ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 4 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (19/11/2014)"

Transcript

1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου 4 ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (9//4)

2

3 Θέματα 4 ης Ομάδας Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP_4_866 [παράγραφος 5] Δίνονται τα διανύσματα ΟA= ( 4, ) και ΟB= (,), όπου Ο είναι η αρχή των αξόνων α) Να αποδείξετε ότι τα διανύσματα ΟA και ΟΒ είναι κάθετα (Μονάδες 4) β) Αν Γ( α,β ) είναι σημείο της ευθείας που διέρχεται από τα σημεία Α και Β, τότε: AB = 3, 4 AΓ= α 4,β + i) να αποδείξετε ότι: ( ) ii) να αποδείξετε ότι: 4α + 3β = και ( ) (Μονάδες 5) (Μονάδες 6) iii) αν επιπλέον τα διανύσματα ΟΓ και AB είναι κάθετα, να βρείτε τις συντεταγμένες του σημείου Γ (Μονάδες ) α) Για να δείξουμε ότι τα διανύσματα είναι κάθετα, αρκεί να δείξουμε ότι το εσωτερικό τους γινόμενο είναι μηδέν Όντως έχουμε από την αναλυτική έκφραση του εσωτερικού γινομένου: ΟA ΟB= 4,, = 4 + =, άρα ΟA ΟB βi) ii) Αφού τα ΟA, ΟB οπότε και ( ) είναι οι διανυσματικές ακτίνες των Α, Β, είναι Α ( 4, ), Β(, ) ΑΒ = x x,y y = 4, = 3,4 B A B A ΑΓ = x x,y y = α 4, β = α 4, β + Γ A Γ A, Αφού το Γ είναι σημείο της ευθείας που διέρχεται από τα σημεία Α και Β, τα σημεία Α, Β, Γ είναι συνευθειακά και συνεπώς τα διανύσματα AB και AΓ έχουν κοινό φορέα, οπότε η ορίζουσά τους είναι μηδέν Είναι: 3 4 det ( AB, AΓ) = = 3( β + ) 4( α 4) = α 4 β + 3β 6 4α + 6 = 4α + 3β = 3

4 ΑΛΛΗ 4 Είναι λαβ =, οπότε η ευθεία που διέρχεται από τα Α, Β έχει εξίσωση 3 4 y = ( x ) 3y 6 = 4x + 4 4x + 3y = 3 Αφού το Γ ανήκει στην ευθεία, οι συντεταγμένες του επαληθεύουν την εξίσωσή της, άρα είναι 4α + 3β = iii) H διανυσματική ακτίνα του Γ είναι ΟΓ = ( α, β) γινόμενο θα είναι μηδέν ΟΓ ΑΒ = α,β 3, 4 = 3α + 4β = Οπότε Λύνουμε το σύστημα οπότε, προσθέτοντας κατά μέλη, έχουμε Άρα α = 4α= α= α + 3β = 3 α + 9β = 3 4 3α + 4β = α + 6β =, οπότε, αφού ΟΓ ΑΒ, το εσωτερικό τους 6 5β = 3 β = 5 4

5 GI_V_MATHP_4_869 [παράγραφος 5] AB = λ, λ + AΓ = 3λ, λ, όπου λ και λ, και M είναι Σε τρίγωνο ABΓ είναι ( ), ( ) το μέσο της πλευράς BΓ AM = α) Να αποδείξετε ότι ( λ, λ) (Μονάδες 7 ) β) Να βρείτε την τιμή του λ για την οποία το διάνυσμα AM είναι κάθετο στο διάνυσμα α =, λ λ (Μονάδες 8 ) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ABΓ (Μονάδες ) α) Αφού το σημείο Μ είναι το μέσο της πλευράς ΒΓ, η διανυσματική του ακτίνα, θεωρώντας ως σημείο αναφοράς το Α, θα ισούται με το ημιάθροισμα των διανυσματικών ακτίνων των άκρων Δηλαδή είναι: AM = ( AB + AΓ) = ( 4λ, λ) = ( λ, λ) β) Τα διανύσματα AM και α θέλουμε να είναι κάθετα, οπότε το εσωτερικό τους γινόμενο θα πρέπει να είναι μηδέν Έχουμε λοιπόν: λ AM α = ( λ, λ ), λ = 4 λ = λ = λ γ) Για λ AB =,3 AΓ = 6, Τότε: = έχουμε ( ) και ( ) 3 ABΓ = det AB, AΓ = ABΓ = 8 τμ 6 ( ) 5

6 GI_V_MATHP_4_86 [παράγραφος ] Δίνονται οι ευθείες ε :x y λ + 6 = και ε :x + y λ 4=, όπου λ α) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ οι ευθείες ε και ε τέμνονται και να βρείτε τις συντεταγμένες του σημείου τομής τους M (Μονάδες 7) β) Να αποδείξετε ότι για κάθε τιμή της παραμέτρου λ το σημείο M ανήκει στην ευθεία ε :8x+ y 6= (Μονάδες 7) γ) Αν η ευθεία ε τέμνει τους άξονες xx και yy στα σημεία Α και B αντίστοιχα, τότε: i) να βρείτε την εξίσωση της ευθείας ζ που διέρχεται από την αρχή Ο των αξόνων και είναι παράλληλη προς την ευθεία AB ii) αν Κ είναι τυχαίο σημείο της ευθείας ζ, να αποδείξετε ότι ( ΚΑΒ) 9 = 4 (Μονάδες 5) (Μονάδες 6) α) Για να δείξουμε ότι οι ευθείες ε και ε τέμνονται,αρκεί να λύσουμε το σύστημα των εξισώσεών τους και να δείξουμε ότι έχει λύση για κάθε τιμή της παραμέτρου λ x y λ + 6 = Έχουμε λοιπόν: x + y λ 4= Προσθέτοντας κατά μέλη είναι x = λ x = λ, οπότε, y= λ + 4 ( λ ) = 8λ + 4 Αφού το σύστημά τους δεν είναι αδύνατο, οι ευθείες τέμνονται στο σημείο Μ( λ, 8λ + 4 ), λ β) Έστω Μ ( x,y ), x,y οι συντεταγμένες του σημείου ( ) Μ λ, 8λ + 4, λ Τότε είναι: x = λ 8x = 8λ 8 ( ) y= 8λ + 4 y = 8λ + 4 ( ) Θα απαλείψουμε την παράμετρο λ, προσθέτοντας κατά μέλη τις δύο εξισώσεις Οπότε () + ( ) 8x + y 6 = Δηλαδή το σημείο Μ ανήκει στην ευθεία ( ε ):8x+ y 6= για κάθε λ 6

7 γi) H ευθεία ε τέμνει τον άξονα xx σε σημείο με τεταγμένη, οπότε για y= έχουμε: 8x 6 x = = = Δηλαδή η ( ) ε τέμνει τον άξονα xx στο σημείο 3 Α, 4 H ( ε ) τέμνει τον άξονα yy σε σημείο με τετμημένη, οπότε είναι για x = : 8 + y= 6 y= 6 Δηλαδή η ( ε ) τέμνει τον άξονα yy στο Β(, 6 ) yb ya 6 6 Η ευθεία ΑΒ έχει συντελεστή διεύθυνσης λαβ = = = = 8 Η ζητούμενη x 3 3 B xa 4 4 ευθεία ( ζ ) είναι παράλληλη στην ΑΒ, οπότε έχουν τον ίδιο συντελεστή διεύθυνσης Δηλαδή ( ζ )//ΑΒ λζ = λαβ λζ = 8 Επιπλέον η ( ζ ) διέρχεται από την αρχή των αξόνων Συνεπώς η εξίσωση της ευθείας ( ζ ) είναι: y = λζx y= 8x ii) Έστω Κ ( x, y) = ( x, 8x ),x τυχαίο σημείο της ( ζ ) Τότε 3 ΑΚ = x, 8x 4 και ΒΚ = ( x, 8x 6) 3 x 8x 9 9 = = = = 4 x 8x 6 ( ΚΑΒ) det ( ΑΚ, ΒΚ ) 4 8x 6x 6x 8x και Σχόλιο: Το εμβαδόν είναι ανεξάρτητο από την επιλογή του σημείου K, γιατί η ευθεία ζ στην ο- ποία ανήκει το Κ είναι παράλληλη στην ευθεία ΑΒ Συνεπώς θεωρώντας ως βάση του τριγώνου ΚΑΒ την ΑΒ, για οποιοδήποτε σημείο Κ της ζ, το ύψος που αντιστοιχεί στη βάση είναι σταθερό και ίσο με την απόσταση των παράλληλων ευθειών 7

