Chapter 2 Discrete-Time Signals and Systems

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Chapter 2 Discrete-Time Signals and Systems"

Transcript

1 P.: Chapter Discrete-Time Sigals ad Systems (a) ( ) ( ) δ ( ) δ ( ) x = m+ m m, 5. m= clear; close all; Hf_ = figure( Uits, ormalized, positio,[.,.,.8,.8], color,[,,]); set(hf_, NumberTitle, off, Name, P.ac ); % % x() = sum_{m=}^{} (m+)*[delta(-*m)-delta(-*m-)] = [:5]; x = zeros(,legth()); for m = : x = x + (m+)*(impseq(*m,,5) - impseq(*m+,,5)); ed subplot(,,); stem(,x); axis([mi()-,max()+,mi(x)-,max(x)+]); xlabel( ); ylabel( x() ); title( Sequece x() ); tick = [():(legth())]; set(gca, XTickMode, maual, XTick,tick, FotSize,) Sequece x() 5 x() (b) x ( ) = u( + ) u( ) + δ ( ) + ( ) u( ) u( ) clear; close all; Hf_ = figure( Uits, ormalized, positio,[.,.,.8,.8], color,[,,]); set(hf_, NumberTitle, off, Name, P.be ); % % (b) x() = (^)*[u(+5)-u(-6)]+*delta()+*(.5)ˆ*[u(-4)-u(-)] = -5:; % Overall support of x() x = (. ^).*(stepseq(-5,-5,)-stepseq(6,-5,))+*impseq(,-5,)+... *((.5).^).*(stepseq(4,-5,)-stepseq(,-5,)); subplot(,,); stem(,x); axis([mi()-,max()+,mi(x)-,max(x)+]); xlabel( ); ylabel( x() ); title( Sequece x() ); tick = [():(legth())]; set(gca, XTickMode, maual, XTick,tick, FotSize,)

2 Sequece x() 5 x() (c) ( ) ( ) ( π π ) x3 =.9 cos. + / 3,. % x3() = (.9)^*cos(.*pi*+pi/3); <=<= 3 = [:]; x3 = ((.9).^3).*cos(.*pi*3+pi/3); subplot(,,); stem(3,x3); axis([mi(3)-,max(3)+,-,]); xlabel( ); ylabel( x3() ); title( Sequece x3() ); tick = [3():3(legth(3))]; set(gca, XTickMode, maual, XTick,tick, FotSize,) Sequece x3().5 x3() (d) ( ) ( π ) ( ) x4 = cos.8 + w, where w() is a radom sequece uiformly distributed betwee [-, ]. clear; close all; % (d) x4() = *cos(.8*pi*.^)+w(); <= <= ; w()^uiform[-,] w = *(rad(,)-.5); 4 = [:]; x4 = *cos(.8*pi*4.^)+w; subplot(,,); stem(4,x4); axis([mi(4)-,max(4)+,mi(x4)-,max(x4)+]); xlabel( ); ylabel( x4() ); title( Sequece x4() ); tick = [4()::4(legth(4))]; set(gca, XTickMode, maual, XTick,tick, FotSize,) The plot of x4() is show i Figure. from which we observe that it is a oisy siusoid with icreasig frequecy (or a oisy chirp sigal).

3 Sequece x4() 5 x4() (e) x ( ) = { } 5...,,,3,,,,3,,,.... Plot 5 periods. % (e) x5() = {...,,,3,,,,3,,,...}periodic. 5 periods 5 = [-8:]; x5 = [,,,3]; x5 = x5 *oes(,5); x5 = (x5(:)) ; subplot(,,); stem(5,x5); axis([mi(5)-,max(5)+,,4]); xlabel( ); ylabel( x5() ); title( Sequece x5() ); tick = [5():5(legth(5))]; set(gca, XTickMode, maual, XTick,tick, FotSize,) 4 Sequece x5() 3 x5() P.: The sequece x() = f;;4;6;5;8;g is give. (a) x ( ) = 3x( + ) + x( 4) x( ). clear; close all; Hf_ = figure( Uits, ormalized, positio,[.,.,.8,.8], color,[,,]); set(hf_, NumberTitle, off, Name, P.ab ); = [-4:]; x = [,-,4,6,-5,8,]; % give seq x() % % (a) x() = 3*x(+) + x(-4) - *x() [x,] = sigshift(3*x,,-); % shift by - ad scale by 3 [x,] = sigshift(x,,4); % shift x() by 4 [x3,3] = sigadd(x,,x,); % add two sequeces at time [x,] = sigadd(x3,3,*x,); % add two sequeces

4 subplot(,,); stem(,x); axis([mi()-,max()+,mi(x)-,max(x)+]); xlabel( ); ylabel( x() ); title( Sequece x() ); tick = [()::(legth())]; set(gca, XTickMode, maual, XTick,tick, FotSize,); Sequece x() 3 x() (b) x ( ) = x( + ) + x( + ) + x( ) % (b) x() = 5*x(5+) + 4*x(+4) +3*x() [x,] = sigshift(5*x,,-5); [x,] = sigshift(4*x,,-4); [x3,3] = sigadd(x,,x,); [x,] = sigadd(x3,3,3*x,); subplot(,,); stem(,x); axis([mi()-,max()+,mi(x)-.5,max(x)+.5]); xlabel( ); ylabel( x() ); title( Sequece x() ); tick = [()::(legth())]; set(gca, XTickMode, maual, XTick,tick, FotSize,) Sequece x() 6 x() (c) x ( ) = x( + ) x( ) + x( ) x( ) 3 4. clear; close all; Hf_ = figure( Uits, ormalized, positio,[.,.,.8,.8], color,[,,]); set(hf_, NumberTitle, off, Name, P.cd ); = [-4:]; x = [,-,4,6,-5,8,]; % give seq x() % % (c) x3() = x(+4)*x(-) + x(-)*x() [x3,3] = sigshift(x,,-4); % shift x() by -4

5 [x3,3] = sigshift(x,,); % shift x() by [x33,33] = sigmult(x3,3,x3,3); % multiply two sequeces [x34,34] = sigfold(x,); % fold x() [x34,34] = sigshift(x34,34,); % shift x(-) y [x34,34] = sigmult(x34,34,x,); % shift x(-) y [x3,3] = sigadd(x33,33,x34,34); % add two sequeces subplot(,,); stem(3,x3); axis([mi(3)-,max(3)+,mi(x3)-,max(x3)+]); xlabel( ); ylabel( x3() ); title( Sequece x3() ); tick = [3()::3(legth(3))]; set(gca, XTickMode, maual, XTick,tick, FotSize,); 6 Sequece x3() 4 x3() (d) ( ) ( ) ( π ) ( ) x4 = e x + cos. x +,. % (d) x4() = *exp(.5*)*x()+cos(.*pi*)*x(+); - <= <= 4 = [-:]; x4 = *exp(.5*4); x4 = cos(.*pi*4); [x4,4] = sigmult(x4,4,x,); [x43,43] = sigshift(x,,-); [x44,44] = sigmult(x4,4,x43,43); [x4,4] = sigadd(x4,4,x44,44); subplot(,,); stem(4,x4); axis([mi(4)-,max(4)+,mi(x4)-.5,max(x4)+.5]); xlabel( ); ylabel( x4() ); title( Sequece x4() ); tick = [4()::4(legth(4))]; set(gca, XTickMode, maual, XTick,tick, FotSize,) Sequece x4() 4 x4()

6 5 (e) x5 ( ) = x( k ) where x( ){ } k =,, 4,6, 5,8,. clear; close all; = [-4:]; x = [,-,4,6,-5,8,]; % give seq x() % (e) x5() = sum_{k=}ˆ{5}*x(-k); [x5,5] = sigshift(x,,); [x5,5] = sigshift(x,,); [x5,5] = sigadd(x5,5,x5,5); [x53,53] = sigshift(x,,3); [x5,5] = sigadd(x5,5,x53,53); [x54,54] = sigshift(x,,4); [x5,5] = sigadd(x5,5,x54,54); [x55,55] = sigshift(x,,5); [x5,5] = sigadd(x5,5,x55,55); [x5,5] = sigmult(x5,5,5,5); subplot(,,); stem(5,x5); axis([mi(5)-,max(5)+,mi(x5)-,max(x5)+]); xlabel( ); ylabel( x5() ); title( Sequece x5() ); tick = [5()::5(legth(5))]; set(gca, XTickMode, maual, XTick,tick, FotSize,); Sequece x5() x5() P.3: A sequece x() is periodic if x( + N) = x( ) for all. Cosider a complex expoetial jω jπ f sequece e = e. (a) Aalytical proof: The above sequece is periodic if jπ f ( + N) jπ f e = e or jπ fn e = = f = K (a iteger) which proves the result. x = cos.3 π,. % (b) x() = cos(.3*pi*) x = cos(.3*pi*); subplot(,,); stem(,x); axis([mi()-,max()+,-.,.]); ylabel( x() ); title( Sequece cos(.3*pi*) ); tick = [():5:(legth())]; set(gca, XTickMode, maual, XTick,tick, FotSize,); Sice f =.3/ = 3/ the sequece is periodic. From the plot i Figure.7 we see that i oe period of x exhibits three cycles. This is true wheever K ad N are relatively prime. (b) ( ) ( ) Samples ( )

7 x = cos.3,. % (b) x() = cos(.3*) x = cos(.3*); subplot(,,); stem(,x); axis([mi()-,max()+,-.,.]); ylabel( x() ); title( Sequece cos(.3*) ); tick = [():5:(legth())]; set(gca, XTickMode, maual, XTick,tick, FotSize,); I this case f is ot a ratioal umber ad hece the sequece x () is ot periodic. (c) ( ) ( ).5 Sequece cos(.3*pi*) x() Sequece cos(.3*).5 x() P.4 A: x()=3x(+)+x(-4)-x() =-4:;x=[,-,4,6,-5,8,]; [x,]=sigshift(x,,-); [x,]=sigshift(x,,4); [x3,3]=sigshift(x,,); [x,]=sigadd(3*x,,x,); [x,]=sigadd(x,,-*x3,3); [xe,xo,m]=eveodd(x,); subplot(,,);stem(,x);title('rectagularpulse') xlabel('');ylabel('x');%axis([mi()-,max()+,mi(x)-,max(x)+]) subplot(,,);stem(m,xe);title('eve part') xlabel('');ylabel('xe()');%axis([mi()-,max()+,mi(x)-,max(x)+]) subplot(,,4);stem(m,xo);title('odd part') xlabel('');ylabel('xo()');%axis([mi()-,max()+,mi(x)-,max(x)+])

8 rectagularpulse 6 eve part 5 4 x xe() odd part xo() B: x()=5x(5+)+4x(+4)+3x() =-4:;x=[,-,4,6,-5,8,]; [x,]=sigshift(x,,-5); [x,]=sigshift(x,,-4); [x3,3]=sigshift(x,,); [x,]=sigadd(5*x,,4*x,); [x,]=sigadd(x,,3*x3,3); [xe,xo,m]=eveodd(x,); subplot(,,);stem(,x);title('rectagularpulse') xlabel('');ylabel('x');%axis([-,,,]) subplot(,,);stem(m,xe);title('eve part') xlabel('');ylabel('xe()');%axis([-,,,]) subplot(,,4);stem(m,xo);title('odd part') xlabel('');ylabel('xo()');%axis([-,,,]) - A: x()=3x(+)+x(-4)-x()

9 rectagularpulse 6 eve part 5 4 x xe() odd part 4 xo() B: x()=5x(5+)+4x(+4)+3x() C: x3()=x(+4)x(-)+x(-)x(); =-4:;x=[,-,4,6,-5,8,]; [x3,3]=sigshift(x,,-4); [x3,3]=sigshift(x,,); [x3,3]=sigfold(x,); [x33,33]=sigshift(x3,3,); [x,]=sigmult(x33,33,x,); [x,]=sigmult(x3,3,x3,3); [x3,3]=sigadd(x,,x,); [xe,xo,m]=eveodd(x3,3); subplot(,,);stem(3,x3);title('rectagularpulse') xlabel('3');ylabel('x3');%axis([-,,,]) subplot(,,);stem(m,xe);title('eve part') xlabel('3');ylabel('xe(3)');%axis([-,,,]) subplot(,,4);stem(m,xo);title('odd part') xlabel('3');ylabel('xo(3)');%axis([-,,,])

10 rectagularpulse 5 eve part 5 x3 xe(3) odd part 4 xo(3) D: x4()= e.5 x()+cos(.π )x(+), -<=<=; 4=-:;x=[,-,4,6,-5,8,];=-4:; x4=*exp(.5*4); x4=cos(.*pi*4); [x4,4]=sigmult(x4,4,x,); [x43,43]=sigshift(x,,-); [x44,44]=sigmult(x4,4,x43,43); [x,]=sigadd(x4,4,x44,44); [xe,xo,m]=eveodd(x,); subplot(,,);stem(,x);title('rectagular') xlabel('');ylabel('x') subplot(,,);stem(,xe);title('eve part'); xlabel('');ylabel('xe') subplot(,,4);stem(,xo);title('odd part'); xlabel('');ylabel('xo'); C: x3()=x(+4)x(-)+x(-)x();

11 6 rectagular 3 eve part 4 x xe odd part 4 xo E: x5()= 5 k = D: x4()= x()+cos(.π )x(+), -<=<=; x x( k) a + a e x x=[,-,4,6,-5,8,];=-4:; [x,]=sigshift(x,,); [x,]=sigshift(x,,); [x3,3]=sigshift(x,,3); [x4,4]=sigshift(x,,4); [x5,5]=sigshift(x,,4); [x5,5]=sigadd(x,,x,); [x5,5]=sigadd(x3,3,x5,5); [x5,5]=sigadd(x4,4,x5,5); [x,]=sigadd(x5,5,x5,5); [x,]=sigmult(x,,,); [xe,xo,m]=eveodd(x,); subplot(,,);stem(,x);title('rectagular') xlabel('');ylabel('x') subplot(,,);stem(m,xe);title('eve part') xlabel('');ylabel('xe') subplot(,,4);stem(m,xo);title('odd part') xlabel('');ylabel('xo');

12 5 rectagular eve part 5 x 5 xe odd part 5 xo -5 E: x5()= 5 k = x( k) k = x( k) P.5: Eve-odd decompositio of complex-valued sequeces. (a) MATLAB fuctio eveodd: fuctio [xe, xo, m] = eveodd(x,) % Complex-valued sigal decompositio ito eve ad odd parts % % [xe, xo, m] = eveodd(x,) % [xc,c] = sigfold(coj(x),); [xe,m] = sigadd(.5*x,,.5*xc,c); [xo,m] = sigadd(.5*x,,-.5*xc,c); (.4π ) x = e,. = :; x = *exp(-.4*pi*); (b) Eve-odd decompositio of ( ) [xe,xo,eo] = eveodd(x,); Re_xe = real(xe); Im_xe = imag(xe); Re_xo = real(xo); Im_xo = imag(xo); % Plots of the sequeces subplot(,,); stem(eo,re_xe); ylabel( Re{xe()} ); title( Real part of Eve Seq. ); subplot(,,3); stem(eo,im_xe); xlabel( ); ylabel( Im{xe()} ); title( Imag part of Eve Seq. ); subplot(,,); stem(eo,re_xo); ylabel( Re{xo()} ); title( Real part of Odd Seq. ); subplot(,,4); stem(eo,im_xo); xlabel( ); ylabel( Im{xo()} ); title( Imag part of Odd Seq. );

13 The MATLAB verificatio plots are show i Figure.8. Real part of Eve Seq. 4 Real part of Odd Seq. Rexe() 5 Rexo() Imag part of Eve Seq. Imag part of Odd Seq..5.5 Imxe() Imxo() P.6 a) fuctio y=dsample(x,m) =:legth(x); y=[x() x(fid(mod(,m)==)+)]; b) >> =-5:5; >> x=si(.5*pi.*); >> y=dsample(x,4); >> subplot(,,);stem(,x);title('x()'); >> subplot(,,);stem(y);title('y()');

14 x() y() >> =-5:5; >> x=si(.5*pi.*); >> y=dsample(x,4); >> subplot(,,);stem(,x);title('x()'); >> subplot(,,);stem(y);title('y()');

15 x() x -4 y() P.7 Matlab Script: () The sequece (l) is: r xy = [:];x = (.9).^; x = [:];x = (.9).^x; y = [-:];y = (.8).^y;[y,y] = sigfold(y,y); [rxy,xy] = cov_m(x,x,y,y) rxy = Colums through Colums 9 through Colums 7 through Colums 5 through Colums 33 through Colum xy = Colums through Colums 5 through

16 Colums 9 through (): The sequece (l) is r yx = [:];x = (.9).^; x = [:];x = (.9).^x; y = [-:];y = (.8).^y;[y,y] = sigfold(y,y); [ryx,yx] = cov_m(y,y,x,x) ryx = Colums through Colums 9 through Colums 7 through Colums 5 through Colums 33 through Colum yx = Colums through Colums 5 through Colums 9 through We ca fid that r yx (l) ad (l) is same. P.8 r xy a) r () ( ) ( ) + xx l = x x = x( ) x( l) = r yy ( l) = y( ) y( ) = [ x( ) + α x( k) ] [ x( ) + αx( k) ] = x( ) x( ) + x( ) x( k) + αx( k) x( ) + α x( k ) x( k = rxx () l + α rxx ( l + k) + αrxx ( l k) + α rxx ( l) = + α r l + α[ r l + k + r l k ] α ) ( ) () ( ) ( ) xx xx xx b) >> =:99; >> x=cos(.*pi.*)+.5.*cos(.6*pi.*); >> [y,y]=sigshift(x,,5); >> [y,y]=sigadd(x,,..*y,y); >> subplot(,,);stem(y,y);xlabel('');ylabel('y()');title('sequece y()'); >> [yl,l]=sigfold(y,y); >> [y,y]=cov_m(y,y,yl,l); >> subplot(,,);stem(y,y);xlabel('l');ylabel('y(l)');title('autocorrelatio sequece y(l)');

17 sequece y() y() l P.9: x ( ) x ( ) x ( ) + x ( ) a. () T [ X ( ) ] + T [ X ( ) ] = + ; T [ X ( ) + X ( ) ] = x( ) We ca fid that the two are ot equal, so T [ X ( ) ] = is t liear. T [ X ( ) ] + T [ X ( ) ] = 3x( ) + 3x ( ) + 8 T [ X ( ) + X ( ) ] = 3X ( ) + 3X ( ) + 4 We ca fid that the two are ot equal, so T [ X ( ) ] = 3x( ) + 4 is t liear. (3) T3 [ X ( ) ] + T3[ X ( ) ] = x ( ) + x ( ) + x ( ) + x ( ) x ( ) x ( ) T3 [ X ( ) + X ( ) ] = x( ) + x ( ) + x ( ) + x ( ) x ( ) x ( ) the two are equal, so T [ X ( ) ] = x( ) + x( ) x( ) is liear. 3 b. >> x = rad(,);x = rad(,); = :; >> alpha = ;beta =3; >> x3 = x+x; >> t =.^x3; >> t =.^x;t3 =.^x;t4 = t+t; >> error = max(abs(t-t4)) error = it is t liear >> x = rad(,);x = rad(,); = :;

18 >> alpha = ;beta =3; >> x3 = x+x; >> t = 3*x+4;t = 3*x+4;t3 = 3*x3+4;t4 =t+t; >> error = max(abs(t3-t4)); >> error = max(abs(t3-t4)) error = 4. it is t liear 3 >> x = rad(,);x = rad(,); = :; alpha = ;beta =3; x3 = x+x;[x4,4] = sigshift(x,,);[x5,5] = sigshift(x,,);[x9,9] = sigshift(x3,,); [x6,6] = sigshift(x,,);[x7,7] = sigshift(x,,);[x8,8] = sigshift(x3,,); t = x+*x6-x4;t = x+*x7-x5;t3 = x3+*x8-x9;t4 = t+t; >> error = max(abs(t3-t3)) error = it is liear P. For each system let it system respose is ( ) Let the iput x( ) = x( ) y y. the the system respose: ( ) T [ x( ) ] = x( k) y ( ) = x( k ) = y( ) = So the system T is time_ivariat system y + + = ) ( ) T [ x( ) ] = x( k y ( ) = x( k) = y( ) So the system T is tie_ivariat system y = T x = x y = x ( ) [ ( )] ( ) ( ) ( ) y( ) 3 3 So the system T3 is ot time_ivariat system Verificatio: >> =:; >> x=.*rad(size()); >> x=sum(x(:)) x = >> x=sigshift(x,,); >> x=sum(x(:)) x = Hece system T is time_ivariat >> x=[zeros(,) x(:9)]; >> sum(x(:)) as =

19 -.86 >> x=sigshift(x,,); >> sum(x(:)) as = -.86 Hece system T is time_ivariat >> [h,]=sigfold(x,); >> [x3,]=sigshift(x3,,); >> x3=cov(x3,h); >> [h,]=sigshift(h,,); >> diff=sum(x3(:))-sum(h(:)) diff = Hece system T3 is ot time_ivariat. ( ) To P.9: The value of T X ( ) = x is oly related to x ( ). Whe ( ) ( ) value of T X ( ) = x x is fiite, the is also fiite, so the system is stable. The output at time is oly decided by the iput at time ad before time, so the system is causal. The value of T [ X ( ) ] = 3x( ) + 4 is oly related to x ( ). Whe ( ) T [ X ( ) ] = 3x( ) + 4 is fiite, so the system is stable. The output at time the iput at time ad before time, so the system is causal. The value of 3[ X ( ) ] = x( ) + x( ) x( ) fiite, the value of 3[ X ( ) ] = x( ) + x( ) x( ) x is fiite, the value of is oly decided by x ( ) ( ) T is oly related to. Whe x is T is fiite, so the system is stable. The output at time is oly decided by the iput at time ad before time, so the system is causal. To P.: The value of T [ X ( ) ] = x( k) is oly related to x ( ). Whe x( ) is fiite, the value of T [ X ( ) ] = x( k) is fiite, so the system is stable. The output at time is oly decided by the iput at time ad before time, so the system is causal. The value of + [ ( )] ( ) + [ ( )] ( ) T X = x k is oly related to ( ) x. Whe ( ) T X = x k is fiite, so the system is stable. The output at time x is fiite, the value of is ot oly decided by the iput at time ad before time, so the system is ucausal. The value of T3 [ X ( ) ] = x( ) is oly related to x ( ). Whe x ( ) is fiite, the value of T X = x is fiite, so the system is stable. The output at time is ot oly decided by [ ( )] ( 3 ) the iput at time ad before time, so the system is ucausal. P.: (a) Commutatio:

20 x ( ) x ( ) = x ( k) x k = x ( m) x ( m) k= = m m= m= = x m x m = x x ( ) ( ) ( ) ( ) Associatio: x x x3 x k x k x3 k = ( ) ( ) ( ) = ( ) ( ) ( ) Distributio: m= k= k = ( ) ( ) ( ) = x k x m k x m 3 = x( k) x m k x3( m) k= m= l = x( k) x( l) x3( k l) k= m= ( ) ( ) ( ) ( ) ( ) ( ) = x k x k x3 k = x x x3 ( ) ( ) + ( ) = ( ) ( ) + ( ) 3 3 k= x x x x k x k x k Idetity: k= ( ) ( ) ( ) ( ) = x k x k + x k x k 3 k= ( ) ( ) ( ) ( ) = x x + x x 3 ( ) δ ( ) = ( ) δ ( ) = ( ) x x k k x k = ( ) sice δ k = for k = ad zero elsewhere. (b) Verificatio usig MATLAB: = -:; x = ; = :3; x = cos(.*pi*); 3 = -5:; x3 = (.).ˆ3; % Commutative Property [y,y] = cov_m(x,,x,); [y,y] = cov_m(x,,x,); ydiff = max(abs(y-y)) ydiff = 4.633e-4 diff = max(abs(y-y)) diff = % Associative Property

21 [y,y] = cov_m(x,,x,); [y,y] = cov_m(y,y,x3,3); [y,y] = cov_m(x,,x3,3); [y,y] = cov_m(x,,y,y); ydiff = max(abs(y-y)) ydiff = 6.8e-3 diff = max(abs(y-y)) diff = % Distributive Property [y,y] = sigadd(x,,x3,3); [y,y] = cov_m(x,,y,y); [y,y] = cov_m(x,,x,); [y3,y3] = cov_m(x,,x3,3); [y,y] = sigadd(y,y,y3,y3); ydiff = max(abs(y-y)) ydiff =.753e-3 diff = max(abs(y-y)) diff = % Idetity Property = fix(*(rad(,)-.5)); [dl,dl] = impseq(,,); [y,y] = cov_m(x,,dl,dl); [y,y] = sigshift(x,,); ydiff = max(abs(y-y)) ydiff = diff = max(abs(y-y)) diff = P.3: Liear covolutio as a matrix-vector multiplicatio. (a) The liear covolutio of the above two sequeces is y = 3,8,4,,,4 ( ) { } (b) The vector represetatio of the above operatio is: = x y (c) Note that the matrix H has a iterestig structure. Each diagoal of H cotais the same umber. Such a matrix is called a Toeplitz matrix. It is characterized by the followig property H = [ ] [ ] H i, j i j H

22 which is similar to the defiitio of time-ivariace. (d) Note carefully that the first colum of H cotais the impulse respose vector h() followed by umber of zeros equal to the umber of x() values mius oe. The first row cotais the first elemet of h() followed by the same umber of zeros as i the first colum. Usig this iformatio ad the above property we ca geerate the whole Topelitz matrix. P.4: (a) The MATLAB fuctio cov tp: fuctio [y,h]=cov_tp(h,x) % Liear Covolutio usig Toeplitz Matrix % % [y,h] = cov_tp(h,x) % y = output sequece i colum vector form % H = Toeplitz matrix correspodig to sequece h so that y = Hx % h = Impulse respose sequece i colum vector form % x = iput sequece i colum vector form % Nx = legth(x); Nh = legth(h); hc = [h; zeros(nx-, )]; hr = [h(),zeros(,nx-)]; H = toeplitz(hc,hr); y = H*x; (b) MATLAB verificatio: x = [,,3,4] ; h = [3,,] ; [y,h] = cov_tp(h,x); y = y, H y = H = P.5: (a) Covolutio y( ) = x( ) x( ) k k ( ) ( ) ( ) = (.8) (.8) ( ) y x k x k u k k= k= k k k (.8) (.8) (.8) u( ) (.8) ( 8/8) u( ) = = k= k= (.8) ( ) u( ) ( )(.8) u( ) = + = + clear; close all; Hf_ = figure( Uits, ormalized, positio,[.,.,.8,.8], color,[,,]); set(hf_, NumberTitle, off, Name, P.5 ); % (a) aalytical solutio: y() = (+)*(.8)ˆ(+)*u() a = [:5]; ya = (a+).*(.8).ˆ(a); subplot(,,); stem(a,ya); axis([-,5,-,3]); xlabel( ); ylabel( ya() ); title( Aalytical computatio );

23 (b) To use the MATLAB s filter futio we have to represet oe of the x() sequece by coefficiets a equivalet differece equatio. See Example. o page 3 for this procedure. MATLAB solutio usig the filter fuctio: % (b) use of the filter fuctio b = [:5]; x = (.8).ˆb; yb = filter(,[, -.8],x); subplot(,,); stem(b,yb); axis([-,5,-,3]) xlabel( ); ylabel( yb() ); title( Filter output ); % error = max(abs(ya-yb)) error = 4.449e-6 % % Super Title suptitle( Problem P.5 ); The aalytical solutio to the covolutio i (8a) is the exact aswer. I the filter fuctio approach of (8b), the ifiite-duratio sequece x() is exactly represeted by coefficiets of a equivalet filter. Therefore, the filter solutio should be exact except that it is evaluated up to the legth of the iput sequece. The plots of this solutio are show i Figure.9. 3 Aalytical computatio ya() Filter output yb() P.6 a) >> a=[,-.5,.5]; >> z=roots(a); >> magz=abs(z)

24 magz =.5.5 Sice the magitudes of both roots are less tha oe, hece the system is stable b) the impulse respose of the system over >> b=[ ];a=[ -.5.5]; >> =:;x=impseq(,,); >> y=filter(b,a,x); >> stem(,y);xlabel('');ylabel('y()');title('the impulse respose'); >> sum(abs(y)) as = the impulse respose.5 y() c) Cosider the iput x( ) [ 5 + 3cos(.π ) + 4si(. 6π) ] u( ) =, the output is: >> b=[ ];a=[ -.5.5]; >> =:;x=(5+3.*cos(.*pi.*)+4.*si(.6*pi.*)).*stepseq(,,); >> y=filter(b,a,x); >> stem(,y);xlabel('');ylabel('y()');title('the output');

25 45 the output y() P.7 a. =:;[x,] =stepseq(,,);[x,] =stepseq(,,); x3 =5*(x-x); b =[,-];a = [];h = filter(b,a,x3); subplot(,,);stem(,h); title('output of a'); xlabel('');ylabel('h()'); b. >> [x,] =stepseq(,,);[x,] =stepseq(,,);[x3,3] =stepseq(,,); =:;x4 =;x5 =x-x;[x5,5] =sigmult(x4,,x5,); x6 =-;x7 =x-x3;[x8,8] =sigmult(x6,,x7,); [x9,9] =sigadd(x5,5,x8,8); b =[,-];a = [];h = filter(b,a,x9); subplot(3,,);stem(,h); title('output of b'); xlabel('');ylabel('h()'); c. >> b =[,-];a = [];[x3,3] =stepseq(,,); =:; [x3,3] =stepseq(,,);[x33,33]=sigadd(x3,3,(-)*x3,3); x34 =si(pi*/5);[x35,35] =sigmult(x33,33,x34,); b =[,-];a = [];h = filter(b,a,x35); subplot(,,);stem(,h); title('output of c'); xlabel('');ylabel('h()');

26 5 output of a h() output of b h() output of c. h()

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Fourier Series. Fourier Series

Fourier Series. Fourier Series ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Digital Signal Processing: A Computer-Based Approach

Digital Signal Processing: A Computer-Based Approach SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Καταχώρηση τιµής σε µια µεταβλητή.

Καταχώρηση τιµής σε µια µεταβλητή. Καταχώρηση τιµής σε µια µεταβλητή. Απευθείας καταχώρηση >> a=si(pi/2) a = 1 Αν στο τέλος κάθε δήλωσης τοποθετείται το ερωτηµατικό τότε το πρόγραµµα δεν µας δείχνει τη τιµή της µεταβλητής. >> a=si(pi/2);

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΓΡΑΦΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΟΥ ΣΧΕΔΙΑΣΜΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: «Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων.

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα