Α ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ
|
|
- Πολυξένη Αλαφούζος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 A ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙ ΙΟΥ ΣΕ ΣΤΑΤΙΚΑ ΠΕ ΙΑ Α. Γνική ξίσωση κίνησης για µη ρλατιβιστικές πριπτώσις q( ) + B Α. Αρχή διατήρησης της νέργιας Α.3 Ταχύτητα σωµατιδίο µ φορτίο q και µάζα πο µταβαίνι από θέση µηδνικού δναµικού σ θέση δναµικού µ µηδνική αρχική ταχύτητα + qφ onst q ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙ ΙΟΥ ΣΕ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Α. Εξίσωση κίνησης q Α.5 Α.6 Α.7 Α.8 Ταχύτητα σωµατιδίο ( q, ) πο ισέρχται µ ταχύτητα σ ηλκτροστατικό πδίο Σνιστώσς της ταχύτητας (παράλληλη και κάθτη προς τη διύθνση το ηλκτρικού πδίο ) Επιβατική ακτίνα σωµατιδίο ( q, ) πο ισέρχται µ ταχύτητα από αρχική πιβατική ακτίνα r σ ηλκτροστατικό πδίο Σνιστώσς της πιβατικής ακτίνας (παράλληλη και κάθτη προς τη διύθνση το ηλκτρικού πδίο ) () t q () t r t + q t + q r() r t t + t + q r t + t + r r t + r ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙ ΙΟΥ ΣΕ ΜΑΓΝΗΤΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Α.9 Εξίσωση κίνησης F q( B) Α. Σνιστώσς της ταχύτητας (παράλληλη και κάθτη στη διύθνση το µαγνητικού πδίο) onst. onst. 3
2 Α. Ακτίνα κκλικής πριστροφής σωµατιδίο ( q, ) R Α. Πρίοδος κκλικής πριστροφής σωµατιδίο ( q, ) T πr π Α.3 Γωνιακή σχνότητα ή κκλοτρονική σχνότητα της κκλικής πριστροφής σωµατιδίο ( q, ) π ω T ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΟΥ ΣΩΜΑΤΙ ΙΟΥ ΣΕ ΙΑΣΤΑΥΡΟΥΜΕΝΑ ΠΕ ΙΑ Α. Γνική ξίσωση κίνησης + q( + + B) Α.5 Επιµέρος ξισώσις κίνησης Α.6 Α.7 Παράλληλη σνιστώσα στη διύθνση το µαγνητικού πδίο της ταχύτητας και της πιβατικής ακτίνας (Οµαλά πιταχνόµνη κίνηση) Ανάλση της κάθτης στη διύθνση το µαγνητικού πδίο σνιστώσας της ταχύτητας q q( + B) q t + q r t + t + r + Α.8 Σταθρή ταχύτητα (Εθύγραµµη οµαλή B onst κίνηση) B Α.9 Εξίσωση κίνησης για τη σνιστώσα (Κκλική κίνηση µ άξονα πριστροφής παράλληλο στη διύθνση το µαγνητικού πδίο B ) Α. Χαρακτηριστικά κκλικής κίνησης q( B) R πr π T π ω T 3
3 ΠΑΡΑ ΕΙΓΜΑΤΑ Κίνηση φορτισµένο σωµατιδίο σ διασταρούµνα ηλκτρικά και µαγνητικά πδία z Α. Παραµτρικές ξισώσις τροχιάς µ αρχικές σνθήκς () () z() και () (), () t () + sinωt ω t () ( osωt ) ω z zt () B Το αναλλοίωτο της µαγνητικής ροπής A. Α.3 Μέτρο µαγνητικής ροπής το βρόχο πο διαγράφι κινούµνο φορτισµένο σωµατίδιο q M πr onst B T Μαγνητική ροή πο διέρχται από την πιφάνια της κκλικής τροχιάς π Φ πrb M onst q R B z Α. Σνολική κινητική νέργια σωµατιδίο Wt + MB onst Α.5 Α.6 Σνάρτηση δναµικού στον µταξύ των πλακών χώρο /3 /3 /3 3 J /3 φ( ) /3 Πκνότητα ρύµατος J (ξίσωση των Chil-Languir) J 9 9 / 3/ / 3/ φ () ίοδος πιπέδων πλακών K J - φ φ P 33
4 X ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕ ΙΑ ΟΡΙΣΜΟΙ Χ. Ταχύτητα διάδοσης το κύµατος σ ένα µη αγώγιµο µέσο µ διηλκτρική σταθρά και µαγνητική διαπρατότητα µ µ Χ. Χαρακτηριστική σύνθτη αντίσταση µέσο µ σταθρές και µ η µ Χ.3 Μήκος κύµατος λ f ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWLL Χ. ιαφορική Μορφή Χ.5 Ολοκληρωτική Μορφή D H J + t B t B D ρ H l D + J l C B C B D ρ ΜΙΓΑ ΙΚΗ ΜΟΡΦΗ ΕΞΙΣΩΣΕΩΝ ΤΟΥ MAXWLL Χ.6 Στιγµιαίς τιµές της ηλκτρικής και της µαγνητικής πδιακής έντασης σ σχέση µ τις µιγαδικές τιµές j t R( ω ) j t H R( H ω ) Χ.7 Σνιστώσς της ηλκτρικής και µαγνητικής πδιακής έντασης σ µιγαδική µορφή z z jωϕ jωϕ jωϕz H H H z H H H z jωϕ jωϕ jωϕz 3