8 GI_V_MATHP_4_86 [παράγραφος 3] Δίνεται η ευθεία ε :x 4y 7 = και τα σημεία Α (, 4) και ( ) B,6 α) Να βρείτε τις συντεταγμένες σημείου M της ευθείας ε το οποίο ισαπέχει από τα σημεία A και B β) Να υπολογίσετε το εμβαδόν του τριγώνου ΜΑΒ γ) Να αποδείξετε ότι τα σημεία Κ ( x, y ) για τα οποία ισχύει ( ΚΑΒ) ( ΜΑΒ) στις ευθείες με εξισώσεις τις: x y 5= και x y+ 5= α) Η ( ε ) γράφεται x 4y 7= x = 4y+ 7 (Μονάδες 7) (Μονάδες 8) = ανήκουν (Μονάδες ) Επειδή το σημείο M ανήκει στην ευθεία ε, οι συντεταγμένες του θα ικανοποιούν την εξίσωση της ε και συνεπώς θα είναι της μορφής M( 4α + 7,α ),α και θα ισχύει: ( MA) ( MB) ( 4α 9) ( α 4) ( 4α 5) ( α 6) = + + = + + 6α + 7α + 8+ α 8α + 6 = 6α + 4α α α α = 36 α = Άρα το σημείο M της ευθείας ε το οποίο ισαπέχει από τα σημεία A και B είναι το ( ) M 3, AM = 5, 5 β) Έχουμε ( ) και AB = ( 4, ), οπότε: 5 5 MAB = det MA,AB = = 5 τμ 4 γ) Έχουμε τα σημεία Α (, 4), B(,6, ) M( 3, ) και ( ) ΑΚ = ( x x,y y ) = ( x+,y 4) K A K A AB = ( x B x A, yb ya) = ( 4, ) ( MAB) = 5 και Κ x,y Τότε: x+ y 4 = = = + = 4 ( KAB) det ( AK, AB) ( x ) 4( y 4) x + 4 4y + 6 = x 4y + = x y + ΚΑΒ = ΜΑΒ x y+ = 5 Τότε από την ισότητα των εμβαδών έχουμε Άρα τα σημεία Κ(x, y) ανήκουν στις ευθείες με εξισώσεις: x y 5= και x y+ 5= 8

9 GI_V_MATHP_4_86 [παράγραφος ] Δίνεται η εξίσωση: x + xy+ y 6x 6y+ 8= α) Να αποδείξετε ότι η εξίσωση παριστάνει γεωμετρικά δύο ευθείες γραμμές ε και ε οι οποίες είναι παράλληλες μεταξύ τους (Μονάδες 7) β) Αν ε :x+ y = και ε :x+ y 4=, να βρείτε την εξίσωση της μεσοπαράλληλης ε των ε και ε (Μονάδες 8) γ) Αν Α είναι σημείο της ευθείας ε με τεταγμένη το και Β σημείο της ευθείας ε με τετμημένη το, τότε: i) να βρείτε τις συντεταγμένες των σημείων A και Β ii) (Μονάδες ) να βρείτε τις συντεταγμένες δύο σημείων Γ και Δ της ευθείας ε έτσι, ώστε το τετράπλευρο ΑΓΒΔ να είναι τετράγωνο (Μονάδες 8) α) Η εξίσωση γράφεται: x + xy+ y 6x 6y+ 8= x+ y 6 x+ y + 8= Θέτοντας x+ y= ω η εξίσωση μετασχηματίζεται στη δευτεροβάθμια έχει διακρίνουσα Δ = 4 και ρίζες εξισώσεις δύο ευθειών Παρατηρούμε ότι λ = λ = ω = 6 ω = ± ή Οπότε ω = 4 Άρα η εξίσωση παριστάνει δύο ευθείες παράλληλες μεταξύ τους β) Έχουμε ( ε ) :x+ y = και ( ) ω 6ω + 8=, η οποία x+ y = ή, οι οποίες είναι οι x + y 4 = ε :x+ y 4= Θα βρούμε δύο σημεία Η και Θ, ένα σε καθεμία από τις δύο ευθείες Για x = σε καθεμία από τις δύο ευθείες, έχουμε: Το σημείο Η (, ) ( ε ) και το Θ(, 4) ( ε ) x + x y + y = Το μέσο Μ του ευθύγραμμου τμήματος ΗΘ έχει συντεταγμένες Η Θ, Η Θ (,3) Άρα η μεσοπαράλληλη των ( ε ),( ) Άρα έχει εξίσωση: ε διέρχεται από το M και έχει λ = y y = λ x x y 3= x y 3= x x+ y 3= M M 9

10 γ) i) Για y = στην ( ) x =, άρα Α(, ) Για x = στην ( ) y= 3, άρα B,3 ( ) ε :x+ y = προκύπτει ε :x+ y 4= προκύπτει ii) ο Η πλευρά ΑΔ θα σχηματίζει γωνία 45 με την διαγώνιο ΑΒ, άρα ΑΔ //xx, οπότε η εξίσωση της είναι ( ΑΔ ):y= η οποία τέμνει την (ε) στο σημείο Δ(, ) Όμοια Γ(,3 ) η 5 Αν Κ, το μέσον του ΑΒ Ο κύκλος με κέντρο το 5 Κ, και ακτίνα 5 R = ΑΚ = + = = = 4 Γ(,3 ) και Δ(, ) τέμνει την ευθεία ( ε ) στα σημεία

11 GI_V_MATHP_4_863 [παράγραφος ] Δίνεται η εξίσωση x + y xy 3λx+ 3λy+ λ =, με λ διαφορετικό του α) Να αποδείξετε ότι η παραπάνω εξίσωση παριστάνει στο επίπεδο, δύο ευθείες παράλληλες μεταξύ τους, καθεμιά από τις οποίες έχει κλίση ίση με (Μονάδες ) β) Αν το εμβαδόν του τετραγώνου του οποίου οι δύο πλευρές βρίσκονται πάνω στις ευθείες του ερωτήματος α) είναι ίσο με, να βρείτε την τιμή του λ (Μονάδες 3) α) Η δοσμένη εξίσωση γίνεται: x y xy 3λx 3λy λ x y 3λ x y λ = + = ( x y λ)( x y λ) = x y λ = ή x y λ = x y λ x y λ x y + λ = x y x y λ λ x y λ = y= x λ ή y= x λ Άρα έχουμε δύο ευθείες την ε :y= x λ και την ζ :y= x λ, παράλληλες μεταξύ τους, με συντελεστή διεύθυνσης (κλίση) ίσο με η Η εξίσωση γράφεται: x y xy 3λx 3λy λ x y 3λ x y λ = + = Θέτοντας x y= t η εξίσωση μετασχηματίζεται στη δευτεροβάθμια ποία έχει διακρίνουσα ( ) Δ = 3λ 4λ = λ >, αφού λ t = λ 3λ± λ ( ε ):x y= λ ( ε ):x y λ = Οπότε: t, = ή ( ζ ):x y= λ ( ζ ):x y λ = t = λ Αφού λε = λζ =, έπεται ότι οι δύο ευθείες είναι παράλληλες t 3λt+ λ =, η ο- β) Αφού οι ευθείες ( ε ) και ( ζ ) είναι παράλληλες, η πλευρά α του τετραγώνου θα είναι ίση με την απόσταση μεταξύ των δύο παράλληλων ευθειών Για την απόσταση των δύο ευθειών θα βρούμε ένα σημείο πάνω σε μία από τις δύο ευθείες καιι θα πάρουμε την απόστασή του από ε την άλλη Το σημείο Α (, λ), που προέκυψε για x = στην ( ε ), είναι σημείο της ( )

