(k= constanta elastică a resortului, = coeficientul de frecare vâscoasă al mediului). Fig.3.1 Oscilaţii amortizate. m 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "(k= constanta elastică a resortului, = coeficientul de frecare vâscoasă al mediului). Fig.3.1 Oscilaţii amortizate. m 2"

Transcript

1 CURS 3 OSCILAŢII 3.1 Oscilaţii amortizate Un sistem real aflat în mişcarea oscilatorie întâmpină o anumită rezistenţă din partea mediului în care oscilează efectuează oscilaţii amortizate = amplitudinea lor scade până la dispariţie o data cu trecerea timpului. Ele sunt determinate de acţiunea simultană a forţei elastice şi a forţei de frecare. Fig.3.1 prezintă un oscilator care execută o oscilaţii amortizate sub acţiunea forţei elastice F e kx şi a forţei de frecare cu mediul v (k= constanta elastică a resortului, = F f r coeficientul de frecare vâscoasă al mediului). adică sau unde Ecuaţia mişcării amortizate este m k m - coeficientul de amortizare Fig.3.1 Oscilaţii amortizate. F F e F f (3.1) d x dt m - pătratul frecvenţei unghiulare proprii oscilatorului r dx kx (3.) dt d x dx x (3.3) dt dt Căutăm soluţia ecuaţiei (3.3) de forma t x Ce (3.4) care, pentru imaginar, este o combinaţie de funcţii armonice. Înlocuim (3.4) în (3.3) şi obţinem (3.5) numită ecuaţia caracteristică a ecuaţiei diferenţiale (3.3). Ea admite soluţiile 1, i (3.6) Considerăm soluţia ecuaţiei (3.3) de forma 1t t x C1e Ce (3.7) care ne conduce la t it it x e ( C1e Ce ) (3.8) unde 1

2 (3.9) care este pulsaţia oscilatorului amortizat. Obs.importantă: soluţia (3.8) descrie o mişcare oscilatorie numai pentru (pentru descrie o mişcarea aperiodică amortizată). unde Cu ajutorul formulei lui Euler ( e i cos i sin ) relaţia (3.8) se scrie tt x A e cos( t ). (3.1) A unde - A(t)= amplitudinea oscilatorului amortizat (dependentă de timp) - A = amplitudinea iniţială a oscilatorului (la t A( ) A ). Dacă forţa de frecare este mică, (3.11) descrie o mişcare periodică cu amplitudine descrescătoare în timp (fig.3.). t ( t) Ae (3.11) Fig.3. Oscilaţii amortizate. Când creşte coeficientul de frecare al mediului (γ) creşte coeficientul de amorizare (δ) amortizarea devine mai puternică. Rata amortizării este exprimată prin logaritmul natural al A( t) raportului, şi se numeşte decrementul logaritmic al amortizării A( t T ) A( t) ln T (3.1) A( t T ) Din (3.9) rezultă că amortizarea oscilaţiilor modifică perioada acestora T T (3.13) 1 4mk m unde T - perioada proprie a oscilatorului. k Dacă F f creşte T creşte până când se ajunge la 1 unde oscilaţiile încetează. 4m Energia oscilaţiilor amortizate este 1 1 t t E m A m A e Ee (3.14)

