Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L. 1. Η TM «εκτελεί» τον απαριθµητή, E."

Transcript

1 Οι γλώσσες των Μηχανών Turing Αποφασισιµότητα / Αναγνωρισιµότητα Μια TM µπορεί ένα από τα δύο: να αποφασίζει µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Απορρίπτει όταν (η είσοδος στην TM) w L. Η γλώσσα L στην περίπτωση αυτή λέγεται αναδροµική. να αναγνωρίζει (ηµιαποφασίζει) µια γλώσσα L Αποδέχεται όταν (η είσοδος στην TM) w L. Απορρίπτει ή Εγκλωβίζεται σε Ατέρµονο Υπολογισµό όταν w L. όσο κι αν περιµένουµε, µπορεί να µη µάθουµε ποτέ. Η γλώσσα L στην περίπτωση αυτή λέγεται αναδροµικά απαριθµήσιµη. Κάθε αναδροµική γλώσσα είναι αναδροµικά απαριθµήσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Απαριθµητές (Enumerators) Απόδειξη (1/2) Μηχανή Turing συνδεδεµένη µε έναν «εκτυπωτή». Ο εκτυπωτής χρησιµεύει ώς συσκευή εξόδου. Η µηχανή εκτυπώνει λέξεις της γλώσσας που αναγνωρίζει. Ο απαριθµητής έχει αρχικά κενή ταινία. Αν δεν τερµατίζει, µπορεί να εκτυπώνει λέξεις επ άπειρον. Απαριθµεί τις λέξεις της γλώσσας που αναγνωρίζει, µε οποιαδήποτε σειρά, ίσως και µε επαναλήψεις. Αν µια γλώσσα A απαριθµείται από απαριθµητή E, τότε αναγνωρίζεται από TM. Αλγοριθµική Περιγραφή της TM, για είσοδο w: 1. Η TM «εκτελεί» τον απαριθµητή, E. Κάθε ϕορά που ο E εκτυπώνει λέξη w, η TM συγκρίνει τη w µε την w. 2. Αν εµφανιστεί η w στην έξοδο του E, η TM αποδέχεται. Θεώρηµα: Μια γλώσσα είναι αναγνωρίσιµη ανν απαριθµείται από απαριθµητή. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

2 Απόδειξη (2/2) Αναδροµικές Συναρτήσεις Αν µια γλώσσα αναγνωρίζεται από TM, τότε απαριθµείται από απαριθµητή. εδοµένης TM και καταλόγου, w 1, w 2,..., όλων των λέξεων, επί σχετικού αλφαβήτου, Σ: Για i = 1, 2, 3,... ο απαριθµητής επαναλαµβάνει: 1. Εκτέλεση i ϐηµάτων της TM, για καθεµία από τις εισόδους w 1, w 2, Κάθε ϕορά που η TM αποδέχεται, ο απαριθµητής εκτυπώνει τη λέξη. Παρατηρήσεις: Ενας κατάλογος w 1, w 2,... όλων των λέξεων επί του Σ είναι εφικτός: Εστω συνάρτηση f : Σ Σ. Υπολογίζεται από TM αν: Η TM τερµατίζει για κάθε είσοδο w Σ. Η TM αφήνει στην ταινία γραµµένη την f(w) Σ, στον τερµατισµό. Τότε η f λέγεται αναδροµική συνάρτηση. ιαισθητικά: η f µπορεί να οριστεί µέσω αναδροµικής διαδικασίας. διότι το Σ είναι αριθµήσιµο σύνολο, επειδή οι λέξεις του έχουν πεπερασµένο µήκος (περισσότερα έπονται) Κλεψιά: ο κατάλογος υπονοεί έναν «κρυµένο» απαριθµητή. Ολες οι «προφανείς» αριθµητικές f : N k N είναι αναδροµικές. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Η Καθολική Μηχανή Turing a. k. a. «Υπολογιστής» Η καθολική TM U δέχεται σαν είσοδο: Την κωδικοποίηση µιας TM M σε πεπερασµένο αλφάβητο της U. Την κωδικοποίηση της εισόδου w της M (στο αλφάβητο της U). Προσοµοιώνει την M για είσοδο w. Το πεπερασµένο αλφάβητο της U πρέπει να µπορεί να κωδικοποιήσει: Κάθε (πεπερασµένη) TM, µε οποιοδήποτε αλφάβητο ταινίας. Το (οποιοδήποτε πεπερασµένο) αλφάβητο (γλώσσας) εισόδου της TM. Βολικά Αλφάβητα: Σ U = {0, 1}, Σ U = {0, 1,..., 9, A, B,..., F}. (δυαδική κωδικοποίηση, δεκαεξαδική κωδικοποίηση, κ.λ.π.) Γιατί είναι εφικτό; ιότι το (άπειρο) σύνολο όλων των (πεπερασµένων) TMs και το (άπειρο) σύνολο όλων των πεπερασµένων λέξεων επί του Σ U είναι ισοµεγέθη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Η Καθολική Μηχανή Turing Μηχανή Τριών Ταινιών: Η πρώτη έχει την κωδικοποίηση των περιεχοµένων της ταινίας της M. Η δεύτερη έχει κωδικοποιηµένη την M καθεαυτή. Η τρίτη έχει κωδικοποιηµένη την τρέχουσα κατάσταση της M. Υπολογισµός: Αρχικά, η είσοδος M, w γράφεται στην 1η ταινία. Η U µετακινεί την M στη 2η ταινία. Γράφει την w στην αρχή (αριστερά) της 1ης ταινίας. Γράφει την αρχική κατάσταση της M στην 3η ταινία. Προσοµοιώνει σε κάθε ϐήµα της κάθε ϐήµα της M για είσοδο w. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

3 Εισαγωγικά Το σηµαντικότερο αποτέλεσµα της Θεωρίας Υπολογισµού. Το Πρόβληµα του Τερµατισµού Μπορούν όλα τα προβλήµατα να επιλυθούν µε µηχανή Turing; Εστω ότι δίνεται ένα πρόγραµµα: κώδικας και προδιαγραφές εισόδου, περιγραφή εξόδου, προδιαγραφή λειτουργίας, κ.λ.π Να επαληθευτεί ότι λειτουργεί σύµφωνα µε τις προδιαγραφές του. Μπορούµε να αυτοµατοποιήσουµε την επαλήθευση µέσω υπολογιστή; Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Εισαγωγικά Μέθοδος ιαγωνιοποίησης (1/2) Georg Cantor, 1873 Ορίζουµε: Αποδοχη/TM = { M, w η M είναι TM που αποδέχεται τη λέξη w }. Θα αποδείξουµε το ακόλουθο: Θεώρηµα Η γλώσσα Αποδοχη/TM δεν είναι αποφασίσιµη. Πρόβληµα σύγκρισης µεγεθών άπειρων συνόλων. Πώς αποφασίζουµε αν κάποιο είναι µεγαλύτερο από άλλο ή αν είναι ισοµεγέθη; ε µπορούµε να µετρήσουµε τα στοιχεία τους, όπως σε πεπερασµένα σύνολα. Παράδειγµα: { 0, 1 } και άρτιοι ϑετικοί ακέραιοι. Πώς συγκρίνονται; Παρατήρηση: ύο πεπερασµένα σύνολα είναι ισοµεγέθη αν ταιριάζονται τα στοιχεία του ενός µε του άλλου σε Ϲεύγη. Η ίδια µέθοδος εφαρµόζεται και στα απειροσύνολα! Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

4 Μέθοδος ιαγωνιοποίησης (2/2) Παράδειγµα 1 Ορισµοί: Εστω A, B σύνολα και συνάρτηση f : A B. Η f είναι: Μονοµορφική ή 1 1 (ένα προς ένα), αν: f(a) f(a ) όταν a a Επιµορφική ή επί του B αν «χρησιµοποιεί» όλα τα στοιχεία του B, δηλαδή αν: για κάθε b B υπάρχει a A τέτοιο ώστε f(a) = b. Τα A και B είναι ισοµεγέθη αν υπάρχει συνάρτηση f : A B που είναι: ταυτόχρονα 1 1 και επί του B. Εστω N = {1, 2, 3,... } το σύνολο των ϕυσικών αριθµών. Εστω E = {2, 4, 6,... } το σύνολο των άρτιων ϕυσικών αριθµών. ιαπιστώνουµε ότι τα N και E είναι ισοµεγέθη. Μπορούµε να ορίσουµε την αντιστοιχία f : N E, µε f(n) = 2n. Το παράδειγµα µοιάζει παράδοξο, καθώς γνωρίζουµε ότι E N. Ορισµός Ενα σύνολο λέγεται αριθµήσιµο αν είναι πεπερασµένο ή ισοµεγέθες µε το N. Τότε, η f λέγεται αντιστοιχία. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Παράδειγµα 2 (α) Παράδειγµα 2 (ϐ) Εστω Q = { m n m, n N } το σύνολο των ϱητών αριθµών. 1/1 1/2 1/3 1/4 1/5... Παρότι Q N, ϑα δείξουµε ότι είναι αριθµήσιµο (ισοµεγέθες µε το N). Κατασκευάζουµε άπειρο πίνακα (άπειρες γραµµές, άπειρες στήλες): Γραµµή i: όλοι οι αριθµοί του Q µε αριθµητή i. 2/1 2/2 2/3 2/4 2/5... 3/1 3/2 3/3 3/4 3/5... Στήλη j: όλοι οι αριθµοί του Q µε παρονοµαστή j. Στοιχείο (i, j): έχει τον αριθµό i / j. 4/1 4/2 4/3 4/4 4/5... Μετατρέπουµε τον πίνακα σε «κατάλογο» του Q, προσεκτικά. Παραθέτουµε τις διαγωνίους του πίνακα από το (i, 1) έως το (1, i) για i = 1, 2,..., χωρίς τα στοιχεία της κύριας διαγωνίου, όταν i > 1. 5/1 5/ Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

5 Παράδειγµα 3 (α) Παράδειγµα 3 (ϐ) Θεώρηµα Το σύνολο R των πραγµατικών αριθµών είναι υπεραριθµήσιµο. Με απαγωγή σε άτοπο, δείχνουµε ότι δεν υπάρχει αντιστοιχία f : N R. Εστω ότι υπάρχει αντιστοιχία f : N R. Θα εντοπίσουµε x R που δε «συνταιριάζεται» µε κανένα στοιχείο του N: τότε, η f δεν είναι επί του R, εποµένως, δε συνιστά αντιστοιχία, σε αντίφαση προς την υπόθεσή µας. Προκειµένου να εντοπίσουµε το x R, ϑα το κατασκευάσουµε. Επιλέγουµε κάθε ψηφίο του x κατάλληλα, ώστε να διαφέρει από κάποιον από τους πραγµατικούς αριθµούς που έχουν συνταιριαστεί µε στοιχεία του N. Παράδειγµα. Αν µέρος της f(n) είναι αυτό που δίνεται στον πίνακα αριστερά: n f(n) Επιλέγουµε x (0, 1) που διαφέρει: - στο 1ο δεκαδικό ψηφίο από το f(1). - στο 2ο δεκαδικό ψηφίο από το f(2). - στο 3ο δεκαδικό ψηφίο από το f(3). - στο 4ο δεκαδικό ψηφίο από το f(4). - κ.ο.κ. Σηµείωση: Ϲεύγη αριθµών και είναι ίσοι, παρά τη διαφορετική δεκαδική τους αναπαράσταση. Για το λόγο αυτό ϕροντίζουµε να µην επιλέγουµε ποτέ τα ψηφία 9 και 0 σαν δεκαδικά ψηφία του x. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Συνέπεια του Παραδείγµατος 3 Απόδειξη (1/3) αλφάβητο Σ, πεπερασµένο πλήθος λέξεων επί του Σ µε συγκεκριµένο µήκος. Πόρισµα Υπάρχουν γλώσσες που δεν είναι Turing-αναγνωρίσιµες. ικαιολόγηση: Το σύνολο των µηχανών Turing είναι αριθµήσιµο. Το σύνολο όλων των γλωσσών είναι υπεραριθµήσιµο. Μπορούµε να γράψουµε «κατάλογο» που, αρχικά, έχει όλες τις λέξεις µήκους 0, κατόπιν όλες τις λέξεις µήκους 1, µετά όλες τις λέξεις µήκους 2 κ.λ.π. Αρα, το Σ είναι αριθµήσιµο. Κάθε µηχανή Turing, M, µπορεί να κωδικοποιηθεί µε κάποια λέξη, M, του Σ. ιαγράφουµε από τον κατάλογο λέξεων του Σ τις λέξεις που δεν είναι TMs. ιαγράφουµε τις λέξεις που κωδικοποιούν την ίδια TM µε προηγούµενη λέξη. Ο εναποµένων κατάλογος είναι αριθµήσιµος, καθώς κάθε στοιχείο του µπορεί να αντιστοιχηθεί σε διαφορετικό στοιχείο του N. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

6 Απόδειξη (2/3) Απόδειξη (3/3) Το σύνολο B όλων των άπειρου µήκους δυαδικών ακολουθιών είναι υπεραριθµήσιµο. Γιατί; Μπορούµε να το αποδείξουµε µε διαγωνιοποίηση, όπως για το R. Εστω L το σύνολο όλων των γλωσσών επί του αλφαβήτου Σ. Θα δείξουµε ότι τα L και B είναι ισοµεγέθη. Θα δώσουµε µια αντιστοιχία µεταξύ των στοιχείων των L και B. Ορίζουµε τη χαρακτηριστική ακολουθία, χ A, κάθε γλώσσας A L. Εστω Σ = { s 1, s 2, s 2,... }. Ορίζουµε το i-οστό ψηφίο της χ A να είναι 1, αν s i A, διαφορετικά 0. Παράδειγµα: Η γλώσσα των λέξεων που ξεκινούν από 0. Η συνάρτηση f : L B, όπου f(a) = χ A είναι: 1 1 και επί του B. Εποµένως, είναι αντιστοιχία. Αντιστοιχίσαµε: κάθε στοιχείο του (υπεραριθµήσιµου) B σε ένα στοιχείο (γλώσσα επί του Σ) του L. Εποµένως, το L πρέπει να είναι ισοµεγέθες του B, άρα, υπεραριθµήσιµο. Σ = { ɛ, 0, 1, 00, 01, 10, 11, 000, 001,... } A = { 0, 00, 01, 000, 001,... } χ A = Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Το Πρόβληµα του Τερµατισµού (Halting Problem) Απόδειξη (1/3) Ορίζουµε τη Γλώσσα: Αποδοχη/TM = { M, w η M είναι TM και αποδέχεται τη w } Ερώτηµα: Είναι (Turing-)αποφασίσιµη η Αποδοχη/TM; Αν είναι, τότε υπάρχει TM που αποφασίζει αν: η M αποδέχεται την w, ή η M απορρίπτει την w. Οταν η TM αποδέχεται, η M αποδέχεται και, εποµένως, η M τερµατίζει. Υποθέτουµε ότι υπάρχει TM, H, που αποφασίζει την Αποδοχη/TM: { αποδοχή αν η M αποδέχεται τη w H( M, w ) = απόρριψη αν η M δεν αποδέχεται τη w Κατασκευάζουµε µια νέα TM, D, που χρησιµοποιεί την H σαν υπορουτίνα. Η D καλεί την H για να προσδιορίσει πώς συµπεριφέρεται η M µε είσοδο τη λέξη M. Κατόπιν, η D αποκρίνεται το αντίθετο από την M: Οταν η TM απορρίπτει, τότε: αποδέχεται όταν η M δεν αποδέχεται, δηλ. η H( M, M ) απορρίπτει, η M είτε τερµατίζει απορρίπτοντας (τη w), απορρίπτει όταν η M αποδέχεται, δηλ. η H( M, M ) αποδέχεται. είτε υπολογίζει ατέρµονα χωρίς να αποδέχεται ποτέ. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

7 Απόδειξη (2/3) Απόδειξη (3/3) Για είσοδο M, η µηχανή Turing D: 1. Εκτελεί (προσοµοιώνει) την H, για είσοδο M, M. 2. Αποδέχεται αν η H απορρίπτει, διαφορετικά, απορρίπτει. Αρα, ό,τι κι αν αποκριθεί η D, θα αποκριθεί ταυτόχρονα και το αντίθετο!!! Εποµένως: D( M ) = { αποδοχή απόρριψη αν η M δεν αποδέχεται τη λέξη M αν η M αποδέχεται τη λέξη M Προφανώς αυτό δε γίνεται, η D δε µπορεί να υπάρχει. Ορίσαµε τη D µέσω της H, την οποία ορίσαµε µέσω της M. Εποµένως δε µπορεί να υπάρχει η H. Τώρα, εκτελούµε τη µηχανή D µε είσοδο τον εαυτό της! Και λαµβάνουµε: { αποδοχή αν η D δεν αποδέχεται τη λέξη D D( D ) = απόρριψη αν η D αποδέχεται τη λέξη D Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ερµηνεία µε ιαγωνιοποίηση (1/3) Ερµηνεία µε ιαγωνιοποίηση (2/3) Συνοψίζουµε τους ορισµούς µας από την απόδειξη: Η H αποδέχεται τη λέξη M, w αν και µόνο αν η M αποδέχεται τη λέξη w. Η D απορρίπτει τη λέξη M αν και µόνο αν η M αποδέχεται τη λέξη M. Η D απορρίπτει τη λέξη D αν και µόνο αν η D αποδέχεται τη λέξη D. Κατασκευάζουµε έναν πίνακα µε άπειρες γραµµές και άπειρες στήλες. Μία γραµµή για κάθε δυνατή µηχανή Turing, M i, και µία στήλη για την κωδικοποίησή της σαν λέξη. M 1 M 2 M 3 M 4... M 1 αποδοχή αποδοχή... M 2 αποδοχή αποδοχή αποδοχή αποδοχή... M 3... M 4 αποδοχή αποδοχή Σηµείωση: όπου δεν έχουµε γράψει «αποδοχή», σηµαίνει ότι η M µε είσοδο την κωδικοποίηση του εαυτού της είτε τερµατίζει απορρίπτοντας, είτε υπολογίζει ατέρµονα. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ξαναγράφουµε τον πίνακα, µε τη συµπεριφορά της H σε κάθε κελί: H M 1 M 2 M 3 M 4... M 1 αποδοχή απόρριψη αποδοχή απόρριψη... M 2 αποδοχή αποδοχή αποδοχή αποδοχή... M 3 απόρριψη απόρριψη απόρριψη απόρριψη... M 4 αποδοχή αποδοχή απόρριψη απόρριψη Παρατήρηση: η µηχανή Turing D, ϑα πρέπει να ϐρίσκεται στη λίστα όλων των µηχανών Turing, είναι δηλαδή µια από τις M 1, M 2, M 3,... Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

8 Ερµηνεία µε ιαγωνιοποίηση (3/3) Μια µη αναγνωρίσιµη γλώσσα Προσθέτουµε στον προηγούµενο πίνακα µια γραµµή και στήλη για την D: H M 1 M 2 M 3 M 4... D... M 1 αποδοχή απόρριψη αποδοχή απόρριψη... απόρριψη... M 2 αποδοχή αποδοχή αποδοχή αποδοχή... απόρριψη... M 3 απόρριψη απόρριψη απόρριψη απόρριψη... αποδοχή... M 4 αποδοχή αποδοχή απόρριψη απόρριψη... αποδοχή D απόρριψη απόρριψη αποδοχή αποδοχή...??? Η D υπολογίζει το αντίθετο των στοιχείων της διαγωνίου του πίνακα. Τότε, όµως, στη ϑέση της διαγωνίου που αντιστοιχεί στον εαυτό της, υπολογίζει το αντίθετο της δικής της απόφασης!!!! ΑΤΟΠΟ Αποδείξαµε ότι η Αποδοχη/TM δεν είναι αποφασίσιµη (Το πρόβληµα του τερµατισµού). Είναι όµως αναγνωρίσιµη: Μια TM για είσοδο M, w, προσοµοιώνει την M µε είσοδο w. Η TM τερµατίζει αποδεχόµενη, αν τερµατίζει η M αποδεχόµενη. Θα εντοπίσουµε µια γλώσσα που δεν είναι καν ( Turing-)αναγνωρίσιµη. Μια γλώσσα, A, είναι συµπληρωµατικά αναγνωρίσιµη, αν η Ā = { w w A } είναι αναγνωρίσιµη. Θεώρηµα Μια γλώσσα είναι αποφασίσιµη αν και µόνο αν είναι αναγνωρίσιµη και συµπληρωµατικά αναγνωρίσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Απόδειξη (1/2) Απόδειξη (2/2) Αν µια γλώσσα, A, είναι αποφασίσιµη: Τότε και η Ā είναι αποφασίσιµη (γιατί;) Εποµένως, η A και η Ā, είναι αναγνωρίσιµες (αφού είναι αποφασίσιµες). Αρα η A είναι ταυτόχρονα αναγνωρίσιµη και συµπληρωµατικά αναγνωρίσιµη. Εστω ότι η A και η Ā είναι αναγνωρίσιµες. Υπάρχουν δηλαδή µηχανές Turing M και M, που τερµατίζουν αποδεχόµενες οποιαδήποτε λέξη w A και w Ā, αντιστοίχως. Τότε µπορούµε να ορίσουµε τη µηχανή Turing T που αποφασίζει την A; Για είσοδο w, η µηχανή T: 1. Προσοµοιώνει παράλληλα τις M και M για είσοδο w. 2. Αν αποδεχθεί η M, αποδέχεται. Αν αποδεχθεί η M, απορρίπτει. Σχόλια: Είναι σηµαντικό η T να προσοµοιώνει παράλληλα τις M και M. ηλαδή, να εκτελεί ένα ϐήµα από την M, κατόπιν ένα ϐήµα από την M. Ετσι διασφαλίζουµε ότι τερµατίζει πάντα (και, εποµένως, αποφασίζει)! Αν προσοµοίωνε πρώτα την M ή την M και µετά την M ή την M αντίστοιχα: µπορεί η πρώτη προσοµοίωση να µην τερµάτιζε ποτέ!!! Τότε, ούτε η T ϑα τερµάτιζε. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

9 Η γλώσσα Αποδοχη/TM Πόρισµα Η γλώσσα Αποδοχη/TM δεν είναι (Turing-)αναγνωρίσιµη. Απόδειξη: Γνωρίζουµε ότι η Αποδοχη/TM είναι αναγνωρίσιµη. Αν είναι αναγνωρίσιµη και η Αποδοχη/TM, τότε η Αποδοχη/TM είναι αποφασίσιµη (από το προηγούµενο ϑεώρηµα). Οµως γνωρίζουµε ότι η Αποδοχη/TM δεν είναι αποφασίσιµη (Πρόβληµα Τερµατισµού) ΑΤΟΠΟ! Εποµένως η Αποδοχη/TM δεν είναι αναγνωρίσιµη. Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/ / 60

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο;

Αποφασισιµότητα / Αναγνωρισιµότητα. Μη Επιλύσιµα Προβλήµατα. Η έννοια της αναγωγής. Τερµατίζει µια δεδοµένη TM για δεδοµένη είσοδο; Αποφασισιµότητα / Αναγνωρισιµότητα Ορέστης Τελέλης telelis@unipi.gr Μη Επιλύσιµα Προβλήµατα Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 2/12/2015 Ο. Τελέλης Πανεπιστήµιο Πειραιώς Αποφασισιµότητα 2/12/2015

Διαβάστε περισσότερα

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ.

Γνωριµία. ιακριτά Μαθηµατικά. Βιβλία Μαθήµατος. Επικοινωνία. ιδάσκων: Ορέστης Τελέλης. Ωρες γραφείου (502, Γρ. Γνωριµία ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr Ωρες γραφείου (502, Γρ.Λαµπράκη 26): ευτέρα

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36

ιακριτά Μαθηµατικά Ορέστης Τελέλης Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 ιακριτά Μαθηµατικά Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Σύνολα 1 / 36 Γνωριµία ιδάσκων: Ορέστης Τελέλης e-mail: telelis@unipi.gr

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ Τι θα κάνουμε σήμερα Επιλύσιμα Προβλήματα σχετικά με Ασυμφραστικές Γλώσσες (4.1.2) Το Πρόβλημα του Τερματισμού

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Διαγνωσιμότητα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Διαγνώσιμες Γλώσσες (4.1) Επιλύσιμα Προβλήματα σχετικά με Κανονικές Γλώσσες Επιλύσιμα Προβλήματα

Διαβάστε περισσότερα

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή. Μη ντετερµινιστικές Μηχανές Turing - NTMs (1/6) Μηχανές Turing: Μη ντετερµινισµός, Επιλύσιµα Προβλήµατα Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 10 εκεµβρίου 2016

Διαβάστε περισσότερα

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing

Σε αυτό το µάθηµα. Εισαγωγή στις Μηχανές Turing. Μηχανή Turing (Turing Machine - TM) Μηχανές Turing. Παραδείγµατα Μηχανών Turing Σε αυτό το µάθηµα Εισαγωγή στις Μηχανές Turing Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Παραδείγµατα Μηχανών Turing Παραλλαγές: Πολυταινιακές, Μη ντετερµινιστικές

Διαβάστε περισσότερα

f(t) = (1 t)a + tb. f(n) =

f(t) = (1 t)a + tb. f(n) = Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία

Διαβάστε περισσότερα

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης. Γενικές Παρατηρήσεις Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα () Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Υπάρχουν µη κανονικές γλώσσες, π.χ., B = { n n n }. Αυτό

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος. Σύνοψη Προηγούµενου Κανονικές Γλώσσες () ιαδικαστικά του Μαθήµατος. Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Εισαγωγή: Υπολογισιµότητα και Πολυπλοκότητα. Βασικές

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Φροντιστήριο 9 Λύσεις

Φροντιστήριο 9 Λύσεις Άσκηση 1 Φροντιστήριο 9 Λύσεις Να κατασκευάσετε μια μηχανή Turing με δύο ταινίες η οποία να αποδέχεται στην πρώτη της ταινία μια οποιαδήποτε λέξη w {a,b} * και να γράφει τη λέξη w R στη δεύτερη της ταινία.

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 17 Υπενθύµιση: Ακολουθίες Ακολουθία είναι συνάρτηση από

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 26: Καθολική Μηχανή Turing Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που

Διαβάστε περισσότερα

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί); Μοντελοποίηση του Υπολογισµού Στοιχεία Θεωρίας Υπολογισµού (): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ποιές οι θεµελιώδεις δυνατότητες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού 1 /

Διαβάστε περισσότερα

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων:

Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Παράδειγµα (1/2) O( g(n) ) είναι σύνολο συναρτήσεων: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ορισµός. Εστω συναρτήσεις: f : N R και g : N R Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f(n) είναι O( g(n) ) αν υπάρχουν σταθερές C και n

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Υπολογισµού

Διαβάστε περισσότερα

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αριθμήσιμα

Διαβάστε περισσότερα

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r

ιαιρετότητα Στοιχεία Θεωρίας Αριθµών «Ο Αλγόριθµος της ιαίρεσης» Αριθµητική Υπολοίπων 0 r < d και a = d q +r ιαιρετότητα Στοιχεία Θεωρίας Αριθµών ο a διαιρεί τον b: συµβολισµός: a b Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς a b και a c a (b + c) a b a bc, για κάθε c Z +

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 16: Αναγωγές ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 16: Αναγωγές Τι θα κάνουμε σήμερα Το Πρόβλημα του Τερματισμού (4.2) Εισαγωγή στις Αναγωγές Ανεπίλυτα Προβλήματα από την Θεωρία των Γλωσσών (5.1) Απεικονιστικές

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr

Θεωρία Υπολογισμού Αρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Θεωρία Υπολογισμού Άρτιοι ΑΜ Διδάσκων: Σταύρος Κολλιόπουλος eclass.di.uoa.gr Περιγραφή μαθήματος Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει την ακόλουθη γλώσσα. { a n b n+2 c n 2 n 2 } Λύση: H ζητούμενη μηχανή Turing μπορεί να

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Θεωρία Υπολογισμού Ενότητα 21: Υπολογισμοί ΜΤ - Αναδρομικές Γλώσσες Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης

Παραδείγµατα. Τάξη των Συναρτήσεων (1) Παράδειγµα (2) Να δειχθεί ότι 7n 2 = O(n 3 ). Ορέστης Τελέλης Τάξη των Συναρτήσεων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς 1. Να δειχθεί ότι 7n 2 = O(n 3 ) 2. Να δειχθεί ότι η n 2 δεν είναι O(n). 3. Αληθεύει ότι n 3 =

Διαβάστε περισσότερα

10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα

10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα Κεφάλαιο 10 Υπολογισιμότητα Κύρια βιβλιογραφική αναφορά για αυτό το Κεφάλαιο είναι η Hopcroft, Motwani, and Ullman 2007. 10.1 Υπολογίσιμες συναρτήσεις και αναδρομικά σύνολα Μέχρι στιγμής έχουμε δει ουσιαστικά

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα.

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (3) Παραδείγµατα µε Κανονικές Εκφράσεις. Σε αυτό το µάθηµα. Σύνοψη Προηγούµενου Κανονικές Γλώσσες (3) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς (Ντετερµινιστική) Κλειστότητα Κανονικών Γλωσσών ως προς Ενωση. Κατασκευή: DFA

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (1)

Στοιχεία Θεωρίας Γραφηµάτων (1) Στοιχεία Θεωρίας Γραφηµάτων (1) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (1) 1 / 23 Μη κατευθυνόµενα γραφήµατα

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1. Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα 2): Αυτόµατα Στοίβας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μη Κανονικές Γλώσσες Το Λήµµα της Αντλησης για τις

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 12. Θεωρία Υπολογισιμότητας 30Μαρτίου, 17 Απριλίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Θέση Church-Turing Τι μπορεί να υπολογιστεί και τι δεν μπορεί να υπολογιστεί?

Διαβάστε περισσότερα

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs) Μη κατευθυνόµενα γραφήµατα Στοιχεία Θεωρίας Γραφηµάτων (1) Απλό µη κατευθυνόµενο γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E) µε σύνολο κορυφών/κόµβων V Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων.

Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. 30 Νοεμβρίου 2016 Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. Πλακίδια του Wang C πεπερασμένο σύνολο χρωμάτων. t = (c Α, c Π, c Δ, c Κ ) C 4 πλακίδιο του Wang. Πλακίδια του Wang C πεπερασμένο σύνολο

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Μάθηµα 3.2: Ντετερµινιστικά Πεπερασµένα Αυτόµατα ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β. Θεωρία 1. Πεπερασµένα Αυτόµατα 1. Λειτουργία και Παραδείγµατα

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 12: Μηχανές Turing ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 12: Μηχανές Turing Τι θα κάνουμε σήμερα Εισαγωγή στις Μηχανές Turing (TM) Τυπικός Ορισμός Μηχανής Turing (3.1.1) 1 Τι είδαμε μέχρι στιγμής Πεπερασμένα

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Διάλεξη 13: Παραλλαγές Μηχανών Turing και Περιγραφή Αλγορίθμων Τι θα κάνουμε σήμερα Εισαγωγή Πολυταινιακές Μηχανές Turing (3.2.1) Μη Ντετερμινιστικές Μηχανές

Διαβάστε περισσότερα

Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου)

Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου) Κωστόπουλος ηµήτριος Μ.Π.Λ.Α. TAPE COMPRESSION (θεώρηµα 2.3 Παπαδηµητρίου) Εισαγωγή. Αυτό το φυλλάδιο έχει στόχο να δώσει ένα ανάλογο αποτέλεσµα µε αυτό του linear speedup θεωρήµατος, εάν έχουµε µία µηχανή

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη

Διαβάστε περισσότερα

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1.

Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων. Εφαρµογές. Παράδειγµα 1. Αρχή Εγκλεισµού-Αποκλεισµού (3 σύνολα) Αρχή Εκλεισµού-Αποκλεισµού Η Τάξη των Συναρτήσεων Ορέστης Τελέλης telelis@unipi.g Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς A B C = A + B + C A B B C A C +

Διαβάστε περισσότερα

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N.

- εξίσωση που εκφράζει τον n-οστό όρο a n της ακολουθίας, - µέσω ενός ή περισσότερων όρων από τους a 0, a 1,..., a n 1, - για κάθε n n 0, όπου n 0 N. Αναδροµικές Σχέσεις Αναδροµικές Σχέσεις Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αναδροµική Σχέση για την ακολουθία a n } είναι: - εξίσωση που εκφράζει τον n-οστό

Διαβάστε περισσότερα

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville

Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Υπερβατικοί Αριθµοί και Θεώρηµα του Liouville Χρήστος Κονταράτος 14 Νοεµβρίου 2014 1 Περιεχόµενα 1 Εισαγωγή 3 2 Το Θεώρηµα του Liouville 4 3 Η Υπερβατικότητα του ξ 6 4 Αριθµοί του Liouville 8 2 1 Εισαγωγή

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.

Διαβάστε περισσότερα

Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων

Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων. Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων. Σύνοψη Ιδιοτήτων Προηγούµενο: Ανω Φράγµα στην Τάξη των Συναρτήσεων Ρυθµός Αύξησης (Τάξη) των Συναρτήσεων Ορέστης Τελέλης η (τάξη της) f() είναι O( g() ) αν υπάρχουν σταθερές C και 0, τέτοιες ώστε: f() C g() για κάθε 0

Διαβάστε περισσότερα

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης.

Μονοπάτια και Κυκλώµατα Euler. Στοιχεία Θεωρίας Γραφηµάτων (3,4) Παραδείγµατα. Κριτήρια Υπαρξης. Μονοπάτια και Κυκλώµατα Eulr Σε γράφηµα G(V, E): Στοιχεία Θεωρίας Γραφηµάτων (3,4) Ορέστης Τελέλης tllis@unipi.r Κύκλωµα Eulr: Απλό κύκλωµα που διασχίζει κάθε ακµή του G. Μονοπάτι Eulr: Απλό µονοπάτι που

Διαβάστε περισσότερα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα. Κατευθυνόµενα γραφήµατα Απλό κατευθυνόµενο Γράφηµα G είναι διατεταγµένο Ϲεύγος (V, E), µε: Στοιχεία Θεωρίας Γραφηµάτων (1) σύνολο κορυφών / κόµβων V, Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων,

Διαβάστε περισσότερα

Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις.

Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις. Θέση Church-Turing I Πολλοί τρόποι περιγραφής αλγορίθμων. Όλοι είναι μηχανιστικά ισοδύναμοι και ειδικά ισοδύναμοι με μερικές αναδρομικές συναρτήσεις Θέση Church-Turing: Όλες οι υπολογίσιμες συναρτήσεις

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν

Παράδειγµα: Προσοµοίωση µιας ουράς FIFO Οι λειτουργίες που υποστηρίζονται από µια ουρά FIFO είναι: [enq(q,x), ack(q)] [deq(q), return(q,x)] όπου x είν Wait-free προσοµοιώσεις αυθαίρετων αντικειµένων Έχουµε δει ότι το πρόβληµα της οµοφωνίας δεν µπορεί να επιλυθεί µε χρήση µόνο read/write καταχωρητών. Πολλοί µοντέρνοι επεξεργαστές παρέχουν επιπρόσθετα

Διαβάστε περισσότερα

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης

Αριθµοί Liouville. Ιωάννης Μπαρµπαγιάννης Αριθµοί Liouville Ιωάννης Μπαρµπαγιάννης Εισαγωγή Η ϑεωρία των υπερβατικών αριθµών έχει ως αφετηρία µια ϕηµισµένη εργασία του Liouville, το 844, ο οποίος περιέγραψε µια κλάση πραγµατικών αριθµών οι οποίοι

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

K είναι το σύνολο των καταστάσεων. Σ είναι το αλφάβητο των συµβόλων που χρησιµοποιούνται και το οποίο. s K είναι η αρχική κατάσταση της M.

K είναι το σύνολο των καταστάσεων. Σ είναι το αλφάβητο των συµβόλων που χρησιµοποιούνται και το οποίο. s K είναι η αρχική κατάσταση της M. Ισοδυναµία των Μηχανών Turing (TM) Αλέξανδρος Γ. Συγκελάκης 11 Απριλίου 2006 1 Βασική µορφή Μηχανών Turing (BTM) Η ϐασική µορφή της Μηχανής Turing (ΒΤΜ) αποτελείται από ένα σύνολο εντολών, µία ταινία που

Διαβάστε περισσότερα

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή

Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ. Εισαγωγή Εισαγωγή Εργαστήριο ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ Ξεκινάµε την εργαστηριακή µελέτη της Ψηφιακής Λογικής των Η/Υ εξετάζοντας αρχικά τη µορφή των δεδοµένων που αποθηκεύουν και επεξεργάζονται οι υπολογιστές και προχωρώντας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία Υπολογισμού και Πολυπλοκότητα Θεωρία Υπολογισμού και Πολυπλοκότητα Κεφάλαιο 10. Μηχανές Turing 20,23 Μαρτίου 2007 Δρ. Παπαδοπούλου Βίκη 1 Μηχανές Turing: Ένα Γενικό Μοντέλο Υπολογισμού Ποια μοντέλα υπολογισμού μπορούν να δεχθούν γλώσσες

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (3)

Στοιχεία Θεωρίας Γραφηµάτων (3) Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Θεωρία Γραφηµάτων (3) 1 / 23 Απαρίθµηση Μονοπατιών Εστω

Διαβάστε περισσότερα

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης

Απαρίθµηση Μονοπατιών. Στοιχεία Θεωρίας Γραφηµάτων (3) Μονοπάτια και Κυκλώµατα Euler. Ορέστης Τελέλης Απαρίθµηση Μονοπατιών Εστω γράφηµα G(V, E) µε πίνακα γειτνίασης A Στοιχεία Θεωρίας Γραφηµάτων (3) Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς ως προς µια διάταξη των

Διαβάστε περισσότερα

Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων

Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Θεωρήµατα Ιεραρχίας Ειδικά Θέµατα Υπολογισµού και Πολυπλοκότητας, Μάθηµα Βασικής Επιλογής Εαρινού Εξαµήνου Τοµέας Εφαρµογών και Θεµελιώσεων Απόστολος Φίλιππας Τµήµα Μηχανικών Η/Υ και Πληροφορικής 19 Μαΐου,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ Ενότητα 11: Καθολική μηχανή Turing Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων 771 Η - Θεωρία Υπολογισµών και Αλγορίθµων Σηµειώσεις Μέρος 4 ο ιδάσκων: Α. Ντελόπουλος Το παρόν αποτελεί σηµειώσεις που αντιστοιχούν σε µέρος των διαλέξεων για το µάθηµα 771 Η - Θεωρία Υπολογισµών και

Διαβάστε περισσότερα

Μέτρο Lebesgue. Κεφάλαιο Εξωτερικό µέτρο Lebesgue

Μέτρο Lebesgue. Κεφάλαιο Εξωτερικό µέτρο Lebesgue Κεφάλαιο 1 Μέτρο Lebesgue 1.1 Εξωτερικό µέτρο Lebesgue Θα ϑέλαµε να ορίσουµε το «µήκος» κάθε υποσυνόλου A του R, δηλαδή να αντιστοιχίσουµε σε κάθε A R έναν µη αρνητικό αριθµό λ(a) (ή το + ). Είναι λογικό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

CSC 314: Switching Theory

CSC 314: Switching Theory CSC 314: Switching Theory Course Summary 9 th January 2009 1 1 Θέματα Μαθήματος Ερωτήσεις Τι είναι αλγόριθμος? Τι μπορεί να υπολογιστεί? Απαντήσεις Μοντέλα Υπολογισμού Δυνατότητες και μη-δυνατότητες 2

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε. 08 - Αποδείξεις HY118- ιακριτά Μαθηµατικά Παρασκευή, 06/03/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/8/2015

Διαβάστε περισσότερα

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Επανάληψη Μαθήματος ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας Επανάληψη Μαθήματος Το Μάθημα σε μια Διαφάνεια Υπολογιστικά μοντέλα Κανονικές Γλώσσες Ντετερμινιστικά Αυτόματα Μη Ντετερμινιστικά Αυτόματα Κανονικές Εκφράσεις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των

Διαβάστε περισσότερα

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός

Θεώρηµα: Z ( Απόδειξη: Περ. #1: Περ. #2: *1, *2: αποδεικνύονται εύκολα, διερευνώντας τις περιπτώσεις ο k να είναι άρτιος ή περιττός HY118- ιακριτά Μαθηµατικά Την προηγούµενη φορά Τρόποι απόδειξης Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter,

Διαβάστε περισσότερα

CSC 314: Switching Theory. Chapter 3: Turing Machines

CSC 314: Switching Theory. Chapter 3: Turing Machines CSC 314: Switching Theory Chapter 3: Turing Machines 28 November 2008 1 1 Υπολογισμοί σε Μηχανές Turing Πως χρησιμοποιούμε μια μηχανή Turing? Για την αναγνώριση μιας γλώσσας? Σύμβαση για την αναγνώριση

Διαβάστε περισσότερα

Πεπερασμένος έλεγχος καταστάσεων

Πεπερασμένος έλεγχος καταστάσεων Κεφάλαιο 6 Μηχανές Turing Σύνοψη Οι Μηχανές Turing (ΜΤ) δεν είναι απλά μία ακόμη μηχανή αναγνώρισης για κάποια ευρύτερη οικογένεια γλωσσών από τις γλώσσες, που γίνονται δεκτές από τα Αυτόματα Στοίβας.

Διαβάστε περισσότερα

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών

Αρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing (αυθεντικός ορισμός) η οποία να διαγιγνώσκει τη γλώσσα { ww w {a,b}* }. (β) Να διατυπώσετε την τυπική περιγραφή

Διαβάστε περισσότερα

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ

214 ΚΕΦΑΛΑΙΟ 7. ΕΠΙΛΥΣΙΜΟΤΗΤΑ - ΜΗ ΕΠΙΛΥΣΙΜΟΤΗΤΑ 7.1 Το Πρόβλημα του Τερματισμού Θεώρημα 7.1 (Πρόβλημα του Τερματισμού - ημιαπόφαση) Η γλώσσα του Προβ Κεφάλαιο 7 Επιλυσιμότητα - Μη επιλυσιμότητα Σύνοψη Στα προηγούμενα κεφάλαια επικεντρωθήκαμε σε επιλύσιμα προβλήματα και μελετήσαμε υπολογιστικά μοντέλα με δυνατότητες, που συνεχώς διευρύναμε. Το τελευταίο

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα...

HY118- ιακριτά Μαθηµατικά. Παράδειγµα. Από τα συµπεράσµατα στις υποθέσεις Αποδείξεις - Θεωρία συνόλων. Από τις υποθέσεις στα συµπεράσµατα... HY118- ιακριτά Μαθηµατικά Παρασκευή, 11/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/15/2016

Διαβάστε περισσότερα

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε

Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες µπορούν να σταµατούν να εκτελούνται σε Οµοφωνία σε σύστηµα µε αϖοτυχίες κατάρρευσης διεργασιών Παναγιώτα Φατούρου Κατανεµηµένα Συστήµατα 1 Το Πρόβληµα Οµοφωνίας Σύγχρονα Συστήµατα Μεταβίβασης Μηνύµατος Μοντέλο Κατάρρευσης (crash model) Οι διεργασίες

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος Α. Μπεληγιάννης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος Α. Μπεληγιάννης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2016-2017 Τµηµα Β ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html 19 Οκτωβρίου 2016 Το παρόν

Διαβάστε περισσότερα

Σειρά Προβλημάτων 4 Λύσεις

Σειρά Προβλημάτων 4 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 4 Λύσεις (α) Να διατυπώσετε την τυπική περιγραφή μιας μηχανής Turing που να διαγιγνώσκει τη γλώσσα { n 3 } (α) H ζητούμενη μηχανή Turing μπορεί να διατυπωθεί ως την επτάδα Q,

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Πρόλογος. Η µαθηµατική ανάλυση των οικονοµικών σχέσεων µπορεί να πάρει τη µορφή ποιοτικής, παραµετρικής και ποσοτικής ανάλυσης.

Πρόλογος. Η µαθηµατική ανάλυση των οικονοµικών σχέσεων µπορεί να πάρει τη µορφή ποιοτικής, παραµετρικής και ποσοτικής ανάλυσης. 1 Πρόλογος Σκοπός του παρόντος συγγράµµατος είναι να αναδείξει τη συµβολή των καθαρών µαθηµατικών στην ανάπτυξη και λειτουργία οποιουδήποτε οικονοµικού συστήµατος. Σε κάθε βήµα των µαθηµατικών µεθόδων

Διαβάστε περισσότερα

7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ

7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ 1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του

Διαβάστε περισσότερα

Εισαγωγή στην Τοπολογία

Εισαγωγή στην Τοπολογία Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 07/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/7/2017

Διαβάστε περισσότερα