12 Άρα Αλλά 3η ( ) λ λ λ λ α = d ( ε, ζ) = d( A, ζ) = = = λ Ετετρ = α = = λ = 4 λ = ή λ = α) Η πρώτη εξίσωση ισοδύναμα γίνεται: x xy 3λx y 3λy λ = ή ( )( ) x xy 3λx+ y+ λ y+ λ = ή ( ) + ( + )( + ) = ή ( )( ) x y λ y λ x y λ y λ [( y= x λ) ή ( y x λ) = ] x y λ x y λ = ή β) Η ευθεία y= x, που είναι κάθετη στις δύο προηγούμενες παράλληλες ευθείες τις τέμνει στα λ λ σημεία,,( λ, λ) Επομένως ισχύει λ = ή λ = αντίστοιχα λ λ λ λ λ + λ+ = + = λ = 4, 4 4 από όπου παίρνουμε Παρατήρηση: Θα μπορούσε το (β) ερώτημα να ήταν: Αν η πλευρά ρόμβου, του οποίου δύο πλευρές είναι πάνω στις ευθείες του α) ερωτήματος είναι k, με k να είναι δεδομένου μέτρου ευθύγραμμο τμήμα, βρείτε τη τιμή του λ

13 GI_V_MATHP_4_864 [παράγραφος 3] Δίνονται οι ευθείες ε :3x+ y+ 3= και ε :x+ y 4= α) Να βρείτε τις συντεταγμένες του σημείου τομής Α των ευθειών ε και ε (Μονάδες 5) β) Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Β και η ευθεία ε τέμνει τον άξονα xx στο σημείο Γ, τότε: i) να βρείτε εξίσωση της ευθείας που διέρχεται από τα σημεία Β και Γ ii) να βρείτε το εμβαδόν του τριγώνου ΑΒΓ γ) Να αποδείξετε ότι τα σημεία Κ ( x,y ) για τα οποία ισχύει ( ΚΒΓ) ( ΑΒΓ) δύο παράλληλες ευθείες, των οποίων να βρείτε τις εξισώσεις (Μονάδες 5) (Μονάδες 5) = ανήκουν σε (Μονάδες ) α) Για το σημείο τομής A των δύο ευθειών, λύνουμε το σύστημα εξισώσεων των δύο ευθειών, αφού το A ανήκει και στις δύο ευθείες Έχουμε λοιπόν: 3x + y = 3 3x + y = 3 3x + y = 3 x = x + y = 4 3x 6y = 5y = 5 y = 3 Επομένως το σημείο τομής των ευθειών ε και ε είναι A(,3) β) Το σημείο στο οποίο η ε τέμνει τον άξονα yy έχει τετμημένη μηδέν Οπότε για x = στην ε βρίσκουμε y 3 =, οπότε B, ( 3) Επίσης, το σημείο στο οποί η ε τέμνει τον άξονα xx έχει τεταγμένη μηδέν Οπότε για y= στην ε βρίσκουμε x = 4, δηλαδή Γ( 4, ) ii) Επειδή i) Η εξίσωση της ευθείας ΒΓ είναι: yγ yb y yb = ( x xb) y ( 3) = ( x ) y+ 3= x 3x 4y = xγ xb 4 4 AB =, 6, AΓ = 6, 3, από τον τύπο εμβαδού τριγώνου με την ορίζουσα βρίσκουμε: 6 E= det( AB,AΓ ) = = 3 = 5 τμ 6 3 KB = x, 3 y, KΓ = 4 x,y, οπότε: ( KBΓ) = ( ABΓ) det ( KB, KΓ) = 3 γ) Είναι 3

14 x 3 y 4 x y = 3 3x + 4y + = 3 ( 3x 4y = 3 ή 3x 4y = 3 ) 3x 4y 4 = ή 3x 4y + 8 = Οπότε τα σημεία Κ ( x,y ) ανήκουν στις ευθείες οι οποίες είναι παράλληλες καθώς ( ζ ) :3x 4y 4= και ( ) λ 3 3 = λ = = 4 4 ζ ζ ζ :3x 4y+ 8= 4

15 GI_V_MATHP_4_865 [παράγραφος 3 ] Θεωρούμε ευθύγραμμο τμήμα ΑΒ που είναι παράλληλο προς την ευθεία ε :y Α ( x,y ), ( ) Β x,y και x < x = x, με Αν το σημείο Μ ( 3,5 ) είναι το μέσο του ευθυγράμμου τμήματος ΑΒ και το γινόμενο των τετμημένων των σημείων Α και Β ισούται με 5, τότε: α) να υπολογίσετε τις συντεταγμένες των σημείων Α και Β β) να αποδείξετε ότι ( ΟΑΒ) = 4, όπου Ο είναι η αρχή των αξόνων γ) να αποδείξετε ότι τα σημεία Κ ( x,y ) για τα οποία ισχύει ( ΚΑΒ) ( ΟΑΒ) στις ευθείες με εξισώσεις τις: x y = και x y+ 6= (Μονάδες 3) (Μονάδες 5) = ανήκουν (Μονάδες 7) α) Οι συντεταγμένες του μέσου ενός ευθυγράμμου τμήματος ισούνται με το ημιάθροισμα των συντεταγμένων των άκρων Οπότε, αφού το M είναι μέσο του AB έχουμε: x+ x y+ y M, x+ x Έτσι 3 x x 6() y + y = + = και = 5 y + y = ( ) Αφού το γινόμενο των τετμημένων των σημείων A και B ισούται με 5 έχουμε xx 5( 3) = Στις σχέσεις ()(),3 έχουμε το άθροισμα και το γινόμενο των x,x Συνεπώς τα x,x είναι w 6w+ 5= w w 5 = w = η w = 5 λύσεις της δευτεροβάθμιας εξίσωσης ( )( ) Άρα x = και x = 5 αφού x < x Επειδή το AB είναι παράλληλο προς την ευθεία ( ε ) :y = x, αν λ είναι ο συντελεστής διεύθυνσης του ΑΒ θα ισχύει: Προσθέτοντας την ( ) και ( ) Άρα A,3 ( ) και B5,7 ( ) y y = = = ( ) λ y y 4 4 x x β) Είναι ΟΑ = (, 3) και ΟΒ = ( 5,7) οπότε: ( ) αφού x x = 4 4 παίρνουμε y = 4 y = 7 και άρα y 3 = από την ( ) 3 OAB = det OA, OB = =

16 γ) Είναι ΑΚ = ( x,y 3) και ΑΒ = ( 4, 4) Οπότε KAB = OAB det AK, AB = 8 x y = 6 4x 4 4y + = 6 4x 4y + 8 = 6 4x 4y + 8 = 6 η 4x 4y + 8 = 6 x y = η x y+ 6= Άρα τα σημεία K( x,y ) ανήκουν στις ευθείες με εξισώσεις x y = και x y+ 6= 6

17 GI_V_MATHP_4_866 [παράγραφος 5] Δίνονται τα διανύσματα α, β και γ για τα οποία ισχύουν: κ α =, β =, ( α,β) = 6 και γ = α β, όπου κ α) Να υπολογίσετε το εσωτερικό γινόμενο αβ β) Αν ισχύει β γ= κ, τότε: i) να αποδείξετε ότι: κ = ii) να υπολογίσετε το μέτρο του διανύσματος γ iii) να αποδείξετε ότι τα διανύσματα 3α + γ και β γ είναι κάθετα (Μονάδες 3) (Μονάδες 6) (Μονάδες 8) (Μονάδες 8) α) o Έχουμε αβ = αβσυν6 = = βi) κ κ κ Ισχύει β γ= κ β α β = κ α β β = κ = κ κ = ii) Για κ γ= α β γ = α β γ = α + α β+ β = έχουμε ( ) iii) Υπολογίζουμε τα ( ) και ( ) γ = + + γ = 7 γ = 7 α γ= α α β = α α β= = 5 β γ = β α β = α β β = = επομένως 3α + γ β γ = 3α β 3α γ+ β γ γ = = Άρα τα διανύσματα είναι κάθετα 7

18 GI_V_MATHP_4_867 [παράγραφος ] Δίνονται τα διανύσματα α και b με μέτρα,6 αντίστοιχα και φ [, π] η μεταξύ τους γωνία Επίσης δίνεται η εξίσωση ( αb+ ) x+ ( αb ) y 5= () α) Να αποδείξετε ότι η ( ) παριστάνει ευθεία για κάθε φ [, π] (Μονάδες 3) β) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα yy, να αποδείξετε ότι b= 3α (Μονάδες 7) γ) Αν η παραπάνω ευθεία είναι παράλληλη στον άξονα xx, να αποδείξετε ότι b= 3α (Μονάδες 7) δ) Αν η παραπάνω ευθεία είναι παράλληλη στην διχοτόμο πρώτης και τρίτης γωνίας των αξόνων, να αποδείξετε ότι b α α) Η ( ) είναι στη μορφή Ax By Γ + + = με A = αb+, B = αb Για να παριστάνει ευθεία, αρκεί A ή B Δηλαδή αb+ Δηλαδή αb ή αb που ισχύει Άρα η εξίσωση ( ) παριστάνει ευθεία για κάθε φ [, π] και Γ = 5 ή αb (Μονάδες 8) β) Αν η ευθεία είναι παράλληλη στον άξονα yy δεν θα ορίζεται για αυτή συντελεστής διεύθυνσης φ [,π] Οπότε B= αb = αb= α b συνφ = συνφ = φ = Δηλαδή, τα διανύσματα είναι ομόρροπα και b = 6= 3α Οπότε b= 3α γ) Αν η ευθεία είναι παράλληλη στον άξονα xx θα έχει συντελεστή διεύθυνσης Οπότε: φ [,π] A= αb+ = αb= α b συνφ = συνφ = φ= π Δηλαδή, τα διανύσματα είναι αντίρροπα και b = 6= 3α Οπότε b= 3α δ) Η διχοτόμος της πρώτης και τρίτης γωνίας των αξόνων είναι η ευθεία με εξίσωση y x ( ε) Οποτε, η ευθεία ( ) και η ( ) ε θα έχουν ίδιο συντελεστή διεύθυνσης Έχουμε λοιπόν: αb+ λ = λε = αb = αb αb= αb= α b αb = 8

19 η α) Oι συντελεστές των x,y προφανώς δε μηδενίζονται συγχρόνως, άρα η () παριστάνει ευθεία για κάθε φ [, π], β) Ισχύει a b = a b = a b = a b άρα τα διανύσματα είναι ομόρροπα και αφού b = 3 a έχουμε ότι b = 3a γ) Ισχύει a b + = a b = a b = a b άρα τα διανύσματα είναι αντίρροπα και αφού b = 3 a έχουμε ότι b = 3a δ) Για την ευθεία ορίζεται συντελεστής διεύθυνσης, που θα ισούται με την κλίση της διχοτόμου, άρα έχουμε a b + = a b = a b a b = a b a b 9

20 GI_V_MATHP_4_868 [παράγραφος 5] α) Να εξετάσετε πότε ισχύει καθεμιά από τις ισότητες: u+ v = u + v και u+ v = u v (Μονάδες ) α β γ β) Δίνονται τα διανύσματα α,β, γ για τα οποία ισχύουν: α+ β+ γ= και = = i) Να αποδείξετε ότι: α β και β γ ii) Να αποδείξετε ότι: 7α + 3γ = (Μονάδες 8) (Μονάδες 7) α) v u v u v u ( v u ) + = + + = + v + v u+ u = v + v u + u v u = v u v u = v u Άρα v,u ομόρροπα Όμοια ( ) v+ u = v u v+ u = v u v + v u+ u = v v u + u v u = v u v u = v u Άρα v,u αντίρροπα βi) ος ΤΡΟΠΟΣ Αν θέσουμε α β γ = = = λ τότε α Είναι = 3λ, β = 4λ, γ = 7λ α+ β+ γ= α+ β= γ Οπότε ( α+ β) = ( γ) α + α β+ β = γ α β= 49λ 6λ 9λ α β= 4λ αβ = λ α β= α β Άρα α,β ομόρροπα Όμοια προκύπτει ότι β, γ αντίρροπα ος ΤΡΟΠΟΣ Αν θέσουμε α β γ = = = λ τότε α = 3λ, β = 4λ, γ = 7λ ( )

21 Παρατηρούμε ότι α+ β = γ α+ β = γ ( ) α + β = 3λ + 4λ = 7λ= γ ( 3 ) Από τις ( ) και ( 3 ) έχουμε ότι α+ β = α + β, άρα α,β ομόρροπα Τότε α= λβ με λ > και από τη σχέση α+ β+ γ= γ= ( λ+ ) β = + < τότε γ = ρβ άρα γ,β αντίρροπα Αν θέσουμε όπου ρ ( λ ) ii) ος ΤΡΟΠΟΣ Αν θέσουμε v= 7α και u = 3γ τότε έχουμε ότι v, u είναι αντίρροπα Αφού όμως από τη σχέση α β γ = = έχουμε ότι 7 α = 3 γ προκύπτει v = u Άρα v, u αντίθετα οπότε 7α + 3γ = ος ΤΡΟΠΟΣ ( ) 9 3 7α + 3γ = 7α + 3γ = 49 α + 4αγ + 9 γ = 49 γ 4 γ + 9 γ = 49 7 Άρα 7α + 3γ = 7α + 3γ =

22 GI_V_MATHP_4_86 [παράγραφος ] Δίνονται οι ευθείες ( ) Α (, ) ε : λ x y 5 + =, ( ) ε : λ + 3x y 5= με λ και το σημείο α) Να αποδείξετε ότι, για κάθε τιμή του λ οι ευθείες τέμνονται β) Αν οι ευθείες τέμνονται στο σημείο Α, να βρείτε την τιμή του λ (Μονάδες 7) (Μονάδες ) γ) Έστω λ = και Β,Γ τα σημεία που οι ε και ε τέμνουν τον άξονα yy Να βρείτε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 8) α) Η ορίζουσα του συστήματος των ( ε ) και ( ) ε είναι: λ = = + = = ( + ) < λ + 3 D λ λ 3 λ λ λ για κάθε λ Άρα το σύστημα έχει μοναδική λύση για κάθε λ, δηλαδή για κάθε τιμή του λ οι ευθείες τέμνονται ε β) Πρέπει οι συντεταγμένες του σημείου Α να επαληθεύουν τις εξισώσεις των ( ) Οπότε έχουμε: ( ) λ 5= 4λ = 8 λ = ( λ + 3) + 5= λ = 4 γ) Για λ = είναι: ε : 3x+ y 5= και ε : 7x y 5= ε και ( ) Το σημείο στο οποίο η ( ε ) τέμνει τον άξονα yy έχει τετμημένη μηδέν Οπότε για x = στην ( ε ) βρίσκουμε ότι η ( ) στην ( ε ), βρίσκουμε ότι η ( ) Είναι: άρα AB =,5 + =, 6 ε τέμνει τον yy ε τέμνει τον άξονα yy στο σημείο ( ) Β,5, Αντίστοιχα για x = στο σημείο Γ(, 5) και AΓ = (, 5+ ) = (, 4) 6 ΑΒΓ = det AB,AΓ = = 8 + = 4 = τμ 4,

23 GI_V_MATHP_4_86 [παράγραφος 5-] Δίνονται οι ευθείες ε :κx ( + κ) y+ 3κ = και κ ζ :+ 3κ x + κ y+ 6κ =, όπου α) Να εξετάσετε αν υπάρχει τιμή του κ, ώστε οι ευθείες να είναι παράλληλες β) Να βρείτε την αμβλεία γωνία που σχηματίζουν οι ευθείες ( ε) και ( ζ ) (Μονάδες ) (Μονάδες 5) α) Το διάνυσμα u = ( κ, κ) v = κ, 3κ ( ) είναι παράλληλο στην ευθεία ( ε ) και το διάνυσμα είναι παράλληλο στην ευθεία ( ζ ) κ κ ε ζ u v det u,v = = 5κ + κ + = κ 3κ Έχουμε ( ) η τελευταία εξίσωση έχει διακρίνουσα Δ = 6, άρα είναι αδύνατη στο Άρα δεν υπάρχει τιμή του πραγματικού κ ώστε να είναι ε ζ β) Έστω ω = ( v,u ) Τότε: u v ( κ)( κ ) + ( κ)( 3κ ) συνω = = = u v κ + κ κ + 3κ = = = 5κ + κ + κ + 4κ + 5κ κ Άρα η οξεία γωνία των διανυσμάτων είναι ζ είναι 35 Οπότε και η αμβλεία γωνία των ευθειών ( ε ) και ( ) 5κ κ 5κ κ ( + + ) ω = 45 και η αμβλεία είναι 35 3

24 GI_V_MATHP_4_86 [παράγραφος 3] 3 Δίνονται τα σημεία Α,, B, ( ) και μ 4 Γ μ,, όπου μ α) Να βρείτε τις συντεταγμένες των διανυσμάτων AB και ΒΓ (Μονάδες 8) β) Να αποδείξετε ότι για κάθε μ το σημείο Γ ανήκει στην ευθεία που διέρχεται από τα σημεία Α και Β γ) Να βρείτε την τιμή του μ έτσι, ώστε μ ΒΓ= AB (Μονάδες 8) (Μονάδες 6) δ) Για την τιμή του μ που βρήκατε στο ερώτημα γ), να αποδείξετε ότι ( ΟΒΓ) =, όπου O είναι η αρχή των αξόνων 3 α) Είναι AB =, + =, και μ 4 μ ΒΓ = μ, + = μ, β) Αρκεί να δείξουμε ότι τα σημεία Α,Β,Γ είναι συνευθειακά Πράγματι μ μ det ( AB, ΒΓ) = = =, μ μ άρα είναι AB BΓ δηλαδή τα σημεία Α,Β,Γ είναι συνευθειακά μ μ BΓ = AB μ μ, =, μ μ, =, γ) ( ) δ) Για μ = είναι μ μ = μ μ + = μ = μ = 3 Γ,, δηλαδή το Γ ταυτίζεται με το Α ΟΒΓ = det ΟB, ΟΓ = 3 = 3+ = τμ (Μονάδες 3) 4

25 GI_V_MATHP_4_863 [παράγραφος 3] Δίνονται τα σημεία Α ( 3, 4 ), B5,7 ( ) και Γ( μ, 3μ ) +, όπου μ α) Να βρείτε τις συντεταγμένες των διανυσμάτων AB και AΓ και, στη συνέχεια, να αποδείξετε ότι τα σημεία Α, B και Γ δεν είναι συνευθειακά για κάθε τιμή του μ β) Να αποδείξετε ότι: i) το εμβαδόν του τριγώνου ΑΒΓ δεν εξαρτάται από το μ ii) (Μονάδες 8) (Μονάδες 5) για κάθε τιμή του μ το σημείο Γ ανήκει σε ευθεία ε, της οποίας να βρείτε την εξίσωση (Μονάδες 7) γ) Να ερμηνεύσετε γεωμετρικά γιατί το εμβαδόν του τριγώνου ΑΒΓ παραμένει σταθερό, ανεξάρτητα από την τιμή του μ ; και AΓ = μ + 3,3μ 4 = μ,3μ 6 α) Είναι AB = ( 5 3, 7 4) = (,3) Επειδή ( ) 3 det AB, AΓ = 6μ 6μ 6 6 μ 3μ 6 = + = είναι παράλληλα, άρα τα σημεία Α,Β,Γ δεν είναι συνευθειακά βi) Είναι: (Μονάδες 5) τα διανύσματα AB, AΓ δεν 3 ΑΒΓ = det AB, AΓ 6μ 6μ 6 3τμ = μ 3μ 6 = + =, άρα το εμβαδόν του ΑΒΓ είναι ανεξάρτητο του μ (ii) Αφού Γ( μ +, 3μ ) έχουμε: και x = μ + x απ όπου μ = y = 3μ x y= 3 y= 3x 3 4 3x y= 7 Άρα το Γ για οποιαδήποτε τιμή του μ ανήκει στην ευθεία ( ε ) με εξίσωση ε :3x y= 7 3 (γ) Παρατηρούμε ότι λε = = λ AB,οπότε ε //ΑΒ Άρα για οποιαδήποτε θέση του Γ στην ( ε ) το ύψος του τριγώνου ΑΒΓ από το γ έχει σταθερό μήκος, οπότε και το εμβαδόν μένει σταθερό 5

26 GI_V_MATHP_4_47 Δίνονται τα σημεία A ( λ +, λ ), B, ( ) και ( ) α) Να βρείτε την μεσοκάθετο του τμήματος BΓ Γ 4,6, λ R β) Αν το σημείο A ισαπέχει από τα σημεία B και Γ, να βρείτε την τιμή του λ γ) Για λ = 4,να βρείτε σημείο Δ ώστε το τετράπλευρο ABΔΓ να είναι ρόμβος (Μονάδες 7) (Μονάδες 8) (Μονάδες ) α) Το μέσο M του τμήματος BΓ είναι: M, 6 Ο συντελεστής διεύθυνσης της ευθείας BΓ είναι: λbγ = = 4 δηλαδή το M( 3,4 ) Αν δ είναι η μεσοκάθετος του BΓ τότε λ δ λbγ = λδ = και η εξίσωση της δ εί- ναι: y ym = λδ ( x xm ) y 4= ( x 3) x+ y= β) Αφού το A ισαπέχει από τα σημεία B και Γ τότε ανήκει στη μεσοκάθετο του BΓ δηλαδή στην ευθεία δ Έτσι με x= λ + και y= λ η δ γίνεται: λ + + ( λ ) = λ = 4 γ) Αν λ = 4 τότε A( 5,3 ) Για να είναι το τετράπλευρο ΑΒΔΓ ρόμβος πρέπει κι αρκεί το Μ να xa + xδ = xμ 5+ xδ = 6 xδ = είναι μέσο της ΒΔ, άρα οπότε Δ(, 5) ya + yδ = ym 3+ yδ = 8 yδ = 5 ΑΛΛΗ Το σημείο Δ πρέπει να ισαπέχει από τα Β, Γ, οπότε βρίσκεται στη μεσοκάθετο του BΓ, άρα έχει συντεταγμένες Δ( α, α ), α R Οπότε ( ΜΔ) ( ΜΑ) ( α 3) ( α 4) ( 5 3) ( 3 4) = + = + 8 α + α 4 = 5 α 8α + 5 = Η εξίσωση δίνει α = 5, οπότε Δ (, 5 ) ή α = 3 που απορρίπτεται αφού ταυτίζεται με το A ΣΧΟΛΙΟ: Είναι το 4_869 (που αποσύρθηκε), με αλλαγμένες τις συντεταγμένες του A 6

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε = 5 + 2 α) Να γράψετε το διάνυσμα β) Να δείξετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΚΑΤΕΥΘΥΝΣΗ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΕΦΑΛΑ ΔΙΑΝΥΣΜΑΤΑ. = π 3 και a = 2, β =2 2. a, β AΓ =(2,-8). α) Να βρείτε τις συντεταγμένες του διανύσματος ΔΙΑΝΥΣΜΑΤΑ 8556 ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =.. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (16) -2- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου -3- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10)

(Μονάδες 8) γ) Για την τιμή του λ που βρήκατε στο ερώτημα β), να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ (Μονάδες 10) ΘΕΜΑ 4 Σε τρίγωνο ΑΒΓ είναι AB= ( λ, λ+ 1), AΓ = ( 3 λ, λ 1) είναι το μέσο της πλευράς ΒΓ AΜ= λ, λ α) Να αποδείξετε ότι ( ), όπου λ 0 και λ, και Μ (Μονάδες 7) β) Να βρείτε την τιμή του λ για την οποία

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου. 2 ο ΘΕΜΑ. Εκφωνήσεις Λύσεις των θεμάτων. Έκδοση 1 η (18/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Μαθηματικά Προσανατολισμού Β Γενικού Ημερησίου Λυκείου ο ΘΕΜΑ Εκφωνήσεις Λύσεις των θεμάτων Έκδοση η (8//04) Θέματα ης Ομάδας ο ΘΕΜΑ Μαθηματικά Προσανατολισμού Β Λυκείου GI_V_MATHP 8556

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7)

ΔΙΑΝΥΣΜΑΤΑ. (Μονάδες 8) (Μονάδες 10) (Μονάδες 7) ΘΕΜΑ 2. AM, όπου ΑΜ είναι η διάμεσος. (Μονάδες 7) ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Άσκηση Δίνονται τα διανύσματα a και με a, = 3 και a =, =. α) Να βρείτε το εσωτερικό γινόμενο a. β) Αν τα διανύσματα a + και κ a + είναι κάθετα να βρείτε την τιμή του κ. γ) Να βρείτε το

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΓΙΑ ΕΡΓΑΣΙΑ ΣΤΗΝ ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΗΜΗΤΡΗΣ ΝΤΡΙΖΟΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ / ΘΕΜΑ Δίνεται το κυρτό τετράπλευρο ΑΒΓΔ

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β

= π 3 και a = 2, β =2 2. a, β 1 of 68 Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. γ) Να

Διαβάστε περισσότερα

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΘΕΜΑ ο ΘΕΜΑ 8603 Δίνεται τρίγωνο και σημεία και του επιπέδου τέτοια, ώστε 5 και 5. α) Να γράψετε το διάνυσμα ως γραμμικό

Διαβάστε περισσότερα

( ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ( ) ( ) λx + 2 λ y + λ + 4 = 0. Α Βαθ. Β Βαθ. Μ.Ο. Ενδεικτικές Λύσεις

( ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ( ) ( ) λx + 2 λ y + λ + 4 = 0. Α Βαθ. Β Βαθ. Μ.Ο. Ενδεικτικές Λύσεις ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ THΛ : 99 9494 www.syghrono.gr ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΤΗΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΟΥ Β ΛΥΚΕΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΚΕΦΑΛΑΙΟ 1 Ο ΔΙΑΝΥΣΜΑΤΑ 1. ΘΕΜΑ ΚΩΔΙΚΟΣ_18556 Δίνονται τα διανύσματα α και β με ^, και,. α Να

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν α= ( x,y ), β= ( x,y) γ= x,y α β+ γ =

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Μαθηματικές Συναντήσεις

Μαθηματικές Συναντήσεις Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ 7ο / ΝΟΕΜΒΡΙΟΣ 4-ΙΑΝΟΥΑΡΙΟΣ 5 ΜΙΑ ΠΡΟΤΑΣΗ ΘΕΜΑΤΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ, ΤΗΝ ΕΥΘΕΙΑ ΓΡΑΜΜΗ ΚΑΙ ΤΙΣ ΚΩΝΙΚΕΣ ΤΟΜΕΣ (4α θέματα) Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A

) = Απόσταση σημείου από ευθεία. Υπολογισμός Εμβαδού Τριγώνου. και A [Επιλογή Ιαν.. Εμβαδόν Τριγώνου ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να είναι ικανός να υϖολογίζει την αϖόσταση σηµείου αϖό ευθεία να είναι ικανός να υϖολογίζει το εµβαδό ενός τριγώνου αϖό τις συντεταγµένες των κορυφών

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 08 Διάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Απόδειξη σχολικού βιβλίου σελίδα 43 Α. Ο

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου

Μαθηματικά προσανατολισμού Β Λυκείου Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ. Επιμέλεια Αυγερινός Βασίλης

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ. Επιμέλεια Αυγερινός Βασίλης ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Επιμέλεια Αυγερινός Βασίλης ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ο ΔΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΕ ΑΠΑΝΤΗΣΕΙΣ, ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ ΣΕΛΙΔΕΣ 3-36 ΜΕΡΟΣ ο ΕΥΘΕΙΕΣ ΕΡΩΤΗΣΕΙΣ

Διαβάστε περισσότερα

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1)

Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση ) ένα σημείο εκτός αυτής. Θέλουμε y (1) 7 ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ Απόσταση Σημείου από Ευθεία Έστω ε μια ευθεία του καρτεσιανού επιπέδου, με εξίσωση M ( x, y ) ένα σημείο εκτός αυτής Θέλουμε y να υπολογίσουμε την απόσταση d( M, ε) του ε σημείου M από

Διαβάστε περισσότερα

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα

Μαθηματικά προσανατολισμού Β Λυκείου. ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ α φάση. Διανύσματα Μαθηματικά προσανατολισμού Β Λυκείου wwwaskisopolisgr ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΟΕΦΕ 00-018α φάση Διανύσματα 1 Σε σύστημα συντεταγμένων Oxy θεωρούμε τρία σημεία Α, Β, Γ του μοναδιαίου κύκλου, για τα οποία υπάρχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ. Γιάννης Ζαµπέλης Μαθηµατικός ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 867 (Αναρτήθηκε 8 4 ) ίνονται τα διανύσµατα a και b µε µέτρα, 6 αντίστοιχα και ϕ [, π] a b+ x+ a b y 5= () δίνεται η εξίσωση ( ) ( ) α) Να αποδείξετε

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων

ΘΕΜΑ ίνονται τα διανύσµαταα, β. α) Να υπολογίσετε τη γωνία. β) Να αποδείξετε ότι 2α+β= β) το συνηµίτονο της γωνίας των διανυσµάτων ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΣΕ ΟΛΗ ΤΗΝ ΥΛΗ! ΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣΜΑ ΘΕΜΑ 005 Θεωρούµε τα σηµεία Ρ, Λ, Κ και Μ του επιπέδου για τα οποία ισχύει η σχέση 5ΡΛ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ

ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ ΠΡΩΤΟ ΘΕΜΑ ΕΞΕΤΑΣΕΩΝ 1. Α. Έστω x, y και x, y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. i. Να εκφράσετε (χωρίς απόδειξη) το εσωτερικό γινόμενο των διανυσμάτων και συναρτήσει των συντεταγμένων τους.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 2ο κεφάλαιο: Ευθείες Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος Αποστόλου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου

Διαβάστε περισσότερα

ΛΥΣΗ Έστω x = λ-1 και y = 2λ+3, τότε λ = x+1 (1) και λ = (2). Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία y = 2x+5.

ΛΥΣΗ Έστω x = λ-1 και y = 2λ+3, τότε λ = x+1 (1) και λ = (2). Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία y = 2x+5. . Να βρεθεί ο γεωμετρικός τόπος των σημείων Μ (λ -, λ ), λ R. - Έστω λ- και λ, τότε λ () και λ (). - Από τις () και () έχουμε:. Αυτό σημαίνει ότι ο γεωμετρικός τόπος των σημείων Μ είναι η ευθεία.. Να αποδείξετε

Διαβάστε περισσότερα

(Έκδοση: 06 12 2014)

(Έκδοση: 06 12 2014) (Έκδοση: 06 04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 04 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε.

Β ΛΥΚΕΙΟΥ. ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) c πάνω στην οποία κινείται το σημείο Μ. M x, y. x 2λ 1 και. 3 λ Υπάρχει λ ώστε. Β ΛΥΚΕΙΟΥ ΕΥΘΕΙΑ ΚΑΙ ΚΥΚΛΟΣ (εχθροί ή φίλοι;) Του Κώστα Βακαλόπουλου Στο άρθρο που ακολουθεί παραθέτουμε μια σειρά από ασκήσεις στις οποίες συνυπάρχουν άλλοτε αρμονικά και άλλοτε ανταγωνιστικά οι δύο βασικές

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού

117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά. Μαθηματικού 117 ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Μανώλη Ψαρρά Μαθηματικού Περιεχόμενα 1. Διανύσματα (47) ελ. - 9. Ευθεία (18) ελ. 10-1 3. Κύκλος (13).ελ. 13-15 4. Παραβολή (14) ελ. 16-18 5. Έλλειψη (18)..

Διαβάστε περισσότερα

Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών

Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών wwwaskisopolisgr Θέματα εξετάσεων στα Μαθηματικά προσανατολισμού της Β Λυκείου παλαιοτέρων ετών Διανύσματα Δίνεται τρίγωνο ΑΒΓ με AB, ΑΓ και ˆΑ 60 Να βρείτε: α) ΑΒ ΑΓ β) Το μέτρο της διαμέσου ΑΔ γ) Τη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες Α1. Θεωρία. Σχολικό βιβλίο σελίδα 83 Α2. α) Σωστό β) Λάθος γ) Σωστό

Διαβάστε περισσότερα

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 10/4/017 ΕΩΣ /4/017 ΤΑΞΗ: ΜΑΘΗΜΑ: B ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 1 Απριλίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη του

Διαβάστε περισσότερα

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12 Τράπεζα 0- Πολλαπλασιασμός αριθμού με διάνυσμα.58 Θεωρούμε τα διανύσματα α,β,γ και τυχαίο σημείο Ο. Αν α β 5γ, α 3β 4γ και 3α β 6γ, τότε: α) να εκφράσετε τα διανύσματα, συναρτήσει των διανυσμάτων α,β,γ.

Διαβάστε περισσότερα

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a.

Μονάδες 5,5 γ) Αν τα διανύσματα a, είναι μη μηδενικά και θ είναι η γωνία των a. λ 0. Για ποια από τις παρακάτω τιμές του λ τα διανύσματα a. ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ 1 ο (Πανελλήνιες θετικής κατεύθυνσης Β Λυκείου 1999) Α. Έστω a ( x1,) y1 και ( x,) y δύο διανύσματα του καρτεσιανού επιπέδου Οxy. α) Να εκφράσετε (χωρίς απόδειξη) το

Διαβάστε περισσότερα

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ

2.2 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ 63 ΓΕΝΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΗΣ ΕΥΘΕΙΑΣ Η Εξίσωση Αx + Βy + Γ = 0, με Α 0 ή Β 0 Έστω ε μια ευθεία στο καρτεσιανό επίπεδο Αν η ευθεία ε τέμνει τον άξονα yy στο σημείο Σ (, 0 β ) και έχει συντελεστή διεύθυνσης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

44 Ευθεία Τύποι - Βασικές έννοιες Εξίσωση ευθείας EΥΘΕΙΑ: Τύποι - Βασικές έννοιες α Η εξίσωση ευθείας (ε) η οποία διέρχεται από το σημείο ( x,y) συντε

44 Ευθεία Τύποι - Βασικές έννοιες Εξίσωση ευθείας EΥΘΕΙΑ: Τύποι - Βασικές έννοιες α Η εξίσωση ευθείας (ε) η οποία διέρχεται από το σημείο ( x,y) συντε Ο μαθητής που έχει μελετήσει το κεφάλαιο της ευθείας θα πρέπει να είναι σε θέση: Να βρίσκει τον συντελεστή διεύθυνσης μιας ευθείας Να διατυπώνει τις συνθήκες παραλληλίας και καθετότητας δύο ευθειών, και

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β MΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. Αν Α(x 1, y 1 ) και Β(x, y ) είναι σημεία του καρτεσιανού επιπέδου και (x, y) οι συντεταγμένες

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 / Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 / Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο

Διαβάστε περισσότερα

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5.

2 Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Ευθεία Ο ΚΕΦΑΛΑΙΟ Ενότητα 5. Εξίσωση γραμμής Συντελεστής διεύθυνσης ευθείας Συνθήκες καθετότητας και παραλληλίας ευθειών Εξίσωση ευθείας ειδικές περιπτώσεις Σχόλιο Το σημείο είναι ο θεμελιώδης λίθος της

Διαβάστε περισσότερα

Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: 01/03/2015. Θέμα Β. Θέμα Α. Α 1. Σχολικό Βιβλίο σελίδα 73.

Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: 01/03/2015. Θέμα Β. Θέμα Α. Α 1. Σχολικό Βιβλίο σελίδα 73. Μαθηματικά Β Λυκείου Εξεταζόμενη Ύλη: Διανύσματα Ευθεία Κύκλος Ημερομηνία: /3/5 Θέμα Α Α. Σχολικό Βιβλίο σελίδα 73. Α.. Σχολικό Βιβλίο σελίδα 84. Α 3. i --> Σ, ii --> Σ, iii --> Λ, iv --> Λ, v --> Σ Θέμα

Διαβάστε περισσότερα

Μαθηματικά προσαματολισμού Β Λσκείοσ

Μαθηματικά προσαματολισμού Β Λσκείοσ Μαθηματικά προσαματολισμού Β Λσκείοσ Ο κύκλος Στέλιος Μιταήλογλοσ wwwaskisopolisgr Κύκλος Εξίσωση κύκλου Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και C ο κύκλος με M x, y του κέντρο το σημείο 0

Διαβάστε περισσότερα

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ

1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ 34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ Διανύσματα-Ευθεία-Κύκλος Αναλυτική Θεωρία 500 Ασκήσεις Επιμέλεια : ΝΙΚΟΣ Κ. ΡΑΠΤΗΣ ΝΙΚΟΣ Κ. ΡΑΠΤΗΣ Σελίδα 2 1. Η Έννοια του Διανύσματος Ορισμός Διανύσματος Το διάνυσμα ορίζεται ως

Διαβάστε περισσότερα

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε

Τάξη B. Μάθημα: Η Θεωρία σε Ερωτήσεις. Επαναληπτικά Θέματα. Επαναληπτικά Διαγωνίσματα. Επιμέλεια: Κώστας Κουτσοβασίλης. α Ε Ν β K C Ε -α Ο α Ε Τάξη B Μ -β Λ Μάθημα: Η Θεωρία σε Ερωτήσεις Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Επιμέλεια: Διανύσματα Ερωτήσεις θεωρίας 1. Πως ορίζεται το διάνυσμα;. Τι λέγεται μηδενικό διάνυσμα;

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ Ευθεία ΣΥΝΤΕΛΕΣΤΗΣ ΔΙΕΥΘΥΝΣΗΣ ΕΥΘΕΙΑΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ 1. Να βρεθεί ο συντελεστής διεύθυνσης της ευθείας ε, αν αυτή έχει εξίσωση: 5x 6 i) y = x- 1 ii) y = 3 5x iii) y iv) x = y + 3 10 v) 18x-6y

Διαβάστε περισσότερα

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός

Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός ΕΥΘΕΙΑ Να προσέχεις ότι: Η γενική μορφή της εξίσωσης ευθείας είναι η από τα Α, Β διάφορο του μηδενός Ax+By+Γ=0, με κάποιο Η εξίσωση της ευθείας που διέρχεται από ένα σημείο Α(x 0,y 0 ) και έχει συντελεστή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα.

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ [TΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ] (Μονάδες 13) β) Να δείξετε ότι τα διανύσματα ΔΕ και BΓ είναι παράλληλα. ΔΙΑΝΥΣΜΑΤΑ ΘΕΜΑ Ο 863 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε: AΔ=AB+5AΓ και AΕ =5AB+AΓ α) Να γράψετε το διάνυσμα ΔΕ ως γραμμικό συνδυασμό των AB και AΓ ) Να δείξετε ότι τα διανύσματα

Διαβάστε περισσότερα

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ

ΘΕΜΑ 1. Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο. (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ Ε4 ΘΕΜΑ 1 Α. Να δείξετε ότι η ευθεία ε: αx + βy + γ = 0, ( α + β 0), είναι παράλληλη στο δ = ( β, α). (Μονάδες: 5) Β. ΣΩΣΤΟ ΛΑΘΟΣ 1. Η απόσταση του 0(0,0) από την x + y + = 0 είναι.. Η εξίσωση y = xy παριστάνει

Διαβάστε περισσότερα

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΔΙΑΝΥΣΜΑΤΑ ΜΕΘΟΔΙΚΗ ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ Β ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1) Δίνονται διανύσματα α και β, με α π = 4 και (α, β ) = 3 Αν ισχύει ότι το α (α + 2β ) = 28, να βρείτε: α) το εσωτερικό γινόμενο α β, β) το μέτρο

Διαβάστε περισσότερα

Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Διανύσματα Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7 0 0 8 8 8 8 Kglykosgr / 9 / 0 1 6 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό πήξιμο Τα πάντα για τα διανύσματα

Διαβάστε περισσότερα

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν:

π (α,β). Έστω τα διανύσματα π (α,β) να βρεθούν: ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Β ΚΑΤΕΥΘΥΝΣΗΣ 1. Για τα διανύσματα α, β δίνεται ότι α =1, β = και u α β, v α - β.να υπολογίσετε: π (α,β). Έστω τα διανύσματα α. το εσωτερικό γινόμενο α β β. τα μέτρα u, v των διανυσμάτων

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ

ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ www.thetiko.gr 1. Λάθος. Λάθος 3. Σωστό. Λάθος 5. Λάθος 6. Λάθος 7. Σωστό 8. Λάθος 9. Λάθος 10. Λάθος 11. Λάθος 1. Σωστό 13. Σωστό

Διαβάστε περισσότερα

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος» Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία

Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην

Διαβάστε περισσότερα

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Σύγχρονο www.fasma.fro.gr ΦΑΣΜΑ GROUP προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. Μαθητικό Φροντιστήριο Κατά το πέρας της εξέτασης οι λύσεις θα αναρτηθούν στο και στο site του φροντιστηρίου. 5ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ

Διαβάστε περισσότερα

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 / Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3. 8 8. 8 8 Kgllykos..gr / 7 / 8 Κατεύθυνση Κεφάλαιο 3 ασκήσεις και τεχνικές σε σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 1 η δεκάδα θεµάτων επανάληψης 1. Α. Έστω α = (x 1, y 1 ) και β = (x, y ) δύο διανύσµατα Να γράψετε την αναλυτική έκφραση του εσωτερικού γινοµένου τους i Αν τα διανύσµατα δεν είναι παράλληλα προς τον

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Ο : ΔΙΑΝΥΣΜΑΤΑ ΚΕΦΑΛΑΙΟ 2 Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ: ΔΙΑΝΥΣΜΑΤΑ - ΕΥΘΕΙΑ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Ο : ΔΙΑΝΥΣΜΑΤΑ ΚΕΦΑΛΑΙΟ 2 Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ: ΔΙΑΝΥΣΜΑΤΑ - ΕΥΘΕΙΑ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ ΠΕΡΙΕΧΟΜΕΝΑ ΘΕΜΑ Β.,.,. ΠΡΟΣΘΕΣΗ & ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ - ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. σελ.. ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ.. σελ. 5.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ... σελ.

Διαβάστε περισσότερα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β O A M B ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Β ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ Ο ΘΕΜΑ ον : α α. Τι ονομάζουμε εσωτερικό γινόμενο δύο διανυσμάτων, β. Μονάδες 5 β. Αν α, ν

Διαβάστε περισσότερα

Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη: Πράξεις διανυσμάτων

Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη: Πράξεις διανυσμάτων Αρσάκεια Τοσίτσεια Σχολεία Μαθηματικά Κατεύθυνσης Β Λυκείου Να χαρακτηρίσετε κάθε μία από τις παρακάτω προτάσεις ως Σωστή ή Λανθασμένη: Πράξεις διανυσμάτων ) α β α β α//β ) α β α β α β ) α β α β α β 4)

Διαβάστε περισσότερα

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 18/1/016 ΕΩΣ 05/01/017 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 7 Δεκεμβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Αν ( xy, )

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Επανάληψη Επιμέλεια Αυγερινός Βασίλης ΚΕΦΑΛΑΙΟ ο ΔΙΑΝΥΣΜΑΤΑ SOS ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Θέμα ο Να γράψετε και να αποδείξετε την σχέση της διανυσματικής ακτίνας του μέσου ενός τμήματος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Επαναληπτικά συνδυαστικα θέµατα

Επαναληπτικά συνδυαστικα θέµατα Επαναληπτικά συνδυαστικα θέµατα Θέµα ο A. Αν α, β µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: i. αβ και ii. Αν α β τότε ισχύει α + β =. 4 4 B. Να βρεθούν οι τιµές του λ ώστε η

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης

Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού

Διαβάστε περισσότερα

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. 1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;

Διαβάστε περισσότερα

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται

AB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος

Διαβάστε περισσότερα

Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /

Διανύσματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Kατεύθυνση κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 / Διανύσματα Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 1 / 7 / 0 1 8 Kατεύθυνση κεφάλαιο 1 44 ασκήσεις και τεχνικές σε 1 σελίδες εκδόσεις Καλό

Διαβάστε περισσότερα

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση: Να δίνει τον ορισμό του διανύσματος και των εννοιών που είναι κλειδιά όπως: κατεύθυνση φορά ή διεύθυνση, μηδενικό διάνυσμα,

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

3 η δεκάδα θεµάτων επανάληψης

3 η δεκάδα θεµάτων επανάληψης η δεκάδα θεµάτων επανάληψης. Έστω η υπερβολή x y. Να βρείτε Tις ασύµπτωτες και την εκκεντρότητα της υπερβολής. i Tις εφαπτόµενες της υπερβολής που είναι παράλληλες στην ευθεία (ε) : x + y + 0 ii Tο εµβαδόν

Διαβάστε περισσότερα