3 unde E = energia iniţială. Energia oscilaţiilor amortizate scade exponenţial în timp. Funcţia de disipaţie sau factorul de calitate al unui oscilator amortizat se defineşte 1 Q v (3.15) Este o mărime adimensională cu proprietăţile: -derivata ei în raport cu viteza este egală cu forţa de frecare luată cu semn schimbat dq F fr v (3.16) dv -puterea disipată este egală cu dublul funcţiei de disipaţie de Q v (3.17) dt Oscilatorul este cu atât mai bun (adică va avea un Q mai mare, oscilează un timp mai îndelungat) cu cât, respectiv, sunt mai mici. 3.Oscilaţii forţate Pentru a întreţine oscilaţiile care datorită frecării cu mediul se amortizează, se aplică oscilatorului (fig.3.3) o forţă periodică externă, F p (t) F( t) F cost (3.18) unde ω = pulsaţia forţei exterioare F = valoare maximă a forţei exterioare. Fig.3.3 Oscilaţii forţate. Ecuaţia de mişcare pentru oscilatorul forţat este F F F F(t) (3.19) e fr d x dx m kx F cost (3.1) dt dt d x dx F x cost (3.) dt dt m Ecuaţia (3.) reprezintă ecuaţia de mişcare a oscilaţiilor forţate ( oscilaţiilor intreţinute) deoarece acţiunea forţei periodice exterioare asupra oscilatorului împiedică stingerea oscilaţiilor acestuia, cu alte cuvinte le intreţine. Soluţia căutată pentru ecuaţie diferenţială (3.) este de forma (3.1). Prin înlocuirea expresiei (3.11) în ecuaţia de mişcare (3.) şi prin egalarea coeficienţilor lui sin t, respectiv cos t, din membrul stâng şi membrul drept al ecuaţiei se obţine un sistem de două ecuaţii a cărui rezolvare conduce la expresiile pentru A şi F 1 A ( ) (3.3) m 4 3

4 şi tan (3.4) Fenomenul de rezonanţă = transferul de energie dinspre sistemul exterior (forţa periodică) înspre oscilator se face cu randament maxim, iar energia şi amplitudinea oscilatorului devin maxime. Pentru a afla care este pulsaţia forţei exterioare la rezonanţă se ţine cont ca EA (se da demonstrează mai târziu) şi se impune condiţia de unde d rez (3.5) unde rez = frecvenţa de rezonanţă (se apropie cu atât mai mult de frecvenţa proprie de oscilaţie cu cât coeficientul de atenuare, δ, este mai mic). Fig.3.4 prezintă curbele de variaţie a amplitudinii pentru diferite valori ale pulsaţiei şi ale coeficientului de amortizare δ (conform (3.3)). Se observă că la scăderea rezistenţei mecanice a mediului în care au loc oscilaţiile forţate amplitudinea acestora creşte. Fig.3.4 Variaţia amplitudinii în funcţie de pulsaţia şi de coeficientul de amortizare δ. Efectul de rezonanţă devine mai accentuat atunci când coeficientului de amortizare δ (respectiv coeficientul de frecare ) descreşte deoarece A creşte. La rezonanţă, când nu există frecare (γ = ), amplitudinea oscilatorului tinde spre infinit, iar sistemul se poate distruge atentie la proiectare în domeniul ingineriei mecanice sau al ingineriei construcţiilor. Pe de altă parte, deoarece la rezonanţă transferul de energie dinspre exterior înspre sistemul oscilant se face cu randament maxim, rezonanţa este dorită în domeniul electronicii (circuitele oscilante se acordează la rezonanţă pentru ca pierderile de semnal să fie minime). Menţionă următoarele proprietăţi ale oscilaţiilor forţate: - frecvenţa oscilaţiilor forţate este egală cu frecvenţa forţei externe. - amplitudinea şi defazajul oscilaţiilor forţate depind de structura sistemului mecanic ce oscilează (k, m) şi de frecvenţa a forţei externe, şi nu depind de condiţiile iniţiale. După începerea acţiunii forţei exterioare asupra oscilatorului întreţinut urmeză regimul tranzitoriu (oscilatorul încă mai oscilează cu frecvenţa proprie), iar după un timp regimul permanent (oscilatorul începe să oscileze cu pulsaţia forţei externe). 4

5 UNDE 3.3 Unde mecanice Undele mecanice reprezintă fenomenul de propagare a oscilaţiilor mecanice într-un mediu elastic. O perturbaţie locală produsă într-un mediu elastic se va transmite în toate direcţiile, din aproape în aproape, din cauza forţelor elastice ce se exercită între particulele constitutive ale acelui mediu. Fenomenul ondulatoriu nu presupune o deplasare de de materie ci numai una de energie prin mediul elastic. Clasificare după tipul de energie transportă: (i) unde elastice transportă energie mecanică; generate de perturbaţiile mecanice produse în mediilor elastice; (ii) unde electromagnetice forma de propagare a câmpurilor electromagnetice; fenomenul se produce şi în absenţa unui mediu elastic (în vid); (iii) unde magneto-hidrodinamice generate prin perturbaţii electromagnetice şi elastice ale mediului de propagare. Clasificare în funcţie de relaţia dintre direcţia de propagare a undei şi direcţia oscilaţiilor particulelor mediului elastic: (i) unde transversale, când oscilaţiile particulelor din mediul elastic sunt perpendiculare faţă de direcţia de propagare a undei; (ii) unde longitudinale, când oscilaţiile particulelor din mediul elastic sunt paralele la direcţia de propagare a undei. Front de undă = locul geometric al punctelor mediului atinse în acelaşi moment de mişcarea oscilatorie. Clasificare în functie de forma frontului undei (fig.3.5): (i) unde plane frontul undei este plan; (ii) unde sferice frontul undei este o suprafaţă sferică. a. b. Fig.3.5 a.undă plană; b.undă sferică. Câmp de unde= starea in care se afla spaţiul din jurul sursei de oscilaţii străbătut de undele elastice. 3.4 Ecuaţia undelor Fie o coardă întinsă de-a lungul axei Ox şi o undă transversală ce se propagă prin această coardă. La momentul t, în originea axei Ox, forma coardei (fig.3.6a) este afectată de o perturbaţie descrisă de ecuaţia f () (3.6) unde ψ este deplasarea transversală a corzii în poziţia x=. 5

6 ψ t = a) ψ t b) O x O M x Fig.3.6. Deplasarea undelor La momentul t, ulterior (fig.3.6b), unda s-a deplasat o distanţă x v t în sensul pozitiv al axei Ox, v fiind viteza de propagare a undei. Perturbaţia produsă de undă la deplasarea sa va fi descrisă pentru momenul t de aceeaşi funcţie ψ care va avea însă argumentul modificat deoarece în noua poziţie perturbaţia este în întârziere de faz ă faţă de poziţia iniţiaă f ( x v t) (3.7) Deci, elongaţia punctului de la x la momentul t este aceeaşi cu cea a punctului de la x, la momentul t, însă defazată în urmă. Relaţia (3.7) reprezintă ecuaţia generală a undei pentru cazul deplasării acesteia în sensul pozitiv al axei Ox. Când unda se deplasează în sensul negativ ea devine f ( x v t) (3.8) Să presupunem acum că o sursă S, plasată in origine, produce oscilaţii transversale pe direcţia corzii Ox, descrise de ecuaţia (, t) Asint (3.9) Un punct M, situat pe coardă la distanţa x de la sursă, va executa o oscilaţie identică cu ' aceea a sursei dar întârziată faţă de aceasta (datorită intervalului de timp t necesar udei ca să se deplaseze până în punctul M ' x ( x, t) Asin( t t ) Asin t (3.3) v unde = pulsaţia undei ( ). T Lungimea de undă distanţa parcursă de undă într-un interval de timp egal cu o perioadă v T (3.31) Numărul de undă - mărime fizică vectorială definită prin relaţia k. (3.3) Cu ajutorul expresiilor (3.31) şi (3.3) ecuaţia (3.3) devine 6

7 x, t Asint x t x T x, t Asin Asin( t kx) (3.33) Relaţiile (3.33) este ecuaţia undelor (sub forma integrală). Fig.3.6 oferă o reprezentare grafică a unei unde şi pune în evidenţă lungimea de undă a acesteia. Fig.3.6 Reprezentarea grafică a unei unde. scrie Dacă faza iniţială este diferită de zero, atunci ecuaţia de propagare a undei (3.33) se ( x, t) Asin( t kx ) (3.34) Dacă unda se deplasează pe o direcţie oarecare r ecuaţia undei devine ( r, t) Asin( t kr ) (3.35) Utilizând relaţia (3.33) şi calculând derivatele sale de ordinul doi în raport cu timpul t şi cu variabila de poziţie x, rezultă 1 (3.36) x v t care reprezintă ecuaţia undelor (sub forma diferenţială). Pentru o undă ce se deplasează pe o direcţie oarecare r ecuaţia (3.34) devine 1 = 3.37) v t unde = operatorul lui Laplace (laplaceanul, definit prin relaţia (1.3), v = viteza de propagare a undei. Christian Huygens a enuntat în anul 169 principiul lui Huygens care afirmă că orice punct de pe frontul de undă poate fi considerat ca sursă a unor unde sferice secundare,iar înfăşurătoarea tuturor undelor elementare constituie noul front de undă. Figura 3.7 prezintă schematic principiul lui Huygens. Fig.3.7 Principiul lui Huygens. 7

