8 21 :16 15 6 27 10 :81 7 63 και B= 2 25 :2 52 1 54 2. Θεωρούμε 6 διαδοχικούς φυσικούς αριθμούς. Έστω α το άθροισμα των
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ.3.7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ [Κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Άσκηση. Να υπολογίσετε το εμβαδόν του χωρίου που περικλείεται από τη γραφική
ΑΣΚΗΣΕΙΣ. x + 5= 6 (1) και. x = 1, οπότε η (2) γίνεται 1 5x + 1= 7 x = 1 ΘΕΜΑ Β. Άσκηση 1. Να βρείτε τον αριθμό x R όταν. Λύση.
ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ : ΈΝΝΟΙΑ ΜΙΓΑΔΙΚΟΥ ΓΕΩΜΕΤΡΙΚΗ ΠΑΡΑΣΤΑΣΗ ΜΙΓΑΔΙΚΟΥ ΠΡΑΞΕΙΣ ΣΤΟ ΣΥΝΟΛΟ ΤΩΝ ΜΙΓΑΔΙΚΩΝ ΣΥΖΥΓΕΙΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΔΥΝΑΜΕΙΣ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΑΡΙΘΜΟΥ ΚΑΙ ΤΟΥ i. ΙΔΙΟΤΗΤΕΣ
Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127
Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,
και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.
Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ
: :
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou
GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:
Β ΓΥΜΝΑΣΙΟΥ. Δίνονται οι δεκαδικοί περιοδικοί αριθμοί α = 0, 2 και β = 0, 3.. (α) Να γράψετε τους αριθμούς α και β σε κλασματική μορφή. (β) Να βρείτε την τιμή της παράστασης 2015 2 2 ( 3 5 ) ( 18 ) 2016