Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε"

Transcript

1 Οµοφωνία σε σύγχρονο σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 1

2 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε αυθαίρετα σηµεία της εκτέλεσης. Μια διεργασία που έχει καταρρεύσει λέγεται εσφαλµένη (fault). Εϖιτρεϖτές Εκτελέσεις Όλες οι µη-εσφαλµένες διεργασίες εκτελούν απεριόριστο αριθµό βηµάτων. Αν µια διεργασία αποτύχει σε κάποιο βήµα, δεν εκτελεί ξανά βήµατα. Στο τελευταίο βήµα µιας εσφαλµένης διεργασίας, αποστέλλεται µόνο ένα αυθαίρετο υποσύνολο των εξερχόµενων µηνυµάτων της διεργασίας. Εφαρµογές o Συστήµατα ελέγχου πτήσεων. o Οι διεργασίες ενός κατανεµηµένου συστήµατος χρειάζεται συχνά να συµφωνούν στο αν κάποιο µήνυµα έχει παραληφθεί. o ιάγνωση αποτυχίας διεργασιών. Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 2

3 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Υϖοθέσεις Ο αριθµός των αποτυχιών είναι το πολύ f, όπου f είναι κάποιος θετικός ακέραιος. Το f ονοµάζεται βαθµός ανθεκτικότητας (resiliency) του συστήµατος. Ο γράφος είναι κλίκα µε n κόµβους. Οι σύνδεσµοι (κανάλια επικοινωνίας) είναι αξιόπιστοι. Περιγραφή Προβλήµατος Κάθε διεργασία p i έχει µια µεταβλητή εισόδου x i και µια µεταβλητή εξόδου y i. Αρχικά, η x i έχει µια τιµή από ένα σύνολο πιθανών εισόδων, ενώ η y i δεν έχει αρχικοποιηθεί. Η y i θα πρέπει να εγγραφεί µία µόνο φορά (κάθε εγγραφή στην y i είναι εποµένως µηαντιστρέψιµη). Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 3

4 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Ένας αλγόριθµος που επιλύει το πρόβληµα οµοφωνίας πρέπει να εγγυάται τα εξής: Οµοφωνία (agreement) Όλες οι µη-εσφαλµένες διεργασίες έχουν ως έξοδο την ίδια τιµή. Εγκυρότητα (validity) Αν όλες οι διεργασίες έχουν την ίδια τιµή εισόδου, η τιµή εξόδου πρέπει να είναι η τιµή αυτή. Τερµατισµός (termination) Όλες οι µη-εσφαλµένες διεργασίες πρέπει να τερµατίσουν. Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 4

5 Πρόβληµα Οµοφωνίας Ένας αϖλός αλγόριθµος Κάθε διεργασία p διατηρεί ένα σύνολο µε τιµές που έχει δει µέχρι την τρέχουσα χρονική στιγµή, το οποίο αρχικά περιέχει µόνο την τιµή εισόδου της διεργασίας. Για f+1 γύρους κάθε διεργασία: o ενηµερώνει το σύνολο της εκτελώντας την πράξη της ένωσης µε τα σύνολα που λαµβάνει από άλλους καταχωρητές. o εκπέµπει (broadcasts) οποιεσδήποτε προσθήκες έγιναν στο σύνολο σε όλες τις υπόλοιπες διεργασίες. Μετά τους f+1 γύρους, η διεργασία αποφασίζει ως έξοδό της τη µικρότερη τιµή που περιέχεται στο σύνολό της. Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 5

6 Πρόβληµα Οµοφωνίας Ένας αϖλός αλγόριθµος Γιατί (f+1) γύροι; f = 3, n = 4 Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 6

7 Πρόβληµα Οµοφωνίας Ένας αϖλός αλγόριθµος Τερµατισµός; Εγκυρότητα; Οµοφωνία: o Ας υποθέσουµε ότι µια διεργασία p i αποφασίζει µια µικρότερη τιµή, x, από κάποια άλλη p j. o Τότε, η x έχει παραµείνει «κρυφή» στην p j για (f+1) γύρους. o Έχουµε το πολύ f µη-εσφαλµένες διεργασίες. Άτοπο!!! Αριθµός διεργασιών; n > f Χρονική Πολυϖλοκότητα; (f+1) γύρους Πολυϖλοκότητα Εϖικοινωνίας; n 2 * V µηνύµατα, όπου V είναι το σύνολο τιµών εισόδου. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 7

8 Αλγόριθµοι Συλλογής Εκθετικά Μεγάλης Πληροφορίας (Exponential Information Gathering Algorithms) Βασική Ιδέα Οι διεργασίες στέλνουν και αναµεταδίδουν αρχικές τιµές για αρκετούς γύρους, καταγράφοντας τις τιµές που λαµβάνουν κατά µήκος διαφορετικών «µονοπατιών» επικοινωνίας (communication paths) σε µια δενδρική δοµή δεδοµένων που ονοµάζεται δένδρο EIG (Exponential Information Gathering). Τελικά, ακολουθούν έναν καθορισµένο (ίδιο για όλες) κανόνα για να αποφασίσουν ποια από τις τιµές που καταγράφονται στο δένδρο τους θα επιλέξουν ως έξοδο. οµή εδοµένων Κάθε διεργασία χειρίζεται ένα δένδρο EIG (Τ = Τ n,f ), κάθε κόµβος του οποίου έχει µια ετικέτα. Κάθε µονοπάτι του δένδρου αναπαριστά µια αλυσίδα από διεργασίες κατά µήκος των οποίων κάποια αρχική τιµή έχει µεταδοθεί. Το δένδρο έχει f+2 επίπεδα, 0,..., f+1. Κάθε κόµβος επιπέδου k έχει ακριβώς n-k παιδιά, όπου 0 k f. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 8

9 Αλγόριθµοι Συλλογής Εκθετικά Μεγάλης Πληροφορίας Ονοµασία Κόµβων Χρησιµοποιούνται αλφαριθµητικά που αποτελούν ακολουθίες από δείκτες διεργασιών. Η ετικέτα της ρίζας είναι το κενό αλφαριθµητικό λ. Κάθε κόµβος µε ετικέτα i 1...i k έχει ακριβώς n-k παιδιά µε ετικέτες i 1...i k j, όπου j {1,..., n} {i 1,..., i k }. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 9