8 3.5. Viteza undelor transversale Fig.3.8 redă o unda transversală ce se propagă de-a lungul unei corzi elastice cu viteza v. θ F R Δl θ F' θ O Fig.3.8 Unda transversală ce se propaga printr-o coardă. Un mic element al corzii (de lungime l ) formează un arc de cerc cu raza R. Dacă μ este densitatea liniară a corzii, atunci l m reprezintă masa acestui element. Forţele F şi F ' care acţionează asupra elementului de coardă sunt tangente la arcul de cerc în ambele capete ale acestuia. Componentele orizontale ale forţelor se anulează fiind egale şi acţionand pe aceeaşi direcţie. Componentele transversale la direcţia de propagare, egale cu F sin, produc o forţă totală pe verticală de F sin, unde θ este foarte mic şi astfel l l F sin F F F (3.38) R R Forţa de tip centripet ce actioneaza pe elementul de coarda este l m v F 3.39) R R de unde ce reprezintă vitezei undei transversale. v F (3.4) 8

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Miscarea oscilatorie armonica ( Fisa nr. 2 )

Miscarea oscilatorie armonica ( Fisa nr. 2 ) Miscarea oscilatorie armonica ( Fisa nr. 2 ) In prima fisa publicata pe site-ul didactic.ro ( Miscarea armonica) am explicat parametrii ce definesc miscarea oscilatorie ( perioda, frecventa ) dar nu am

Διαβάστε περισσότερα

OSCILATII SI UNDE UNDE

OSCILATII SI UNDE UNDE OSCILATII SI UNDE Cursul nr. 8-9-10 UNDE Cursul Nr.8 8.1. Introducere Undele sunt unele din cele mai raspandite fenomene naturale cu o importanta deosebita in stiinta si tehnica. Prin notiunea de unda

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)

a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie) Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Acustică. Sistemul auditiv

Acustică. Sistemul auditiv Acustică. Sistemul auditiv Undele elastice reprezintă modalitatea de comunicare poate cel mai frecvent întâlnită în lumea animală. Acest capitol îşi propune în primul rând să prezinte mărimile şi legile

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Lucrul mecanic. Puterea mecanică.

Lucrul mecanic. Puterea mecanică. 1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea

Διαβάστε περισσότερα

1,4 cm. 1.Cum se schimbă deformaţia elastică ε = Δ l o. d) nu se schimbă.

1,4 cm. 1.Cum se schimbă deformaţia elastică ε = Δ l o. d) nu se schimbă. .Cum se schimbă deformaţia elastică ε = Δ l o a unei sîrme de oţel dacă mărim de n ori : a)sarcina, b)secţiunea, c) diametrul, d)lungimea? Răspuns: a) creşte de n ori, b) scade de n ori, c) scade de n,

Διαβάστε περισσότερα

CURS MECANICA CONSTRUCŢIILOR

CURS MECANICA CONSTRUCŢIILOR CURS 10+11 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA SOLIDULUI RIGID In cadrul cinematicii punctului material s-a arătat ca a studia mişcarea unui punct înseamnă a determina la

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Lucrul si energia mecanica

Lucrul si energia mecanica Lucrul si energia mecanica 1 Lucrul si energia mecanica I. Lucrul mecanic este produsul dintre forta si deplasare: Daca forta este constanta, atunci dl = F dr. L 1 = F r 1 cos α, unde r 1 este modulul

Διαβάστε περισσότερα

CURS 9 MECANICA CONSTRUCŢIILOR

CURS 9 MECANICA CONSTRUCŢIILOR CURS 9 MECANICA CONSTRUCŢIILOR Conf. Dr. Ing. Viorel Ungureanu CINEMATICA NOŢIUNI DE BAZĂ ÎN CINEMATICA Cinematica studiază mişcările mecanice ale corpurilor, fără a lua în considerare masa acestora şi