5 Χ.8 Εξισώσις το Mawll σ µιγαδική µορφή για ένα γραµµικό και ισότροπο µέσο: D, B µ H, J σ H ( σ + jω) jω jωµ H H ρ X.9 Μιγαδική διηλκτρική σταθρά j σ ω Η ΕΞΙΣΩΣΗ ΚΥΜΑΤΟΣ Χ. Χ. Χ. Χ.3 Χ. Γνική µορφή της ξίσωσης κύµατος σ οµογνές, γραµµικό, ισότροπο και λύθρο πηγών ( J ρ ) µέσο Εξίσωση κύµατος σ µη αγώγιµο µέσο ( σ ) Μονοδιάστατη ξίσωση κύµατος για οποιαδήποτ σνιστώσα ψ των, H (οµογνής ξίσωση D Albrt) Γνική λύση της µονοδιάστατης ξίσωσης κύµατος Σντλστής (σταθρά) διάδοσης κύµατος s µ µσ H H H µ µσ µ µ H H H H ψ ψ z + (,) z t ( z t) + ( z + t) + (,) z t ( z t) + ( z + t) + H (,) z t H ( z t) + H ( z + t) + H (,) z t H ( z t) + H ( z + t) + + H +, H, H +, H η η η γ jω ( µσ + jω) ω µ+ jωµσ η Χ.5 ιανσµατική ξίσωση Hlholtz για τη διάδοση µονοχρωµατικού κύµατος σ οµογνές, γραµµικό και ισότροπο µέσο χωρίς διανµηµένα χωρικά φορτία Χ.6 ιάδοση σ µη αγώγιµο µέσο ( σ ) γ γ H H ω µ + ω µ H+ H Χ.7 Χ.8 Χ.9 Εξίσωση διάχσης σ καλό αγώγιµο µέσο ( ω σ) Εξίσωση διάχσης σ καλό αγώγιµο µέσο ( ω σ) Λόγος ρύµατος µτατόπισης προς ρύµα αγωγιµότητας (µέτρο ορισµού νός λικού ως καλού αγωγού ή όχι) µσ G G G, H, J, B G jωµσg G, H, J, B J jω Q J σ ω σ 35
6 ΒΑΘΜΩΤΑ ΚΑΙ ΙΑΝΥΣΜΑΤΙΚΑ ΥΝΑΜΙΚΑ Χ. Σχέσις ορισµού το διανσµατικού δναµικού A και το βαθµωτού δναµικού φ B A A φ t Χ. Σνθήκη Lorntz A + µ φ Χ. Μη οµογνής ξίσωση Hlholtz, όταν ικανοποιίται η σνθήκη Lorntz µ A A µ J A µ J φ ρ ρ φ µ φ Χ.3 Τλστής το D Albrt µ t Χ. Χ.5 Μτασχηµατισµός gaug το βαθµωτού και το διανσµατικού δναµικού, όπο ψ αθαίρτη βαθµωτή σνάρτηση Τα µτασχηµατισµένα A και φ καταλήγον στα ίδια πδιακά µγέθη, H µ τα αρχικά A και φ A A + ψ ψ φ φ t A φ t B A Χ.6 Η ψ ικανοποιί την ξίσωση κύµατος ψ ψ µ ψ Χ.7 Χ.8 Τα µτασχηµατισµένα δναµικά A και φ ικανοποιούν τη µη οµογνή ξίσωση Hlholtz Καθστρηµένα δναµικά ή δναµικά καθστέρησης σναρτήσι των πηγών το πδίο και της απόστασης από ατές R A µ J φ µ (,, z, t ) J A π R ρ(,, z, t ) φ π R ρ Χ.9 Χρόνος καθστέρησης R t t Χ.3 Χ.3 Χ.3 Χ.33 Ορισµός δναµικού ή διανύσµατος Hrtz ή δναµικού πόλωσης Κµατική ξίσωση για το δναµικό Hrtz, σ µέσο όπο δν πάρχον διανµηµένς πηγές Τα διανύσµατα και B ως σναρτήσις το δναµικού Hrtz Κµατική ξίσωση για το δναµικό Hrtz παροσία ρµάτων και φορτίων λόγω ηλκτρικής πόλωσης Π A φ Π Π Π Π ( Π ) B Π t Π Π P 36
7 ΗΜΙΤΟΝΟΕΙ ΗΣ ΧΡΟΝΙΚΗ ΜΕΤΑΒΟΛΗ ΥΝΑΜΙΚΩΝ ΜΙΓΑ ΙΚΟΣ ΣΥΜΒΟΛΙΣΜΟΣ Χ.3 Βαθµωτό και διανσµατικό δναµικό B A φ jωa Χ.35 Σνθήκη Lorntz A + jωµφ Χ.36 Μη οµογνής ξίσωση Hlholtz A ω µ A µ J ρ φ + ω µφ + j Χ.37 Ηλκτρική πδιακή ένταση ( A ) jωa ωµ Χ.38 Καθστρηµένα δναµικά Χ.39 Κµατικός αριθµός ή κµατάριθµος µ (,, z ) J A π R ρ(,, z ) φ π R ω πf π k, λ jkr jkr Χ. Καθστρηµένα δναµικά κοντά σ πηγές των οποίων οι διαστάσις ίναι πολύ µικρότρς από το µήκος κύµατος ( R λ) µ (,, z ) J A π R ρ(,, z ) φ π R ΤΟ ΘΕΩΡΗΜΑ ΤΟΥ POYNTING Χ. ιαφορική διατύπωση το θωρήµατος το Ponting ( ) D B H J + + H Χ. Ολοκληρωτική διατύπωση το θωρήµατος το Ponting ( ) D B H + + J H Χ.3 Το θώρηµα το Ponting για µέσο οµογνές, γραµµικό και ισότροπο. ( H) J + + H µ Χ. Χ.5 Το θώρηµα το Ponting σ χρονικά αµτάβλητο πδίο Το πραγµατικό διάνσµα Ponting P (ή ) κφράζι την ανά µονάδα χρόνο νέργια πο διέρχται από τη µονάδα πιφανίας και έχι τη διύθνση διάδοσης της νέργιας ( H) J P H 37
8 Χ.6 Το µιγαδικό διάνσµα Ponting ( H ) Χ.7 Χ.8 Το πραγµατικό διάνσµα Ponting P σναρτήσι το µιγαδικού ιαφορική διατύπωση το θωρήµατος το Ponting πό µιγαδική µορφή P H + H P R { } R( j t ) R( ω ) ( ) jω H + J B H D Χ.9 Ολοκληρωτική διατύπωση το θωρήµατος το Ponting πό µιγαδική µορφή ( ) H jω + ( ) J B H D Χ.5 Πκνότητα νέργιας ηλκτρικού πδίο w R { D} Χ.5 Πκνότητα νέργιας µαγνητικού πδίο w R { B H} Χ.5 Πκνότητα απωλιών Joul w j R J Σηµίωση: Στις σχέσις Χ. και Χ.3 το πρώτο ολοκλήρωµα το δξιού µέρος κφράζι την ανά µονάδα χρόνο νέργια (ισχύ) το ηλκτροµαγνητικού πδίο πο µτατρέπται σ θρµότητα σύµφωνα µ το νόµο το Joul. Το δύτρο ολοκλήρωµα το δξιού µέρος κφράζι την ταχύτητα µταβολής της νέργιας το ηλκτρικού και το µαγνητικού πδίο στον όγκο. 38
Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:
Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ. 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες... 7
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΙΑΝΥΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ 1.1 Φυσικά µεγέθη... 1 1.2 ιανυσµατική άλγεβρα... 2 1.3 Μετατροπές συντεταγµένων... 6 1.3.1 Μετατροπή από καρτεσιανό σε κυλινδρικό σύστηµα... 6 1.3.2 Απειροστές ποσότητες...
ΙV ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕ ΙΟΥ
ΜΕΘΟ Ο ΕΠΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΚΟΥ ΠΕ ΟΥ ΜΕΘΟ Ο ΕΠΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΩΝ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΚΟΥ ΠΕ ΟΥ ΜΕΘΟ ΟΣ ΤΟΥ ΚΑΤΟΠΤΡΣΜΟΥ Φορτίο πάνω από αγώγιµο πίπδο z o. Τιµή και θέη του κατοπτρικού φορτίου,.
ΧΙΙΙ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΕΓΚΑΡΣΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ (ΤΕΜ)
ΧΙΙΙ ΓΡΑΜΜΕΣ ΜΕΤΑΦΟΡΑΣ ΕΓΚΑΡΣΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ (ΤΕΜ) ΧΙΙΙ. ΧΙΙΙ. ΧΙΙΙ.3 Οι εξισώσεις στροφής το Maxwell όταν τα διανύσµατα βρίσκονται στο εγκάρσιο στη διεύθνση διάδοσης επίπεδο Εξισώσεις το Maxwell
Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου
Ο νόμος του Apèr Ο νόμος του Apèr Bis μ μ Ji Επιφάνια Bi μ π r ( π s B s r μ Η κυκλοφορία του μαγνητικού πδίου κατά μηκός μιάς κλιστής διαδρομής ισούται μ μ Ι, όπου Ι ίναι το ολικό σταθρό (χρονικά αμτάβλητο
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 1 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ 1. Σωστό το γ. Σωστό το γ. Σωστό το γ 4. Σωστό το δ
III Η ΥΛΗ ΣΤΟ ΠΕ ΙΟ ΠΟΛΩΣΗ ΙΗΛΕΚΤΡΙΚΟΥ ΙΙI ΥΛΗ ΣΤΟ ΠΕ ΙΟ
III Η ΥΛΗ ΣΤΟ ΠΕ ΙΟ ΠΟΛΩΣΗ ΙΗΛΕΚΤΡΙΚΟΥ ΙΙΙ. Συνολική οπή των διπόλων που πιέχονται στον όγκο δ V, όπου N ο αιθµός διπόλων ανά µονάδα όγκου και p η διπολική οπή του -στού διπόλου p t NV δ p ΙΙΙ. Το διάνυσµα
όµως κινείται εκτρέπεται από την πορεία του, ένδειξη ότι το σωµατίδιο δέχονται δύναµη, από τα στατικά µαγνητικά πεδία. ανάλογη:
Φσικός ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ( Fields) 47 ΥΝΑΜΗ ΠΟΥ ΑΣΚΕΙ ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΣΕ ΚΙΝΟΥΜΕΝΟ ΦΟΡΤΙΟ ύναµη Lorentz Ένα ακίνητο φορτισµένο σωµατίδιο (0) δεν αντιδρά µέσα σε ένα στατικό µαγνητικό πεδίο. ηλαδή δεν
ΧΙΙ ΚΥΜΑΤΟ ΗΓΟΙ ΚΥΜΑΤΟ ΗΓΟΙ
XIV ΚΥΜΑΤΟ ΗΓΟΙ ΙΑ ΟΣΗ ΣΕ ΕΝΑ ΣΥΣΤΗΜΑ ΥΟ ΠΑΡΑΛΛΗΛΩΝ ΑΓΩΓΙΜΩΝ ΕΠΙΠΕ ΩΝ (τα επίπεδα ρίσκονται στις θέσεις και b και εκτείνονται κατά τον άξονα στο άπειρο και κατά τον από µέχρι l) XIV. Κµατικές εξισώσεις
Κατοίκον Εργασία 2. (γ) το ολικό φορτίο που βρίσκεται στον κύβο. (sd p.e 4.9 p146)
Κατοίκον Εργασία. Ένα σημιακό φορτίο (point charge) 5 mc και ένα - mc βρίσκονται στα σημία (,0,4) και (-3,0,5) αντίστοιχα. (α) Υπολογίστ την δύναμη πάνω σ ένα φορτίο (point charge) nc που βρίσκται στο
ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ
ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 6932 946778 ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ ΣΤΗΝ ΥΛΗ ΘΕΩΡΙΑ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 29 - ΑΘΗΝΑ 6932 946778 www.pmoias.weebly.com ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ
Κατσαλά Νικολέτα. Φυσικός. Γ Λυκείου. Τυπολόγιο
Κατσαλά Νικολέτα Φσικός Γ Λκείο Τπολόγιο Εθύγραμμη Ομαλή Κίνηση Εθύγραμμη Ομαλά Μεταβαλλόμενη Κίνηση Ολικό Διάστημα και Ολικός Χρόνος στην Ομαλά Επιβραδνόμενη Μεταφορική Κίνηση Δ α, Δ Δ α σταθ, Δ α, Δ
Ηλεκτρική και Μαγνητική Πόλωση
Ηλκτρική και Μαγνητική Πόλωση Μαγνητικά και Ηλκτρικά πδία στα υλικά Μαγνήτιση και Ηλκτρική Πόλωση Οµοιότητς και ιαφορές Συµµτρία αντιστροφής ώρου και ρόνου Μαγνητική και Σιδηροηλκτρική Υστέρηση Εξισώσις
Μάθηµα Γραµµές Μεταφοράς Κυµατοδηγοί & Οπτικές Ίνες Καθ. Θωµάς Σφηκόπουλος
Μάθηµα Γραµµές Μεταφοράς Κυµατοδηοί & Οπτικές Ίνες Καθ. Θωµάς Σφηκόπουλος Κυµατοδηοί - Μάθηµα 3ο -4ο ΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΠΙΣΤΜΙΟ ΑΘΝΩΝ Τοµέας πικοινωνιών και πεξερασίας Σήµατος Τµήµα Πληροφορικής
Βασική θεωρία & μεθοδολογία
Ελεύθερη πτώση Σημειώσεις Φσικής Βασική θεωρία & μεθοδολογία Οριζόντια βολή Αν από κάποιο ύψος h εκτοξεύσομε ένα σώμα με οριζόντια ταχύτητα 0 και κατά τη διάρκεια της κίνησής το δέχεται μόνο το βάρος το,
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο
ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1
ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1 1 ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕΔΙΟΥ 7 1.1 Μονάδες και σύμβολα φυσικών μεγεθών..................... 7 1.2 Προθέματα φυσικών μεγεθών.............................. 13 1.3 Αγωγοί,
Κ. Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής. 9. ιανύσµατα
46 Κ Χριστοδολίδης: Μαθηµατικό Σµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φσικής 9 ιανύσµατα 9 Σµβολισµός Ως ανεξάρτητο το σστήµατος σντεταγµένων, ένα διάνσµα σµβολίζεται στο τπωµένο κείµενο µε έντονο σύµβολο:
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 8/6/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Ατοκίνητο μάζας 1 Kg ξεκινώντας με μηδενική ταχύτητα επιταχύνει ομαλά σε οριζόντιο
ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ
XΙ ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ ΙΑ ΟΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ ΣΕ ΜΗ ΑΓΩΓΙΜΑ ΜΕΣΑ ΧΙ. ΧΙ. ΧΙ.3 ΧΙ.4 Φαική ταθερά ιάοης κύµατος β Μονοιάτατη εξίωη Helmholt για τις υνιτώες των ιανυµάτων H και ( H ) επιπέου κύµατος
ΤΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ
VΙ TO ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ V ΤΟ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΒΑΣΙΚΕΣ ΕΝΕΡΓΕΙΑΚΕΣ ΣΧΕΣΕΙΣ ΤΟΥ ΠΕ ΙΟΥ VΙ. Πυκνότητα ενέργειας του ηλεκτρικού πεδίου σε γραικό και ισότροπο έσο we εe VΙ. Πυκνότητα ενέργειας του
Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα
ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά
[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]
Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος
C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας.
. Πυκνωτές Δύο αγωγοί που διαχωρίζονται από ένα μονωτή αποτλούν ένα πυκνωτή. Στην πράξη οι αγωγοί φέρουν ία και αντίθτα φορτία. Ορίζουμ αν χωρητικότητα νός πυκνωτή το ταθρό πηλίκο: ab F Οι πυκνωτές έχουν
ΚΕΦΑΛΑΙΟ 12 ΑΝΑΚΛΑΣΗ ΚΑΙ ΙΑΘΛΑΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ΑΝΑΚΛΑΣΗ ΚΑΙ ΙΑΘΛΑΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ. Οι βασικοί νόµοι ανάκλασης διάλασης Στο παρόν κφάλαιο ξτάζται η πρίπτωση όπου ένα πίπδο κύµα προσπίπτι σ µια πίπδη πιφάνια S που διαχωρίζι δύο µέσα
ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΟΝΑ Α ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΩΝ ΤΥΠΟΛΟΓΙΟ
ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΟΝΑ Α ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΚΑΙ ΥΠΟΛΟΓΙΣΜΩΝ ΤΥΠΟΛΟΓΙΟ ΘΕΣΣΑΛΟΝΙΚΗ, ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ Ι ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ ΠΕ ΙΟΥ I ΟΙ ΒΑΣΙΚΟΙ ΝΟΜΟΙ ΤΟΥ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟΥ
ΘΕΜΑ Α. 2 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π.
ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΤΕΡΙΝΗΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 15 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ονοματεπώνμο : Κατερίνη 1 Μαΐο 15 ΘΕΜΑ Α (Μονάδες 5x5=5) Α1. Ο
11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ
xx ΤΟΜΟΣ ΙI 11 ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΑ ΠΕΔΙΑ 741 11.1 Διαφορική και ολοκληρωτική μορφή των εξισώσεων Maxwell Ρεύμα μετατόπισης...................................... 741 11.2 Οι εξισώσεις Maxwell σε μιγαδική
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Ηλίας Γλύτσης, Τηλ. 21-7722479, e-mail:
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ ΘΕΜ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η σχέση
ΚΕΦΑΛΑΙΟ 9 ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. 9.1 Η εξίσωση της κίνησης φορτισµένου σωµατιδίου
ΚΕΦΑΛΑΙΟ 9 ΚΕΦΑΛΑΙΟ 9 ΚΙΝΗΣΗ ΦΟΡΤΙΣΜΕΝΩΝ ΣΩΜΑΤΙ ΙΩΝ ΣΤΟ ΗΛΕΚΤΡΙΚΟ ΚΑΙ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ 9. Η εξίσωση της κίνησης φορτισµένο σωµατιδίο Η εξίσωση της κίνησης ενός σωµατιδίο πάνω στο οποίο εξασκείται µια εξωτερική
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΠΑΝΤΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 00 Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο. γ.. γ.. δ. 4. δ 5. α Λάθος β. Σωστό γ. Σωστό δ. Σωστό ε. Λάθος ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α. Α. γ Σωστό q Α. Ε=U E
Εφαρµογές στη δυναµική του κέντρου µάζας στερεού σώµατος
Εφαρµογές στη δυναµική του κέντρου µάζας στρού σώµατος Εφαρµογή 1η Οµογνής δίσκος ακτίνας R ηρµί στην άκρη οριζόντιου τραπζιού µ το κέντρο του Κ να βρίσκται στην κατακόρυφη που διέρχται από την ία Ο του
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ
Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ ΕΠΙΣΚΟΠΗΣΗ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΘΕΩΡΙΑΣ ΙΑΝΥΣΜΑΤΙΚΑ ΠΕ ΙΑ Θεώρηµα tokes (Γενική Μορφή): Χωρος " Παραγωγος " Πεδιου = Οριο Πεδιο Χωρου Παραδείγµατα: 1. Θεώρηµα Newton-Leibniz (ο «χώρος» είναι
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ ΙΟΥΝΙΟΥ 006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο δ β γ α 5. α Σ, β Λ, γ Λ, δ Λ, ε Σ. ΘΕΜΑ ο.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 21-7722479 - e-mail:
( ) y ) άγνωστη συνάρτηση, f (, )
6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές
Επανάληψη Θεωρίας και Τυπολόγιο
ΕΠΑΝΑΛΗΨΗ ΣΤΗΝ ΠΡΟΕΤΟΙΜΑΣΙΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επανάληψη Θεωρίας και Τπολόγιο ΕΞΙΣΩΣΕΙΣ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ Γενικές έννοιες Περιοδική ονομάζεται η κίνηση πο επαναλαμβάνεται κατά τον
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ
ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΓΩΓΟΙ - ΠΥΚΝΩΤΕΣ Συγγραφή Επιμέλια: Παναγιώτης Φ. Μίρας Θέμα Ένα σημιακό φρτί Q τπθτίται στ κέντρ νός υδέτρυ σφαιρικύ αγώγιμυ κλύφυς ακτινών R και R. Να υπλγιστί τ παγόμν φρτί
Τυπολόγιο Φυσική Β Λυκείου Θετικής & Τεχνολογικής Κατεύθυνσης
Τπολόγιο Κεφάλαιο Κινητική Θεωρία Αερίων Πίεση F ( a ) S Θερμοκρασία θ 7 Τ( Κ) - θ( ) Νόμος το Boyle σταθ. σταθ. Νόμος το harles σταθ. σταθ. Νόμος το Gay-Lussac σταθ. σταθ. Αριθμός ol και μάζα μορίων n
Διδάσκων: Καθηγητής Εμμανουήλ Μ. Παπαμιχαήλ
Τίτλος Μαθήματος: Ενζυμολογία Ενότητα: Παράρτημα Διδάσκων: Καθηγητής Εμμανουήλ Μ. Παπαμιχαήλ Τμήμα: Χημίας 142 ΠΑΡΑΡΤΗΜΑΤΑ 1. Βιβλιογραφικές αναφορές διαφόρων τύπων χρωματογραφιών: Janson J. C., & Rydén
Μ(x 0, y 0 ) r= r = x+ Μ(x 0, y 0 )=Μ(r,θ) = r συνθ
1.8.1. Οµαλή Κκλική Κίνηση. Μ(,) j i j i. α Κ Σχήµα 5. = + Σχήµα 6. 2 2 2 = + Μ(, ) = στα. Μ(, )=Μ(,) Σχήµα 7. = σν = ηµ Όταν ένα κινητό διαγράφει τροχιά κκλική (περιφέρεια κύκλο ) και σε ίσος χρόνος διαγράφει
Επαναληπτικό ιαγώνισµα Φυσικής Κατεύθυνσης 2014
Επαναληπτικό ιαγώνισµα Φυσικής Κατύθυνσης 014 ΘΕΜΑ 1 ο Να γράψτ στο φύλλο απαντήσών σας τον αριθµό καθµιάς από τις ακόλουθς ηµιτλίς προτάσις 1-4 και δίπλα της το γράµµα που αντιστοιχί στο σωστό συµπλήρωµά
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Λωφ. Κηφισίας 56, Απλόκηποι, Αθήνα Τηλ.: 69 97 985, E-mail: edlag@otenet.gr, www.edlag.gr
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ. Αρµονικό κύµα διαδίδεται σε ένα εθύγραµµο ελαστικό µέσο. Όλα τα σηµεία το µέσο διάδοσης, πο ταλαντώνονται λόγω της διέλεσης
( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη
HMY - Φωτονική Διάλεξη 8 Οι εξισώσεις του Mawell Βαθμωτά και διανυσματικά μεγέθη Πολλαπλασιασμός Πρόσθεση διανυσμάτων Βαθμωτό: το μέγεθος που για τον προσδιορισμό του χρειάζεται μόνο το μέτρο του και η
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα πο αντιστοιχεί στη σωστή απάντηση..
(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3
0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση
γ Β απέναντι κάθετος ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΚΑΙ ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ απέναντι κάθετος υποτείνουσα προσκείµενη κάθετο συνθ= υποτείνουσα εφθ=
Γ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΚΑΙ ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ ηµθ απέναντι κάθετος υποτείνουσα β α συνθ προσκείµενη κάθετος υποτείνουσα Α γ Β απέναντι κάθετος εφθ προσκείµενη κάθετο ΓΩΝΙΑ ο 3 ο 45 ο 6 ο 9 ο d
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ ΚΑΙ ΜΑΓΝΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ 1 1. ΜΑΓΝΗΤΙΣΜΟΣ Μαγνητικά φαινόμενα παρατηρήθηκαν για πρώτη φορά πριν από τουλάχιστον 2500 χρόνια σε κομμάτια μαγνητισμένου σιδηρομεταλλεύματος,
ΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÅÐÉËÏÃÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Π.Λ. Β ΟΜ ΦΥΙΚΗ ΙΙ ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστή απάντηση: β II. ΠΝΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο και στο παιδί είναι τα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕΔΙΟ Πηγές Κατανομή χωικής d
ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ
1 ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ.. Αν δοκιµαστικό φορτίο q βρεθεί κοντά σε αγωγό που διαρρέεται από ρεύµα, υφίσταται δύναµη κάθετη προς την διεύθυνση της ταχύτητάς του και µε µέτρο ανάλογο της ταχύτητάς του, F qυ Β (νόµος
Συμπλήρωμα 2 εδαφίου 3.3: Το γενικό μεταβολικό πρόβλημα για συναρτησιακό ολοκληρωτικού τύπου με ολοκληρωτέα συνάρτηση F κατά 2
ΚΕΦ. 3 Η Αρχή των Ήρωνος-Fermat 3.3-8 Συμπλήρωμα 2 δαφίου 3.3: Το νικό μταβολικό πρόβλημα ια συναρτησιακό ολοκληρωτικού τύπου μ ολοκληρωτέα συνάρτηση F κατά 2 τμήματα C, ορισμένο πί καμπυλών που τέμνουν
Μάθηµα Γραµµές Μεταφοράς Κυµατοδηγοί & Οπτικές Ίνες Καθ. Θωµάς Σφηκόπουλος Κυµατοδηγοί - Μάθηµα 9o
Μάθηµα Γαµµές Μταφοάς Κυµατοδηοί & Οπτικές Ίνς Καθ. Θωµάς Σφηκόπουλος Κυµατοδηοί - Μάθηµα 9o ΘΝΙΚΟ & ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΠΙΣΤΜΙΟ ΑΘΝΩΝ Τοµέας πικοινωνιών και πξασίας Σήµατος Τµήµα Πληοφοικής & Τηλπικοινωνιών
Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2009 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική
ΠΑΝΕΚΦΕ Ερωπαϊκή Ολμπιάδα Φσικών Επιστημών 2009 Πανλλήνιος προκαταρκτικός διαγωνισμός στη Φσική 17-01-2009 Σχολίο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Επισημάνσις από τη θωρία Πάνω στον πάγκο το ργαστηρίο
Κινηματική σε 3 διαστάσεις. r = x x + y y +z z P. Η έννοια της παραγώγου στις 3 διαστάσεις
Κινηματική σε 3 διαστάσεις = + + P παριστάνεται με την επιβατική ακτίνα κάθε σημείο P το χώρο (t τροχιά = Δ Δ (t+ διάνσμα θέσης d v= d μοναδιαία διανύσματα Η έννοια της παραγώγο στις 3 διαστάσεις Μέση
10 ΠΡΟΣΠΤΩΣΗ Η/Μ ΚΥΜΑΤΩΝ ΣΤΗ ΙΑΧΩΡΙΣΤΙΚΗ ΕΠΙΦΑΝΕΙΑ ΥΟ ΜΕΣΩΝ
ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ ΠΡΟΣΠΤΩΣΗ Η/Μ ΚΥΜΑΤΩΝ ΣΤΗ ΙΑΧΩΡΙΣΤΙΚΗ ΕΠΙΦΑΝΕΙΑ ΥΟ ΜΕΣΩΝ ΟΡΙΑΚΕΣ ΣΥΝΘΗΚΕΣ. Η φατονική συνιστώσα του ηλκτρικού δίου δύο έσα t t. Η κάθτη συνιστώσα του ανύσατος της ηλκτρικής τατόισης σταθρή
Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ
Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics for scientists and engineers YOUNG H.D., University
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 Ε_3.ΦλΓΘ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ηµεροµηνία: Κριακή 19 Απριλίο 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε
ΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÊÏÌÏÔÇÍÇ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστ απάντηση: β II. Π.Λ. Β ΟΜ ΦΥΙΚΗ ΙΙ ΠΝΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο και στο παιδί είναι τα βάρη
Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου
ΚΕΦΑΛΑΙΟ 11 ΕΠΙΠΕ Ο ΚΥΜΑ
ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ΕΠΙΠΕ Ο ΚΥΜΑ. Η λύση της µονοδιάστατης εξίσωσης κύµατος Ιδιαίτερο θεωρητικό αλλά πρακτικό ενδιαφέρον εµφανίζει η περίπτωση ενός ο- µοιόµορφου επίπεδου ηλεκτροµαγνητικού κύµατος που διαδίδεται
µεταβαλλόµενο µέτρο δ. είναι συνεχώς κάθετη στην τροχιά του σωµατιδίου και έχει σταθερό µέτρο. (Αγνοήστε τη βαρυτική δύναµη).
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 8 ΣΕΠΤΕΜΒΡΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε. 2004 ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Στις ερωτήσεις Α, Β, Γ και, να επιλέξετε τον αριθµό που αντιστοιχεί στην σωστή απάντηση Α. Ένα φορτισµένο σωµατίδιο εκτοξεύεται
Φυσική Θετικής-Τεχνολογικής Κατεύθυνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1. Θέµα 1 ο
Φσική Θετικής-Τεχνολογικής Κατεύθνσης ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΤΑΙΧΙΟ 1 Θέµα 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-3 και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ
ΠΑΡΑΤΗΡΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Στα προβλήματα ατού το κεφαλαίο, το πρώτο πο πρέπει να διακρίνομε είναι αν έχομε ισορροπία, μόνο στροφική κίνηση (δηλαδή γύρω από σταθερό άξονα περιστροφής)
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 27 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 27 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης
Νόμος Ampere- Διανυσματικό Δυναμικό
Νόμος Ampere- Διανυσματικό Δυναμικό Δομή Διάλεξης Μαγνητικό πεδίο ευθύγραμμων αγωγών Ο στροβιλισμός και η κλίση μαγνητικού πεδίου: ο νόμος του Ampere Εφαρμογές του Νόμου του Ampere To διανυσματικό δυναμικό
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ
ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ
ΕΝΟΤΗΤΑ Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΟ ΠΕ ΙΟ Συστήµατα µονάδων Για το σχηµατισµό ενός συστήµατος µονάδων είναι απαραίτητη η εκλογή ορισµένων µεγεθών που ονοµάζονται θεµελιώδη. Στις επιστήµες χρησιµοποιείται αποκλειστικά
ΦΥΣΙΚΗ ΙΙ ΑΠΑΝΤΗΣΕΙΣ ÏÑÏÓÇÌÏ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Π.Λ. Β ΟΜ ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστ απάντηση: β II. ΦΥΙΚΗ ΙΙ ΠΝΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο και στο παιδί είναι τα βάρη
Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική)
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική) Διάλεξη 5 η Ιωάννα Ζεργιώτη Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
1o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ
1o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΗΣ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
c 2 b b Λύση Το δυναµικό οµογενούς ηλεκτρικού πεδίου έντασης ε είναι V( x)
ΑΣΚΗΣΗ 8 Φορτισµένος αρµονικός ταλανττής βρίσκται µέσα σ οµογνές ηλκτρικό πδίο έντασης. Τη χρονική στιγµή t= ο ταλανττής βρίσκται στη βασική κατάσταση. Να υπολογιστί η πιθανότητα ο ταλανττής να παραµίνι
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 2 ης ΕΡΓΑΣΙΑΣ. Προθεσµία παράδοσης 22/12/09 ( )
19/11/9 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9-1 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ης ΕΡΓΑΣΙΑΣ Προθσµία παράδοσης /1/9 Άσκηση 1 Η γνική µορφή νός ΗΜ κύµατος δίνται από E E sin k r ωt (1) ( ) Α) Το µέτρο του πλάτους πλάτος
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 28 Απριλίου 2013 ιάρκεια Εξέτασης: 2 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 03 Ε_3.Φλ(α) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Κριακή 8 Απριλίο 03 ιάρκεια Εξέτασης: ώρες Α. δ Α. γ Α3. β Α4. δ Α5. α Σ, β Λ, γ Σ, δ Σ, ε Λ. ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Β
Επαναληπτικό ιαγώνισµα Φυσικής Κατεύθυνσης 2014
Επαναληπτικό ιαγώνισµα Φυσικής Κατύθυνσης 014 ΘΕΜΑ 1 ο Να γράψτ στο φύλλο απαντήσών σας τον αριθµό καθµιάς από τις ακόλουθς ηµιτλίς προτάσις 1-4 και δίπλα της το γράµµα που αντιστοιχί στο σωστό συµπλήρωµά
Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η. ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:210/ /
47 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Σ Α Β Β Α Ϊ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η ΠΑΓΚΡΑΤΙ : Χρ. Σµύρνης 3, Πλ. Νέου Παγκρατίου τηλ:10/76.01.470 10/76.00.179 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 008 ΘΕΜΑ
ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Φυσικών της Ώθησης
ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Φσικών της Ώθησης ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 0 Τετάρτη, Μαΐο 0 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΜΑ A Στις ημιτελείς προτάσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό
Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου
Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνική Σχολή Πανεπιστήμιο Κύπρου ΗΜΥ 331 Ηλεκτρομαγνητικά Πεδία Τελική Εξέταση 12 Δεκεμβρίου 2011 09.00-11.00 π.μ. ΗΜΥ 331: Ηλεκτρομαγνητικά
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
κ Θέµα ο Οδηγία: Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα πο αντιστοιχεί στη σωστή απάντηση.. Ένα κύκλωµα LC εκτελεί αµείωτες ηλεκτρικές ταλαντώσεις: α.
1. Νόμος του Faraday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας:
1. Νόμος του Faaday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας: dφ d A Φ d A Αν το μαγνητικό πεδίο είναι ομογενές και η επιφάνεια επίπεδη: Φ A Ο νόμος του
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ & ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ Καθ. Η. Ν. Γλύτσης, Tηλ.: 210-7722479 - e-mil:
4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το
ÈÅÌÁÔÁ 2011 ÏÅÖÅ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΘΕΜΑ Β. Α1. δ. Α2. γ. Α3. β. Α4. γ
Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΤΕΥΘΥΝΗ ΦΥΙΚΗ ΘΕΜ. δ. γ 3. β 4. γ 5. α - Λ β - γ - δ - ε - Λ ΘΕΜ Β Β. I. ωστ απάντηση: β II. ΠΝΤΗΕΙ Οι εξωτερικές δνάµεις πο ασκούνται στον δίσκο
Ο τελευταίος όρος είναι πάνω από την επιφάνεια στο άπειρο όπου J = 0,έτσι είναι μηδέν. Επομένως
Πρόβλημα 9.1 Αλλά και αφού είναι: Αλλά Και Έτσι Όμοια Επί πλέον (οι άλλοι δύο όροι αναιρούνται αφού Επομένως: Ο τελευταίος όρος είναι πάνω από την επιφάνεια στο άπειρο όπου J = 0,έτσι είναι μηδέν. Επομένως
ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003
ΦΥΣΙΚΗ Β ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου 1. Ένα σύρμα μεγάλου μήκους φέρει ρεύμα 30 Α, με φορά προς τα αριστερά κατά μήκος του άξονα x. Ένα άλλο σύρμα μεγάλου μήκους φέρει
2. Η μονάδα μέτρησης της στροφορμής στο σύστημα S.I. είναι. m s. δ. 1 J s. Μονάδες 5. m s
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 15 ΣΕΠΤΕΜΒΡΙΟΥ 005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα πο αντιστοιχεί στη ράση η οποία τη
w w w.k z a c h a r i a d i s.g r
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν μια
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ 1 1. ΗΛΕΚΤΡΙΚΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ Αρχικά ας δούμε ορισμένα σημεία που αναφέρονται στο έργο, στη δυναμική ενέργεια και στη διατήρηση της ενέργειας. Πρώτον, όταν
ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Μαγνητοστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Μαγνητοστατική. Σωματίδιο μάζας m φορτίου Q βρίσκεται αρχικά ακίνητο μέσα σε ομογενές μαγνητικό
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Το Σέλας συμβαίνει όταν υψηλής ενέργειας, φορτισμένα σωματίδια από τον Ήλιο ταξιδεύουν στην άνω ατμόσφαιρα της Γης λόγω της ύπαρξης του μαγνητικού της πεδίου. Μαγνητισμός
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 10/4/2010 ΖΗΤΗΜΑ 1