10 Αλγόριθµοι Συλλογής Εκθετικά Μεγάλης Πληροφορίας Ο υπολογισµός διαρκεί για f+1 γύρους ακριβώς. Κατά τη διάρκεια του, κάθε διεργασία διανθίζει τους κόµβους του δένδρου της µε τιµές στο V ή µε το null. Όλοι οι κόµβοι σε επίπεδο k, έχουν διανθιστεί µέχρι και το τέλος του k-οστού γύρου. Τρόϖος ιάνθισης του δένδρου µιας διεργασίας p i Η ρίζα του δένδρου της διεργασίας p i διανθίζεται µε την τιµή εισόδου της. Σε κάθε γύρο, αν ο κόµβος µε ετικέτα i 1...i k, 1 k f+1, διανθιστεί µε κάποια τιµή v V, η i k είπε στην i στο γύρο k ότι η i k-1 είπε στην i k στο γύρο k-1 ότι... ότι η i 1 είπε στην i 2 στον γύρο 1 ότι η αρχική τιµή της i 1 είναι v. Αν ο κόµβος µε ετικέτα i 1...i k, διανθιστεί µε null η αλυσίδα επικοινωνίας i 1,..., i k, i έχει «σπάσει» λόγω κάποιας αποτυχίας. Υϖόθεση Κάθε διεργασία µπορεί να στέλνει µηνύµατα στον εαυτό της. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 10

11 Περιγραφή του Αλγορίθµου EIGStop διεργασία p i Για κάθε κόµβο µε ετικέτα x του δένδρου της, η p i διατηρεί µια µεταβλητή val(x) όπου αποθηκεύεται η τιµή µε την οποία διανθίζεται ο κόµβος. Αρχικά, val(λ) = αρχική τιµή p i. Γύρος 1: Η p i εκπέµπει την val(λ) σε όλες τις διεργασίες (καθώς και στον εαυτό της). Στη συνέχεια, η p i καταγράφει τις εισερχόµενες πληροφορίες: 1. Αν ένα µήνυµα µε τιµή v φθάσει στην p i από την p j val(j) = v. 2. Αν η p i δεν λάβει µήνυµα από την p j val(j) = null. Γύρος k, 2 k f+1: H p i εκπέµπει τα ζευγάρια (x,val(x)), για κάθε ετικέτα x ενός κόµβου στο επίπεδο k-1 του Τ, τ.ω. η ακολουθία που αναπαριστά η x δεν περιέχει τον δείκτη i. Στη συνέχεια, η p i καταγράφει τις εισερχόµενες πληροφορίες: 1. Αν η p i λάβει µήνυµα µε τιµή val(x) = v από την p j, όπου x είναι ετικέτα ενός κόµβου επιπέδου k-1 στο Τ, τότε η p i θέτει την val(xj) = v. Αν δεν ληφθεί τέτοιο µήνυµα, ενώ η xj είναι ετικέτα του επιπέδου k του Τ, τότε η p i θέτει val(xj) = null. Μετά από f+1 γύρους έστω W i το σύνολο των τιµών που έχουν διανθίσει το δένδρο της p i. Η p i αποφασίζει την έξοδό της να είναι π.χ., το µικρότερο στοιχείο του W i. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 11

12 Περιγραφή του Αλγορίθµου EIGStop διεργασία p i Παράδειγµα n=3, f = 1, 2 γύροι, 3 επίπεδα στο δένδρο αρχικές τιµές των p 1, p 2, p 3, 0, 0, και 1, αντίστοιχα. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 12

13 Αλγόριθµος EIGStop Ορθότητα Λήµµα 1: Μετά από f+1 γύρους εκτέλεσης του EIGStop ισχύουν τα ακόλουθα: 1. val(λ) i = αρχική τιµή της p i 2. Αν xj είναι ετικέτα ενός κόµβου και val(xj) i = v, τότε val(x) j = v. 3. Αν xj είναι η ετικέτα ενός κόµβου και val(xj) i = null, τότε είτε val(x) j = null ή η p j αποτυγχάνει να στείλει µήνυµα στην p i στο γύρο x +1. Λήµµα 2: Μετά από f+1 γύρους εκτέλεσης του EIGStop ισχύουν τα ακόλουθα: 1. Αν y είναι η ετικέτα ενός κόµβου, val(y) i = v και xj είναι πρόθεµα της y, τότε val(x) j = v. 2. Αν η τιµή v εµφανίζεται στο W οποιασδήποτε διεργασίας, τότε v = val(λ) i, για κάποιο δείκτη i. 3. Αν η τιµή v εµφανίζεται στο W i, τότε υπάρχει κάποια ετικέτα y που δεν περιέχει το i τ.ω. v = val(y) i. Αϖόδειξη: Το 1 συνεπάγεται από Λήµµα 1 (µέρος 2, επαναληπτική εφαρµογή). Το 2 συνεπάγεται από 1. Για το 3, έστω ότι η v εµφανίζεται ως η val µόνο σε κόµβους µε ετικέτες που περιέχουν το i. Έστω y η µικρότερη ετικέτα µε v = val(y) i. Τότε η y έχει πρόθεµα της µορφής xi. Από 1 val(x) i = v, που αντιτίθεται στην επιλογή του y. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 13

14 Αλγόριθµος EIGStop Ορθότητα Λήµµα 3: Αν οι p i, p j είναι µη-εσφαλµένες διεργασίες, τότε W i = W j. 1. Αϖόδειξη: Έστω ότι i j. Αποδεικνύουµε ότι W i W j και W j W i. 2. W i W j Έστω v W i. Τότε το Λήµµα 2 συνεπάγεται ότι v = val(x) i, για κάποιο x που δεν περιέχει το i. i. x < f+1 xi f+1. Αφού η x δεν περιέχει το i, η (µη-εσφαλµένη) p i θα στείλει την τιµή v στην p j στο γύρο xi val(xi) j = v v W j. ii. x = f+1. Αφού υπάρχουν το πολύ f εσφαλµένες διεργασίες και όλοι οι δείκτες στην x είναι µοναδικοί, υπάρχει κάποια µη-εσφαλµένη διεργασία p l τ.ω. το l εµφανίζεται στην x η x έχει πρόθεµα της µορφής yl. Το Λήµµα 2 συνεπάγεται ότι val(y) l = v. Αφού η l είναι µη εσφαλµένη, µεταδίδει την v στην p j στο γύρο yl. val(yl) j = v v W j. 3. W j W i. Η απόδειξη είναι συµµετρική. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 14

15 Αλγόριθµος EIGStop Ορθότητα Θεώρηµα Ο αλγόριθµος EIGStop επιλύει το πρόβληµα οµοφωνίας σε σύστηµα στο οποίο διεργασίες µπορούν να καταρρέουν. Αϖόδειξη Ο τερµατισµός είναι προφανής. Επίσης, αν όλες οι αρχικές τιµές είναι v τότε κάθε W i περιέχει ακριβώς την τιµή v. Έτσι όλες έχουν έξοδο την v. Έστω ότι p i,p j είναι δύο διεργασίες που τερµατίζουν οι p i, p j είναι µη-εσφαλµένες. Το Λήµµα 3 συνεπάγεται ότι W i = W j. Άρα οι p i, p j αποφασίζουν την ίδια τιµή εξόδου. Πολυϖλοκότητες Χρονική ϖολυϖλοκότητα; Πολυϖλοκότητα εϖικοινωνίας; Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 15

16 Οµοφωνία σε σύγχρονο σύστηµα µε Βυζαντινές αϖοτυχίες διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 16

17 Αλγόριθµοι για Βυζαντινές Αϖοτυχίες Ο Αλγόριθµος EIGByz Κώδικας για διεργασία p i Οι διεργασίες (υποθέτουµε n > 3f) µεταδίδουν τιµές για f+1 γύρους µε τον ίδιο τρόπο όπως στον αλγόριθµο EIGStop µε τις εξής διαφορές: Αν η p i λάβει µήνυµα από την p j που δεν έχει τη σωστή µορφή, το αγνοεί. Στο τέλος του γύρου f+1, η p i, ξεκινώντας από τα φύλλα, διανθίζει όλους τους κόµβους του δένδρου της µε µια ακόµη µεταβλητή newval, την οποία ενηµερώνει ως εξής: o Για κάθε κόµβο-φύλλο µε ετικέτα x, newval(x) = val(x). o Για κάθε εσωτερικό κόµβο µε ετικέτα x, η newval(x) παίρνει την τιµή που έχει η µεταβλητή newval σε µια αυστηρή πλειοψηφία των παιδιών της x (δηλαδή παίνρει µια τιµή v, τ.ω., newval(xj) = v για την πλειοψηφία των κόµβων µε ετικέτες της µορφής xj, αν φυσικά υπάρχει τέτοια πλειοψηφία). Αν τέτοια πλειοψηφία δεν υπάρχει, newval(x) = null. Η τιµή εξόδου της p i είναι η newval(λ). Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 17

18 Ο Αλγόριθµος EIGByz Ορθότητα Λήµµα 1: Μετά από f+1 γύρους εκτέλεσης του αλγορίθµου EIGByz ισχύει το εξής. Αν p i, p j και p k είναι µη-εσφαλµένες διεργασίες, µε i j, τότε val(x) i = val(x) j = val(y) k για κάθε ετικέτα x = yk. Απόδειξη: Aφού η k είναι µη-εσφαλµένη στέλνει το ίδιο µήνυµα µε την τιµή val(y) k και στην p i και στην p j στο γύρο x. Λήµµα 2: Μετά από f+1 γύρους εκτέλεσης του αλγορίθµου EIGByz ισχύει το εξής. Έστω ότι x = yk είναι µια ετικέτα τ.ω. η p k είναι µη-εσφαλµένη διεργασία. Τότε, newval(x) i = val(x) i = val(y) k για όλες τις µη-εσφαλµένες διεργασίες i. Αϖόδειξη: Με επαγωγή στο µήκος των ετικετών του δένδρου, ξεκινώντας από τα φύλλα. Βάση Εϖαγωγής: Έστω x η ετικέτα ενός κόµβου-φύλλου ( x = f+1). Λόγω του τρόπου ανάθεσης τιµών στις newval κόµβων-φύλλων newval(x) i = val(x) i Λήµµα 1 όλες οι µη-εσφαλµένες διεργασίες p i έχουν την ίδια val(x) i = val(y) k. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 18

19 Ο Αλγόριθµος EIGByz Ορθότητα Εϖαγωγική Υϖόθεση: Έστω ότι 1 r f και έστω ότι ο ισχυρισµός ισχύει για όλες τις ετικέτες x = y k τ.ω. x = r+1 (και η p k είναι µη εσφαλµένη διεργασία). Εϖαγωγικό Βήµα: Θα αποδειχθεί ότι ο ισχυρισµός ισχύει για όλες τις ετικέτες x = yk µε x =r (για τις οποίες ισχύει ότι η p k είναι µη-εσφαλµένη διεργασία). Λήµµα 1 όλες οι µη-εσφαλµένες διεργασίες p i έχουν val(x) i = val(y) k = v Κάθε µη-εσφαλµένη διεργασία j εκπέµπει την ίδια τιµή v για την ετικέτα x στον γύρο r+1 val(xj) i = v για όλες τις µη-εσφαλµένες διεργασίες p i και p j. Από επαγωγική υπόθεση newval(xj) i = val(xj) i = v, για όλες τις µη-εσφαλµένες p i και p j. Η πλειοψηφία των ετικετών των παιδιών του κόµβου x τελειώνει σε δείκτες µη-εσφαλµένων διεργασιών: # παιδιών x = n-r n-f > 3f f = 2f η πλειοψηφία είναι εγγυηµένη από το ότι το πολύ f από τα παιδιά έχουν ετικέτες των οποίων οι τελευταίοι δείκτες αντιστοιχούν σε εσφαλµένες διεργασίες. για κάθε µη-εσφαλµένη διεργασία p i, newval(xj) i = v για την πλειοψηφία των παιδιών xj του x. newval(x) i = v. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 19

20 Ο Αλγόριθµος EIGByz Ορθότητα Λήµµα 3: Αν όλες οι µη-εσφαλµένες διεργασίες έχουν την ίδια τιµή εισόδου v, τότε η v είναι η µοναδική τιµή εξόδου για κάθε µη-εσφαλµένη διεργασία. Αϖόδειξη: Όλες οι µη-εσφαλµένες διεργασίες εκπέµπουν v στον 1 ο γύρο val(j) i = v για όλες τις µη-εσφαλµένες διεργασίες p i και p j. Λήµµα 2 newval(j) i = val(j) i = v. Aπό τον κανόνα πλειοψηφίας: newval(λ) i = v. Ορισµοί Ένας κόµβος µε ετικέτα x ονοµάζεται κοινός αν για κάθε µη-εσφαλµένη διεργασία p i, το newval(x) i έχει την ίδια τιµή. Ένα υποδένδρο λέµε ότι έχει ένα κοινό µέτωϖο αν υπάρχει ένας κοινός κόµβος σε κάθε µονοπάτι από τη ρίζα του υποδένδρου προς τα φύλλα. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 20

21 Ο Αλγόριθµος EIGByz Ορθότητα Λήµµα 4: Έστω ένας οποιοσδήποτε κόµβος µε ετικέτα x. Αν υπάρχει ένα κοινό µέτωπο για το υποδένδρο µε ρίζα τον x, τότε ο x είναι κοινός. Αϖόδειξη: Με επαγωγή στο µήκος των ετικετών του δένδρου, ξεκινώντας από τα φύλλα. Βάση Εϖαγωγής: O x είναι φύλλο. Αν υπάρχει κοινό µέτωπο για το υποδένδρο µε ρίζα τον x, αυτό θα αποτελείται µόνο από τον x. Έτσι, ο x είναι κοινός όπως απαιτείται. Εϖαγωγική Υϖόθεση: Έστω ότι 1 r f και έστω ότι ο ισχυρισµός ισχύει για κάθε κόµβο x τ.ω. x = r+1. Εϖαγωγικό Βήµα: Θα αποδειχθεί ότι ο ισχυρισµός ισχύει για όλες τις ετικέτες x τ.ω. x =r. Έστω ότι υπάρχει ένα κοινό µέτωπο του υποδένδρου µε ρίζα τον x. Αν ο x ανήκει σε αυτό, τότε είναι κοινός, όπως απαιτείται. Ας υποθέσουµε ότι αυτό δεν ισχύει. Τότε, για κάθε παιδί xl του x, υπάρχει κοινό µέτωπο για το υποδένδρο µε ρίζα τον xl. Από επαγωγική υπόθεση ο xl είναι κοινός. Άρα, όλες οι διεργασίες έχουν το ίδιο newval(xl). Αυτό ισχύει για κάθε ένα από τα παιδιά του x. Άρα, το newval(x) είναι το ίδιο για όλες τις διεργασίες και εποµένως ο x είναι κοινός. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 21

22 Ο Αλγόριθµος EIGByz Ορθότητα Λήµµα 5: Μετά από f+1 γύρους εκτέλεσης του αλγορίθµου EIGByz, ο κόµβος ρίζα λ του δένδρου κάθε µη-εσφαλµένης διεργασίας είναι κοινός. Αϖόδειξη: Η ετικέτα οποιουδήποτε φύλλου αντιστοιχεί σε µια ακολουθία από f+1 διαφορετικούς δείκτες διεργασιών. Μόνο f από αυτούς µπορούν να αντιστοιχούν σε εσφαλµένες διεργασίες. Η ετικέτα ενός από τους κόµβους του µονοπατιού από τη ρίζα στο φύλλο τελειώνει µε τον δείκτη αυτής της µη-εσφαλµένης διεργασίας. Ο κόµβος αυτός είναι κοινός. Άρα, όλο το δένδρο έχει ένα κοινό µέτωπο. Από Λήµµα 4, η ρίζα είναι επίσης κοινός κόµβος. Θεώρηµα: Ο αλγόριθµος EIGByz επιλύει το πρόβληµα της Βυζαντινής οµοφωνίας για n διεργασίες µε f αποτυχίες αν n > 3f. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 22

23 Αδυναµία Εϖίλυσης του Προβλήµατος της Οµοφωνίας σε Ασύγχρονα Συστήµατα εν υπάρχει αλγόριθµος επίλυσης του προβλήµατος της οµοφωνίας σε ασύγχρονο σύστηµα στο οποίο έστω και µια διεργασία επιτρέπεται να αποτυγχάνει (µε κατάρρευση). Συνθήκες Τερµατισµού Τερµατισµός Wait-free (ελευθερία-αναµονής) Ανεξάρτητα από τον αριθµό των αποτυχιών (που θα µπορούσαν να είναι ακόµη και n- 1), οι µη-εσφαλµένες διεργασίες τερµατίζουν. Τερµατισµός f-failure Αν συµβούν το πολύ f αποτυχίες, οι µη-εσφαλµένες διεργασίες τερµατίζουν. Θα αποδείξουµε ότι το αρνητικό αποτέλεσµα ισχύει για wait-free αλγορίθµους. (Αυτό είναι πιο ασθενές από τον αρχικό µας ισχυρισµό αλλά πιο εύκολο να αποδειχθεί!!!) Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 23

24 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Χρήσιµοι Ορισµοί o Το σθένος (valency) µια καθολικής κατάστασης C είναι το σύνολο των τιµών που µπορούν να αποφασιστούν σε οποιαδήποτε εκτέλεση ξεκινά από τη C (ή από οποιαδήποτε άλλη προσβάσιµη από τη C καθολική κατάσταση). Το σθένος είναι µονό αν το σύνολο αυτό περιέχει µόνο το 0 ή µόνο το 1. Είναι διϖλό αν το σύνολο περιέχει και το 0 και το 1. o Μια καθολική κατάσταση C είναι σθένους 0 (ή 1) αν η µόνη τιµή που µπορεί να αποφασιστεί σε κάθε εκτέλεση που ξεκινά από την C (ή από οποιαδήποτε προσβάσιµη από τη C καθολική κατάσταση) είναι 0 (1, αντίστοιχα). o Αν C είναι µια καθολική κατάσταση µε διπλό σθένος, και η κατάσταση που προκύπτει επιτρέποντας σε µια διεργασία p να κάνει ένα βήµα από τη C είναι µονού σθένους, τότε λέµε ότι η p είναι κρίσιµη διεργασία στη C. Θα αποδείξουµε το αρνητικό αποτέλεσµα µε επαγωγή εις άτοπο. Έστω Α ένας ασύγχρονος wait-free αλγόριθµος οµοφωνίας. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 24

25 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Λήµµα 1: Έστω ότι C 1 και C 2 είναι δύο καθολικές καταστάσεις µονού σθένους. Αν C 1 p C 2, για κάποια διεργασία p, τότε η C 1 είναι σθένους v αν και µόνο αν η C 2 είναι σθένους επίσης v, όπου v {0,1}. Αϖόδειξη: Έστω ότι το σθένος της C 1 είναι v. Έστω α µια άπειρη εκτέλεση ξεκινώντας από τη C 1 στην οποία µόνο η p κάνει βήµατα. Αφού ο Α wait-free η p αποφασίζει στην α. Αφού C 1 είναι σθένους v η p αποφασίζει v στην α. Η α είναι έγκυρη και από την C 2 η C 2 είναι σθένους v. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 25

26 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Λήµµα 2 Υπάρχει µια αρχική κατάσταση µε διπλό σθένος. Αϖόδειξη Με εις άτοπο απαγωγή. Ι 0 : αρχική κατάσταση στην οποία όλες οι διεργασίες έχουν είσοδο 0 Ι 0 σθένους 0 Ι 1 : αρχική κατάσταση στην οποία όλες οι διεργασίες έχουν είσοδο 1 Ι 1 σθένους 1 Ι 01 : αρχική κατάσταση στην οποία η p 0 έχει είσοδο 0 και όλες οι άλλες διεργασίες έχουν είσοδο 1. Ι 01 p 0 Ι 0 (από Λήµµα 1) Ι 01 δεν µπορεί να είναι σθένους 1 Ι 01 p 1 Ι 1 (από Λήµµα 1) Ι 01 δεν µπορεί να είναι σθένους 0 Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 26

27 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Λήµµα 3 Αν η C είναι µια καθολική κατάσταση διπλού σθένους, τότε τουλάχιστον µια διεργασία δεν είναι κρίσιµη στη C. Αϖόδειξη Με εις άτοπο απαγωγή. Έστω ότι όλες οι διεργασίες είναι κρίσιµες στη C. Αφού C είναι διπλού σθένους και όλες οι διεργασίες κρίσιµες υπάρχουν p j και p k, τ.ω. αν η p j κάνει ένα βήµα από τη C η προκύπτουσα κατάσταση έχει σθένος 0 και αν η p k κάνει ένα βήµα από τη C η προκύπτουσα κατάσταση έχει σθένος 1. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 27

28 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Αϖόδειξη (συνέχεια) ιακρίνω περιπτώσεις: 1. το πρώτο βήµα µιας από τις p j, p k είναι read (έστω π.χ., της p j ). Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 28

29 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Αϖόδειξη (συνέχεια) 2. τα πρώτα βήµατα των p j, p k είναι εγγραφές σε διαφορετικούς καταχωρητές Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 29

30 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Αϖόδειξη (συνέχεια) 3. τα πρώτα βήµατα των p j, p k από τη C είναι εγγραφές στον ίδιο καταχωρητή. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 30

31 Αδυναµία Σχεδιασµού Ασύγχρονου Αλγορίθµου Οµοφωνίας Λήµµα 2 υπάρχει αρχική καθολική κατάσταση µε διπλό σθένος. Λήµµα 3 ξεκινώντας από µια κατάσταση µε διπλό σθένος µπορώ να οδηγηθώ σε άλλη κατάσταση µε διπλό σθένος αφήνοντας τη διεργασία που δεν είναι κρίσιµη να κάνει το επόµενο βήµα. Αυτό επαναλαµβάνεται άπειρες φορές υπάρχει άπειρη ακολουθία στην οποία καµία διεργασία δεν τερµατίζει (αφού µια καθολική κατάσταση στην οποία έστω µια διεργασία έχει τερµατίσει δεν µπορεί να έχει διπλό σθένος, λόγω της ιδιότητας της οµοφωνίας). Θεώρηµα εν υπάρχει wait-free αλγόριθµος που να επιλύει το πρόβληµα της οµοφωνίας σε ασύγχρονο σύστηµα διαµοιραζόµενης µνήµης µε n διεργασίες. Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 31

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες

Διαβάστε περισσότερα

Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 17: Συμφωνία με Βυζαντινά Σφάλματα ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Βυζαντινά Σφάλματα Τι θα δούμε σήμερα Κάτω Φράγμα για Αλγόριθμους Συμφωνίας με Βυζαντινά Σφάλματα: n > 3f Αλγόριθμος Συμφωνίας

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

Διάλεξη 16: Πρόβλημα Συμφωνίας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 16: Πρόβλημα Συμφωνίας. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 16: Πρόβλημα Συμφωνίας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Ορισμός του προβλήματος Συμφωνίας Αλγόριθμος Συμφωνίας με Σφάλματα Κατάρρευσης ΕΠΛ432: Κατανεµηµένοι Αλγόριθµοι 1 Πρόβλημα

Διαβάστε περισσότερα

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως Αµοιβαίος Αϖοκλεισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Συναίνεση και Σφάλματα Διεργασιών Παναγιώτα Παναγοπούλου Περίληψη Συναίνεση με σφάλματα διεργασιών Το πρόβλημα Ο αλγόριθμος FloodSet Επικύρωση δοσοληψιών Ορισμός του προβλήματος

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Η Σχέση Happens-Before (Συµβαίνει-ϖριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο

Διαβάστε περισσότερα

Αιτιώδεις Σχέσεις και Χρονισµός. Παναγιώτα Φατούρου Αρχές Κατανεµηµένου Υπολογισµού

Αιτιώδεις Σχέσεις και Χρονισµός. Παναγιώτα Φατούρου Αρχές Κατανεµηµένου Υπολογισµού Αιτιώδεις Σχέσεις και Χρονισµός Η Σχέση Happens-Before (Συµβαίνει-πριν) Οι εκτελέσεις, ως ακολουθίες γεγονότων, καθορίζουν µια καθολική διάταξη σε αυτά. Ωστόσο είναι δυνατό δύο υπολογιστικά γεγονότα από

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση με σφάλματα διεργασιών Κατανεμημένα Συστήματα Ι 5η Διάλεξη 10 Νοεμβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 5η Διάλεξη 1 Συναίνεση με σφάλματα διεργασιών Προηγούμενη διάλεξη

Διαβάστε περισσότερα

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Μοντέλο Σύγχρονου ικτύου Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης ευτέρα, Νοεµβρίου, 0 Αίθουσα Β Μία συλλογή υπολογιστικών

Διαβάστε περισσότερα

Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 1: Εισαγωγή στον Κατανεμημένο Υπολογισμό ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Τι είναι ένα Κατανεμημένο Σύστημα; Επικοινωνία, Χρονισμός, Σφάλματα Μοντέλο Ανταλλαγής Μηνυμάτων 1

Διαβάστε περισσότερα

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων

Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Μοντέλο σύγχρονου κατανεμημένου δικτύου Εκλογή αρχηγού σε σύγχρονο δακτύλιο Παναγιώτα Παναγοπούλου Περίληψη Σύγχρονα Κατανεμημένα Συστήματα Μοντέλο Σφάλματα Πολυπλοκότητα Εκλογή

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Σύγχρονα Κατανεμημένα Συστήματα 13 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Περίληψη 1 Σύγχρονα Κατανεμημένα Συστήματα 2 Το πρόβλημα εκλογής αρχηγού Ο αλγόριθμος LCR Ο αλγόριθμος HS 1 Σύγχρονα Κατανεμημένα

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax

Διαβάστε περισσότερα

Consensus and related problems

Consensus and related problems Consensus and related s Τι θα δούµε ΟΜΑ Α: Ιωάννα Ζέλιου Α.Μ.: 55 Μελισσόβας Σπύρος Α.Μ.: 21 Παπαδόπουλος Φίλιππος Α.Μ.: 60 Consensus Byzantine generals Interactive consistency Agreement Problems Imposibility

Διαβάστε περισσότερα

Γιατί υϖάρχει τέτοια καθολική κατάσταση;

Γιατί υϖάρχει τέτοια καθολική κατάσταση; ΥΛΟΠΟΙΗΣΗ ΚΑΤΑΧΩΡΗΤΩΝ ΑΝΑΓΝΩΣΗΣ/ΕΓΓΡΑΦΗΣ Καταχωρητές που µοιάζουν πιο πολύπλοκοι µπορούν να υλοποιηθούν από απλούστερους καταχωρητές. Multi-valued from Binary Βασικό Αντικείµενο: δυαδικός καταχωρητής ο

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη

Διαβάστε περισσότερα

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως Αµοιβαίος Αϖοκλεισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται

Διαβάστε περισσότερα

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως

Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται ως Αµοιβαίος Αϖοκλεισµός Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Ασύγχρονο Σύστηµα ιαµοιραζόµενης Μνήµης Το σύστηµα περιέχει n διεργασίες p 0,, p n-1 και m καταχωρητές R 0,, R m-1. Κάθε διεργασία µοντελοποιείται

Διαβάστε περισσότερα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή Ισορροπημένα Δένδρα Μπορούμε να επιτύχουμε για κάθε λειτουργία; χρόνο εκτέλεσης Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή μετά από Περιστροφές x αριστερή περιστροφή από το x y α β y

Διαβάστε περισσότερα

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?

h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα? Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού

Διαβάστε περισσότερα

ίκτυα Εξισορόϖησης κατάσταση εξισορροϖητή (balancer state): συλλογή από διακριτικά (tokens) στους συνδέσµους εισόδου και εξόδου του µετάβαση εξισορροϖ

ίκτυα Εξισορόϖησης κατάσταση εξισορροϖητή (balancer state): συλλογή από διακριτικά (tokens) στους συνδέσµους εισόδου και εξόδου του µετάβαση εξισορροϖ ίκτυα Μέτρησης Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 1 ίκτυα Εξισορόϖησης κατάσταση εξισορροϖητή (balancer state): συλλογή από διακριτικά (tokens) στους συνδέσµους εισόδου και εξόδου του µετάβαση

Διαβάστε περισσότερα

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 18: Πρόβλημα Βυζαντινών Στρατηγών. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 8: Πρόβλημα Βυζαντινών Στρατηγών ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προβλήματος Τι θα δούμε σήμερα Συνθήκες Συμφωνίας κάτω από Βυζαντινό Στρατηγό Πιθανοτικοί αλγόριθμοι επίλυσης Βυζαντινής

Διαβάστε περισσότερα

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Μοντέλο Σύγχρονου ικτύου. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Μοντέλο Σύγχρονου ικτύου Μία συλλογή υπολογιστικών µονάδων ή επεξεργαστές κάθε

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

Γ. Κορίλη Αλγόριθµοι ροµολόγησης - Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι

Διαβάστε περισσότερα

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts)

Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS. 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts) Κ Σ Ι Εκλογή αρχηγού σε σύγχρονο δακτύλιο: Οι αλγόριθμοι LCR και HS Παναγιώτα Παναγοπούλου 1 Ο αλγόριθμος LCR (Le Lann, Chang, and Roberts) Ο αλγόριθμος LCR είναι ένας αλγόριθμος εκλογής αρχηγού σε ένα

Διαβάστε περισσότερα

Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1

Εκλογήαρχηγού. Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου. Κατανεµηµένα Συστήµατα 06-1 Εκλογήαρχηγού Εισαγωγή Ισχυρά συνδεδεµένος γράφος ακτύλιος µίας κατεύθυνσης Τοπολογία δένδρου Κατανεµηµένα Συστήµατα 06- Εισαγωγή Πρόβληµα: επιλογή µίας διεργασίας από το σύνολο εν αρκεί να αυτοανακηρυχθεί

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

Εισαγωγή Μοντέλο Βασικοί Αλγόριθµοι Γράφων Κατανεµηµένα Συστήµατα Ένα κατανεµηµένο σύστηµα είναι µια συλλογή από αυτόνοµες διεργασίες οι οποίες έχουν τη δυνατότητα να επικοινωνούν µεταξύ τους. Με βάση

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1

Αµοιβαίοςαποκλεισµός. Κατανεµηµένα Συστήµατα 03-1 Αµοιβαίοςαποκλεισµός Εισαγωγή Συγκεντρωτική προσέγγιση Κατανεµηµένη προσέγγιση Αλγόριθµος Lamport Αλγόριθµος Ricart-Agrawala Προσέγγιση µεταβίβασης σκυτάλης Αλγόριθµος LeLann Αλγόριθµος Raymond Αλγόριθµος

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (

Διαβάστε περισσότερα

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει

Διαβάστε περισσότερα

Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 5: Κάτω Φράγμα για Αλγόριθμους Εκλογής Προέδρου ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Κάτω Φράγμα στον Αριθμό Μηνυμάτων Ένας οποιοσδήποτε αλγόριθμος εκλογής προέδρου Α ο οποίος 1. Δουλεύει σε ασύγχρονο

Διαβάστε περισσότερα

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων

ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων ιεργασίες και Επεξεργαστές στα Κατανεµηµένων Συστηµάτων Μαρία Ι. Ανδρέου ΗΜΥ417, ΗΜΥ 663 Κατανεµηµένα Συστήµατα Χειµερινό Εξάµηνο 2006-2007 Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο

Διαβάστε περισσότερα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα. 4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017

Διαβάστε περισσότερα

Κατανεµηµένα Συστήµατα Ένα κατανεµηµένο σύστηµα είναι µια συλλογή από αυτόνοµες διεργασίες οι οποίες έχουν τη δυνατότητα να επικοινωνούν µεταξύ τους.

Κατανεµηµένα Συστήµατα Ένα κατανεµηµένο σύστηµα είναι µια συλλογή από αυτόνοµες διεργασίες οι οποίες έχουν τη δυνατότητα να επικοινωνούν µεταξύ τους. Εισαγωγή Μοντέλο Βασικοί Αλγόριθµοι Γράφων Παναγιώτα Φατούρου Κατανεµηµένος Υπολογισµός 1 Κατανεµηµένα Συστήµατα Ένα κατανεµηµένο σύστηµα είναι µια συλλογή από αυτόνοµες διεργασίες οι οποίες έχουν τη δυνατότητα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΑΤΟΜΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ Ένα ατοµικό αντικείµενο κάποιου τύπου µοιάζει µε µια κοινή µεταβλητή αυτού του τύπου. Ένα ατοµικό αντικείµενο βρίσκεται σε µια κατ

ΑΤΟΜΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ Ένα ατοµικό αντικείµενο κάποιου τύπου µοιάζει µε µια κοινή µεταβλητή αυτού του τύπου. Ένα ατοµικό αντικείµενο βρίσκεται σε µια κατ Ατοµικά Αντικείµενα ΑΤΟΜΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ Ένα ατοµικό αντικείµενο κάποιου τύπου µοιάζει µε µια κοινή µεταβλητή αυτού του τύπου. Ένα ατοµικό αντικείµενο βρίσκεται σε µια κατάσταση και υποστηρίζει ένα σύνολο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα

Διαβάστε περισσότερα

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί Δομές Αναζήτησης Χειριζόμαστε ένα σύνολο στοιχείων κλειδί από ολικά διατεταγμένο σύνολο όπου το κάθε στοιχείο έχει ένα Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου με

Διαβάστε περισσότερα

Ιδιοκτησία Αντικειµένου

Ιδιοκτησία Αντικειµένου Software Transactional Memory H STM υποστηρίζει την εκτέλεση δοσοληψιών από τις διεργασίες, οι οποίες περιέχουν λειτουργίες που ο χρήστης θέλει να εκτελέσει στα διαµοιραζόµενα αντικείµενα. H STM εγγυάται

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης

Σημειώσεις Λογικής I. Εαρινό Εξάμηνο Καθηγητής: Λ. Κυρούσης Σημειώσεις Λογικής I Εαρινό Εξάμηνο 2011-2012 Καθηγητής: Λ. Κυρούσης 2 Τελευταία ενημέρωση 28/3/2012, στις 01:37. Περιεχόμενα 1 Εισαγωγή 5 2 Προτασιακή Λογική 7 2.1 Αναδρομικοί Ορισμοί - Επαγωγικές Αποδείξεις...................

Διαβάστε περισσότερα

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε. Ψηφιακά Δένδρα Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών τα οποία είναι ακολουθίες συμβάλλων από ένα πεπερασμένο αλφάβητο Ένα στοιχείο γράφεται ως, όπου κάθε. Μπορούμε να

Διαβάστε περισσότερα

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη

Διαβάστε περισσότερα

Βασικές έννοιες. Κατανεμημένα Συστήματα 1

Βασικές έννοιες. Κατανεμημένα Συστήματα 1 Βασικές έννοιες Κατανεμημένα Συστήματα 1 lalis@inf.uth.gr Ορισμός κατανεμημένου συστήματος Ένα σύστημα από ξεχωριστές ενεργές οντότητες (ονομάζονται «κόμβοι» ή «διεργασίες») που εκτελούνται ταυτόχρονα/ανεξάρτητα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ

ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ Συνεκτικότητα Γραφημάτων 123 ΚΕΦΑΛΑΙΟ 4 ΣΥΝΕΚΤΙΚΟΤΗΤΑ ΓΡΑΦΗΜΑΤΩΝ 4.1 Τοπική και Ολική Συνεκτικότητα Γραφημάτων 4.2 Συνεκτικότητα Μη-κατευθυνόμενων Γραφημάτων 4.3 Συνεκτικότητα Κατευθυνόμενων Γραφημάτων

Διαβάστε περισσότερα

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i. Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E. Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης telelis@unipi.gr Τµήµα

Διαβάστε περισσότερα

Βασικές έννοιες. Κατανεμημένα Συστήματα 1

Βασικές έννοιες. Κατανεμημένα Συστήματα 1 Βασικές έννοιες Κατανεμημένα Συστήματα 1 lalis@inf.uth.gr Ορισμός κατανεμημένου συστήματος Ένα σύστημα από ξεχωριστές ενεργές οντότητες (ονομάζονται «κόμβοι» ή «διεργασίες») που εκτελούνται ταυτόχρονα/ανεξάρτητα

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 2: Μαθηματικό Υπόβαθρο Τι θα κάνουμε σήμερα Συναρτήσεις & Σχέσεις (0.2.3) Γράφοι (Γραφήματα) (0.2.4) Λέξεις και Γλώσσες (0.2.5) Αποδείξεις (0.3) 1

Διαβάστε περισσότερα

4.3 Ορθότητα και Πληρότητα

4.3 Ορθότητα και Πληρότητα 4.3 Ορθότητα και Πληρότητα Συστήματα αποδείξεων όπως η μορφολογική παραγωγή και η κατασκευή μοντέλων χρησιμοποιούνται για να δείξουμε την εγκυρότητα εξαγωγών συμπερασμάτων. Ένα σύστημα αποδείξεων μπορεί

Διαβάστε περισσότερα

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Ανοχήβλαβών. Κατανεµηµένα Συστήµατα 19-1

Ανοχήβλαβών. Κατανεµηµένα Συστήµατα 19-1 Ανοχήβλαβών Εισαγωγή Πλεονασµός Ενεργή παραγωγή αντιγράφων Παθητική παραγωγή αντιγράφων Σύγχρονο πρωτόκολλο Ασύγχρονο πρωτόκολλο Επανόρθωση Ενεργητική ή παθητική; Κατανεµηµένη συµφωνία Πρόβληµα των δύο

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλειστά σύνολα Στην παράγραφο αυτή αναπτύσσεται ο µηχανισµός που θα µας επιτρέψει να µελετήσουµε τις αναλυτικές ιδιότητες των συναρτήσεων πολλών µεταβλητών. Θα χρειαστούµε τις έννοιες της

Διαβάστε περισσότερα

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Σύνοψη 3 ης ιάλεξης

Προηγούµενο Μάθηµα. Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων. Σύνοψη 3 ης ιάλεξης Προηγούµενο Μάθηµα Κατανεµηµένα Συστήµατα Ι Μάθηµα Βασικής Επιλογής, Χειµερινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Ιωάννης Χατζηγιαννάκης Σύγχρονα Κατανεµηµένα Συστήµατα Μοντελοποίηση Συστήµατος

Διαβάστε περισσότερα

Προβλήµατα. 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989.

Προβλήµατα. 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989. 1989-1 η ιεθνής Ολυµπιάδα Πληροφορικής Προβλήµατα 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989. Έξι Προβλήµατα Παρουσιάστηκαν στη διενέργεια της ΙΟΙ 89 ***PROBLEM

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες () Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Πεπερασμένα Αυτόματα (Κεφάλαιο., Sipser) Ορισμός πεπερασμένων αυτομάτων και ορισμός του

Διαβάστε περισσότερα

Απαντήσεις. Απάντηση. Απάντηση

Απαντήσεις. Απάντηση. Απάντηση 6 η σειρά ασκήσεων Άλκης Γεωργόπουλος Α.Μ. 39 Αναστάσιος Κοντογιώργης Α.Μ. 43 Άσκηση 1. Απαντήσεις Η αλλαγή ενός ρολογιού προς τα πίσω µπορεί να προκαλέσει ανεπιθύµητη συµπεριφορά σε κάποια προγράµµατα.

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΑΤΟΜΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ Καταχωρητής Read/Write Αποθηκεύει µια τιµή από κάποιο σύνολο και υποστηρίζει δύο λειτουργίες: read(r): επιστρέφει την τιµή

ΒΑΣΙΚΑ ΑΤΟΜΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ Καταχωρητής Read/Write Αποθηκεύει µια τιµή από κάποιο σύνολο και υποστηρίζει δύο λειτουργίες: read(r): επιστρέφει την τιµή ΑΤΟΜΙΚΑ ΑΝΤΙΚΕΙΜΕΝΑ Ένα ατοµικό αντικείµενο κάποιου τύπου µοιάζει µε µια κοινή µεταβλητή αυτού του τύπου. Ένα ατοµικό αντικείµενο βρίσκεται σε µια κατάσταση και υποστηρίζει ένα σύνολο από λειτουργίες µέσω

Διαβάστε περισσότερα

Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 4: Εκλογή Προέδρου σε Δακτύλιους ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Τι θα δούμε σήμερα Δακτύλιοι Το πρόβλημα της Εκλογής Προέδρου Εκλογή Προέδρου σε Ανώνυμους Δακτύλιους Ασύγχρονος Αλγόριθμος με

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 12 16 2 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 13 1 με τις ακόλουθες ιδιότητες 4 14 9 7 4 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση

Διαβάστε περισσότερα

Καθολικέςκαταστάσεις. Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική. Κατανεµηµένα Συστήµατα 04-1

Καθολικέςκαταστάσεις. Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική. Κατανεµηµένα Συστήµατα 04-1 Καθολικέςκαταστάσεις Ορισµοί Κατασκευή καθολικών καταστάσεων Παθητική στρατηγική Ενεργητική στρατηγική Κατανεµηµένα Συστήµατα 04-1 Ορισµοί Τοπικήιστορία διεργασίας p i Έστω ότι e ij είναι το γεγονός jτης

Διαβάστε περισσότερα

Διάλεξη 14: Ατομική ΚΚΜ Εγγραφής/Ανάγνωσης στην Παρουσία Σφαλμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 14: Ατομική ΚΚΜ Εγγραφής/Ανάγνωσης στην Παρουσία Σφαλμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 14: Ατομική ΚΚΜ Εγγραφής/Ανάγνωσης στην Παρουσία Σφαλμάτων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Σφάλματα Κατάρρευσης Τι θα δούμε σήμερα Αλγόριθμος SWMR (ΜΕΠΑ) Ατομικής ΚΚΜ στην παρουσία σφαλμάτων

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα. Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα. Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα Ενότητα # 2: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κατανεμημένα Συστήματα με Java. Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κατανεμημένα Συστήματα με Java Ενότητα # 4: Αμοιβαίος αποκλεισμός Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού

Διαβάστε περισσότερα

u v 4 w G 2 G 1 u v w x y z 4

u v 4 w G 2 G 1 u v w x y z 4 Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E

Διαβάστε περισσότερα

Κινητά και Διάχυτα Συστήματα. Ενότητα # 8: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Κινητά και Διάχυτα Συστήματα. Ενότητα # 8: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Κινητά και Διάχυτα Συστήματα Ενότητα # 8: Εκλογή αρχηγού Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του

Διαβάστε περισσότερα

HY Λογική Διδάσκων: Δ. Πλεξουσάκης

HY Λογική Διδάσκων: Δ. Πλεξουσάκης HY-180 - Λογική Διδάσκων: Δ. Πλεξουσάκης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο,

Διαβάστε περισσότερα

Πληρότητα της μεθόδου επίλυσης

Πληρότητα της μεθόδου επίλυσης Πληρότητα της μεθόδου επίλυσης Λήμμα: Αν κάθε μέλος ενός συνόλου όρων περιέχει ένα αρνητικό γράμμα, τότε το σύνολο είναι ικανοποιήσιμο. Άρα για να είναι μη-ικανοποιήσιμο, θα πρέπει να περιέχει τουλάχιστον

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) ({ G η G είναι μια ασυμφραστική γραμματική που δεν παράγει καμιά λέξη με μήκος μικρότερο του 2 } (β) { Μ,w

Διαβάστε περισσότερα

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο

Διαβάστε περισσότερα

Διάλεξη 12: Διάχυση Μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι

Διάλεξη 12: Διάχυση Μηνυμάτων. ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Διάλεξη 12: Διάχυση Μηνυμάτων ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι Ορισμός Προσομοίωσης Τι θα δούμε σήμερα Προσομοίωση Υπηρεσίας Διάχυσης Μηνυμάτων Ιδιότητες Διάταξης Μηνυμάτων ΕΠΛ432: Κατανεµηµένοι Αλγόριθµοι

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):

Διαβάστε περισσότερα

Δομές Δεδομένων & Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

Προσεγγιστικοί Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)

Διαβάστε περισσότερα