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Clasa a IX-a, Lucrul mecanic. Energia

Clasa a IX-a, Lucrul mecanic. Energia 1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

CAPITOLUL I OSCILATII

CAPITOLUL I OSCILATII OSCILTII CPITOLUL I Una din iscãrile iportante întâlnite în naturã este iscarea oscilatorie. Ex: o particulã oscileazã când se deplaseazã periodic în jurul unei pozitii de echilibru; iscarea unui pendul;

Διαβάστε περισσότερα

OSCILAŢII ŞI UNDE Dumitru Luca Cristina Stan Universitatea Al. I. Cuza Iaşi Universitatea Politehnica Bucureşti 11 februarie 2007

OSCILAŢII ŞI UNDE Dumitru Luca Cristina Stan Universitatea Al. I. Cuza Iaşi Universitatea Politehnica Bucureşti 11 februarie 2007 OSCILAȚII ŞI UNDE Dumitru Luca Universitatea Al. I. Cuza Iaşi Cristina Stan Universitatea Politehnica Bucureşti 11 februarie 2007 Cuprins 1 Mişcarea oscilatorie 1 1.1 Oscilații liniare libere.................................

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1

CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 CURS 3 SISTEME DE FORŢE (continuare) CUPRINS 3. Sisteme de forţe (continuare)... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 3.1. Momentul forţei în raport cu un punct...2 Test de autoevaluare

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument:

Erori si incertitudini de măsurare. Modele matematice Instrument: proiectare, fabricaţie, Interacţiune măsurand instrument: Erori i incertitudini de măurare Sure: Modele matematice Intrument: proiectare, fabricaţie, Interacţiune măurandintrument: (tranfer informaţie tranfer energie) Influente externe: temperatura, preiune,

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor.

Dinamica. F = F 1 + F F n. si poarta denumirea de principiul suprapunerii fortelor. Dinamica 1 Dinamica Masa Proprietatea corpului de a-si pastra starea de repaus sau de miscare rectilinie uniforma cand asupra lui nu actioneaza alte corpuri se numeste inertie Masura inertiei este masa

Διαβάστε περισσότερα

Ministerul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar

Ministerul Educaţiei, Cercetării şi Inovării Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar A. SUBIECTUL III Varianta 001 (15 puncte) O locomotivă cu puterea P = 480 kw tractează pe o cale ferată orizontală o garnitură de vagoane. Masa totală a trenului este m = 400 t. Forţa de rezistenţă întâmpinată

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

Reflexia şi refracţia luminii.

Reflexia şi refracţia luminii. Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular

Διαβάστε περισσότερα

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei

I. Forţa. I. 1. Efectul static şi efectul dinamic al forţei I. Forţa I. 1. Efectul static şi efectul dinamic al forţei Interacţionăm cu lumea în care trăim o lume în care toate corpurile acţionează cu forţe unele asupra altora! Întrebările indicate prin: * 1 punct

Διαβάστε περισσότερα

COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE

COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE UNIVERSITATEA "POLITEHNICA" DIN BUCUREŞTI DEPARTAMENTUL DE FIZICĂ LABORATORUL DE FIZICĂ BN - 1 B COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE 004-005 COMPUNEREA OSCILAŢIILOR ARMONICE PERPENDICULARE

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Interferenta undelor sau Despre cuplarea a doua antene.

Interferenta undelor sau Despre cuplarea a doua antene. Interferenta undelor sau Despre cuplarea a doua antene. 1 Bazele teoriei cuplarii antenelor sint similare interferentei undelor invatata in liceu in clasa a 11-a, in capitolul de compunere a oscilatiilor.

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

STUDIUL PROPRIETĂŢILOR DE DISPERSIE ALE UNOR MEDII ELASTICE

STUDIUL PROPRIETĂŢILOR DE DISPERSIE ALE UNOR MEDII ELASTICE STUDIUL PROPRIETĂŢILOR DE DISPERSIE ALE UNOR MEDII ELASTICE Scopul lucrării Vom studia aici propagarea undelor transersale şi a celor longitudinale într-o coardă, respecti un resort, urmărindu-se: (a)

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul

15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA

Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA Capitolul 2 ECUAŢII CU DERIVATE PARŢIALE DE ORDINUL AL DOILEA Studiul ecuaţiilor cu derivate parţiale îşi are originea în secolul al XVIII-lea şi a fost inspirat de modele concrete din mecanică (elasticitate,

Διαβάστε περισσότερα

Mecanica. Unde acustice. Seminar

Mecanica. Unde acustice. Seminar Mecanica. Unde acustice Seminar Notiuni de mecanica Domenii ale mecanicii Cinematica Studiul miscarii fara a lua in consideratie cauzele ei Corpul considerat un punct material (dimensiuni neglijabile comparativ

Διαβάστε περισσότερα

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y).

Fie I R un interval deschis, G R n, n 1, un domeniu şi f : I G R n. Forma generala a unei ecuaţii diferenţiale de ordinul întâi este: = f(x, y). Ecuaţii diferenţiale Ecuaţii diferenţiale ordinare Ecuaţii cu derivate parţiale Ordinul unei ecuaţii Soluţia unei ecuaţii diferenţiale ordinare Fie I R un interval deschis, G R n, n 1, un domeniu şi f

Διαβάστε περισσότερα

Prof. Dochia Șerpar ISBN

Prof. Dochia Șerpar ISBN Prof. Dochia Șerpar ISBN 978-606-67-995-7 Editura Sfântul Ierarh Nicolae 05 OSCILAȚII ȘI UNDE MECANICE Mişcarea circulară uniformă Traiectoria descrisă de punctul material este un cerc. Viteza unghiulară

Διαβάστε περισσότερα

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener

Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener Analiza funcționării și proiectarea unui stabilizator de tensiune continuă realizat cu o diodă Zener 1 Caracteristica statică a unei diode Zener În cadranul, dioda Zener (DZ) se comportă ca o diodă redresoare

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Capitolul 1. Noțiuni Generale. 1.1 Definiții

Capitolul 1. Noțiuni Generale. 1.1 Definiții Capitolul 1 Noțiuni Generale 1.1 Definiții Forța este acțiunea asupra unui corp care produce accelerația acestuia cu condiția ca asupra corpului să nu acționeze şi alte forțe de sens contrar primeia. Forța

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

11.2 CIRCUITE PENTRU FORMAREA IMPULSURILOR Metoda formării impulsurilor se bazează pe obţinerea unei succesiuni periodice de impulsuri, plecând de la semnale periodice de altă formă, de obicei sinusoidale.

Διαβάστε περισσότερα

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1

CUPRINS 2. Sisteme de forţe... 1 Cuprins..1 CURS 2 SISTEME DE FORŢE CUPRINS 2. Sisteme de forţe.... 1 Cuprins..1 Introducere modul.1 Obiective modul....2 2.1. Forţa...2 Test de autoevaluare 1...3 2.2. Proiecţia forţei pe o axă. Componenta forţei

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Curentul electric stationar

Curentul electric stationar Curentul electric stationar 1 Curentul electric stationar Tensiunea electromotoare. Legea lui Ohm pentru un circuit interg. Regulile lui Kirchhoft. Lucrul si puterea curentului electric continuu 1. Daca

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

CURS 1 oct Prof.univ.dr.ing Iulian Lupea

CURS 1 oct Prof.univ.dr.ing Iulian Lupea Oct. 1 Extrase: Iulian Lupea, Roboţi şi Vibraţii, Ed. Dacia, 1996 VIBRATII -> SISTEME DISCRETE CU UN GRAD DE LIBERTATE CURS 1 oct. 1 Prof.univ.dr.ing Iulian Lupea 1.1. Modelarea şi analiza vibraţiilor

Διαβάστε περισσότερα

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy

Metode Runge-Kutta. 18 ianuarie Probleme scalare, pas constant. Dorim să aproximăm soluţia problemei Cauchy Metode Runge-Kutta Radu T. Trîmbiţaş 8 ianuarie 7 Probleme scalare, pas constant Dorim să aproximăm soluţia problemei Cauchy y (t) = f(t, y), a t b, y(a) = α. pe o grilă uniformă de (N + )-puncte din [a,

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal

Sistem hidraulic de producerea energiei electrice. Turbina hidraulica de 200 W, de tip Power Pal Schema de principiu a turbinei Power Pal Producerea energiei mecanice Pentru producerea energiei mecanice, pot fi utilizate energia hidraulica, energia eoliană, sau energia chimică a cobustibililor în motoare cu ardere internă sau eternă (turbine

Διαβάστε περισσότερα

TEORIA CIRCUITELOR ELECTRICE

TEORIA CIRCUITELOR ELECTRICE TEOA TEO EETE TE An - ETT S 9 onf. dr.ing.ec. laudia PĂA e-mail: laudia.pacurar@ethm.utcluj.ro TE EETE NAE ÎN EGM PEMANENT SNSODA /8 EZONANŢA ÎN TE EETE 3/8 ondiţia de realizare a rezonanţei ezonanţa =

Διαβάστε περισσότερα

1. Introducere in Fizică

1. Introducere in Fizică FIZICA se ocupă cu studiul proprietăţilor şi naturii materiei, a diferitelor forme de energie şi a metodelor prin care materia şi enegia interacţionează în lumea în care ne înconjoară.. Introducere in

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Brutus Demşoreanu. Mecanica analitică. - Probleme -

Brutus Demşoreanu. Mecanica analitică. - Probleme - Brutus Demşoreanu Mecanica analitică - Probleme - TIMIŞOARA 003 Tehnoredactarea în L A TEX ε aparţine autorului. Copyright c 003, B. Demşoreanu Cuprins 1 Mecanica newtoniană 5 1.1 Problema determinării

Διαβάστε περισσότερα

Seminar electricitate. Seminar electricitate (AP)

Seminar electricitate. Seminar electricitate (AP) Seminar electricitate Structura atomului Particulele elementare sarcini elementare Protonii sarcini elementare pozitive Electronii sarcini elementare negative Atomii neutri dpdv electric nr. protoni =

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI

2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2. NOŢIUNI SUMARE ASUPRA DEPLASĂRII AUTOMOBILULUI 2.1. Consideraţii generale Utilizarea automobilului constă în transportul pe drumuri al pasagerilor, încărcăturilor sau al utilajului special montat pe

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Forme de energie. Principiul I al termodinamicii

Forme de energie. Principiul I al termodinamicii Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor

Διαβάστε περισσότερα

11.3 CIRCUITE PENTRU GENERAREA IMPULSURILOR CIRCUITE BASCULANTE Circuitele basculante sunt circuite electronice prevăzute cu o buclă de reacţie pozitivă, folosite la generarea impulsurilor. Aceste circuite

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Principiul Inductiei Matematice.

Principiul Inductiei Matematice. Principiul Inductiei Matematice. Principiul inductiei matematice constituie un mijloc important de demonstratie in matematica a propozitiilor (afirmatiilor) ce depind de argument natural. Metoda inductiei

Διαβάστε περισσότερα

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL

7. RETELE ELECTRICE TRIFAZATE 7.1. RETELE ELECTRICE TRIFAZATE IN REGIM PERMANENT SINUSOIDAL 7. RETEE EECTRICE TRIFAZATE 7.. RETEE EECTRICE TRIFAZATE IN REGIM PERMANENT SINSOIDA 7... Retea trifazata. Sistem trifazat de tensiuni si curenti Ansamblul format din m circuite electrice monofazate in

Διαβάστε περισσότερα

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...

13. Grinzi cu zăbrele Metoda izolării nodurilor...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate... SEMINAR GRINZI CU ZĂBRELE METODA IZOLĂRII NODURILOR CUPRINS. Grinzi cu zăbrele Metoda izolării nodurilor... Cuprins... Introducere..... Aspecte teoretice..... Aplicaţii rezolvate.... Grinzi cu zăbrele

Διαβάστε περισσότερα

Proiectarea sistemelor de control automat

Proiectarea sistemelor de control automat Paula Raica Departmentul de Automatică Str. Dorobantilor 7-73, sala C2, tel: 264-4267 Str. Baritiu 26-28, sala C4, tel: 264-22368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα