DIFERENCIJALNE JEDNADŽBE

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "DIFERENCIJALNE JEDNADŽBE"

Transcript

1 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna jednadžba homogenog stupnja Egzaktna diferencijalna jednadžba Dajemo nekoliko karakterističnih primjera diferencijalnih jednadžbi gdje funkcija () predstavlja traženo rješenje dok ' obilježava njenu derivaciju odnosno d ' : d i) diferencijalna jedandžba koja se rješava metodom direktne integracije ' e ; diferencijalna jedandžba koja se rješava metodom separacije varijabli ' ( ) ; i linearna diferencijalna jednadžbe ' + e ; iv) Bernoullijeva diferencijalna jednadžba 5 ' e ; v) egzaktna diferencijalna jednadžba d + ( + ln ) d 0 ; vi) diferencijalna jedandžba homogenog stupnja ( ) d + d 0

2 6 Mervan Pašić: Matan dodatak predavanjima za grupe GHI Naravno postoje još mnogi drugi tipovi diferencijalnih jednadžbi prvog reda Tipovi koje smo gore naveli i koje ćemo detaljno raditi se najčešće pojavljuju u nastavnom procesu Primjetimo da pod rješenjem diferencijalne jednadžbe ' F( ( )) podrazumjevamo funkciju () koja zadovoljava tu jednadžbu u smislu da nakon uvrštavanja te funkcije u ' F( ( )) imamo valjanu jednakost Na primjer funkcija e zadovoljava diferencijalnu jedandžbu ' e + jer kad je uvrstimo u danu jednakost dobivamo 0 0 Kažemo još da je funkcija e jedno konkretno ili takozvano partikularno rješenje ove jednadžbe Međutim to nisu sva njena rješenja Sva njena rješenja takozvano opće rješenje imaju nakon rješavanje dane jednadžbe ' e + oblik c e + e gdje je c proizvoljna konstanta Znači trebamo razlikovati pojam općeg rješenja od pojma partikularnog rješenja neke diferencijalne jednadžbe 9 DIREKTNA INTEGRACIJA Mali broj diferencijalnih jednadžbi možemo riješiti samo direktnom integracijom Međutim kad tad nakon primjene raznih metoda diferencijalnu jednadžbu dovodimo u oblik za direktno integriranje Metodu direktnog integriranja ćemo objasniti na slijedećim primjerima 670 ' e ( ) e d e + c ( ) e + c ' ( + ) ( ) ( + ) d d + d + d c 7 7 ( ) c 7 ' sin ( ) sin d cos + cos d cos + sin ( ) cos + sin + c 7 ' + 67 ; potrebno je prvo naći opće rješenje a potom samo ono koje (0) zadovoljava početni uvjet ( 0) ; i) ' + ( ) ( + ) d + + c 0 (0) (0) c 0 c 0 i rješenje: ( ) +

3 9 Diferencijalne jednadžbe 65 sin ' 67 cos ( π / ) sin sin i) ' ( ) d + c ln cos cos cos ( π / ) ( π / ) ln cos( π / ) + c c ln i rješenje: ( ) lncos + ln ' e 675 () 0 e e i) ' e ( ) e d e d e + c 9 e e ( ) 0 () + c 0 c e 9 9 e e i rješenje: ( ) e 9 9 ln ' 676 () 0 ln ln i) ' ( ) d + c ln () 0 () ln + c 0 c 0 i rješenje: ( ) ln PRIMJEDBA Kako vidimo već u nekoliko primjera rješavanja diferencijalnih jednadžbi neodređeni integrali igraju ključnu ulogu te stoga preporučamo da se vratite na Poglavlje 7 te ponovite osnovne tipove i metode za rješavanje neodređenih integrala Naravno u složenijim tipovima diferencijalnih jednadžbi osim neodređenih integrala potrebno je i znati algoritam za rješavanje dotičnog tipa jednadžbe 9 SEPARACIJA VARIJABLI Sada prelazimo na primjere onih diferencijalnih jednadžbi koje se rješavaju metodom separacije varijabli Sama riječ kaže da treba u danoj diferencijalnoj jednadžbi razdvojiti varijable i na dvije različite strane jednakosti Pri tome prvo treba separirati derivaciju

4 66 Mervan Pašić: Matan dodatak predavanjima za grupe GHI d odnosno trebamo je zapisati u obliku ' Kada se izvrši separacija tada direktnim d integriranje obadviju strana jednakosti dolazimo do rješenja dane jednadžbe Primjetimo da se mali broj jednadžbi može riješiti samo separacijom Međutim veći broj jednadžbi se može raznim metodama dovesti na separaciju varijable ( ) d ' d ( ) d ( ) d ; Rješenja: ln + c 678 d ' ( ) d ( ) d d ( ) ln( ) ln + c ; Rješenja: ( ) i ( ) 0 / c e 679 d ' d d d arc sin + c ; Rješenja: ( ) sin( + c) 680 ' e d e d d e d e + c ; Rješenja: e + c ' ( + ) 68 (0) d d iv) ' ( + ) d + + d arc tg + c ; Opće rješenje: ( ) tg( + c) ; π v) (0) (0) tg (0 + c) c ; π vi) Rješenje zadatka: tg( + ) ' 68 () i) ' d d d d + c ;

5 9 Diferencijalne jednadžbe 67 i Opće rješenje: ( ) + c ; 5 ( ) () + c c ; + 5 Rješenje zadatka: ' e 68 () i) ' e d e d d e d e + c ; i Opće rješenje: + ( ) e c ; () () e + c c 6 e ; Rješenje zadatka: ( ) e + 6 e ZADACI ZA VJEŽBU U slijedećim zadacima metodom separacije naći opća rješenja diferencijalnih jednadžbi 68 d + d 685 ' ' 687 ( ' 688 ' e 0 (sin ' e 689 sin U slijedećim zadacima metodom separacije naći partikularno rješenje diferencijalnih jednadžbi ' () 5 69 e ' (0) 69 ( ) ' + 0 (0) 695 ' () ' + sin 0 () π (ctg ) ' + (0) RJEŠENJA + 68 ln c / c e ( + / ) 686 ( c e ) i e ( + ) c

6 68 Mervan Pašić: Matan dodatak predavanjima za grupe GHI 688 e cos cos sin sin + + c cos + sin ( + ) e c 690 ln ( e ) + 69 e 69 π 69 (ln( ) + c) i cos 9 LINEARNA DIFERENCIJALNA JEDNADŽBA Linearne diferencijalne jednadžbe za razliku od ostalih tipova diferencijalnih jednadžbi imaju svojstvo univerzalnog rješenja To znači da sve linearne diferencijalne jednadžbe imaju istu formu rješenja O tome govori slijedeći rezultat Teorem Neka je zadana linearna diferencijalna jednadžba u općenitom obliku: d + ) q( ) d gdje su ) i q() neprekidne funkcije takozvani koeficijenti jednadžbe Tada sva njena rješenja () imaju oblik: ( ) ( ) p d e c + ( ) q e ) d d Dokaz: dokaz je jednostavan te istovremeno ilustrira postupak za rješavanje linearnih jednadžbi koji sami možemo koristiti u zadacima Ako je () neko rješenje linearne diferencijalne jednadžbe ' + ) q( ) tada želimo pokazati da to rješenje mora imati oblik zadan u iskazu teorema Prvo jednadžbu množimo sa multiplikatorom e sređujemo lijevu stranu i na kraju integriramo obadvije strane jednadžbe: ) d pa d d e ) d e ) d d d ( ) + ( ) p d p e q( ) e ( ) ( ) p d q e e ) d e [ q( ) e ) d ) d ) d q( ) e d + c] ) d d + c Naravno da je moguće koristiti ovu formulu za rješavanje linearnih diferencijalnih jednadžbi Međutim ako nismo dovoljno vični sa integralima bilo bi bolje ponoviti postupak u dokazu ovog teorema To ćemo pokazati na nekoliko riješenih primjera

7 9 Diferencijalne jednadžbe Riješimo diferencijalnu jednadžbu ' + e koristiće formulu za opće rješenje danu u teoremu : i) ) q ( ) e ; p ) d d ln e ) d ln e ; ) d i q ( ) e d e d e ; iv) e ) d ln e v) ) d ) d c ( ) e [ c + q( ) e d] [ c + e ] e Riješimo diferencijalnu jednadžbu ' + e koristeći postupak za dokaz općeg rješenja koji je prezentiran u dokazu teorema Prvo jednadžbu pišemo u obliku ' + e te sa njom radimo slijedeće korake: i) množimo jednadžbu sa multiplikatorom e ) d ln e pa dobivamo i ' + e ; d sređivanje desne strane: ( e ; d integriranjem obadviju strana dobivamo: c + e d ( ) [ c + e ] e c + Na svakom pojedinačno je da procjeni koja od ova dva načina će koristiti u rješavanju linearnih diferencijalnih jednadžbi 698 Riješimo diferencijalnu jednadžbu ' + 5 koristeći postupak za dokaz općeg rješenja koji je prezentiran u dokazu teorema Prvo jednadžbu pišemo u obliku 5 ' + pa postupamo: 5 ln 5 i) množimo jednadžbu sa multiplikatorom e d e 5 pa dobivamo i 5 ' + 5 ; 7 d 7 sređivanje desne strane: ( 5 ; d integriranjem obadviju strana dobivamo: c + d ) [ c + ] ( Riješimo diferencijalnu jednadžbu ' + e koristeći postupak za dokaz općeg rješenja koji je prezentiran u dokazu teorema : c

8 70 Mervan Pašić: Matan dodatak predavanjima za grupe GHI i) množimo jednadžbu sa multiplikatorom e e e ' + e ; d sređivanje desne strane: ( e ; d i integriranjem obadviju strana dobivamo: e c + d ( ) e [ c + ] e + ce d pa dobivamo ZADACI ZA VJEŽBU U slijedećim zadacima naći opće rješenje dane linearne diferencijalne jednadžbe 700 ' 70 ' + ln 70 ' + sin 70 ' + ( ) 70 ' 705 ' ln 706 ' + + e 707 ' e 708 ' + sin 709 ( ' cos ) 70 ( ' )ln 7 ' + ( + ) e U slijedećim zadacima naći partikularno rješenje dane linearne diferencijalne jednadžbe Pri tome kao i kod separacije varijable iz pethodne točke prvo nađemo opće rješenje a potom uvrštavanjem početnog uvjeta izračunamo nepoznatu konstantu c ' + + e ' e 7 7 (0) 5 () ' + e ' + e 7 75 (0) () ' + 5 ( + ) ' () () ' + sin ' + cos ( π ) 0 ( π / ) 0 ' + + ' + e 70 7 () / () ( + ) ' + ( + ) + 7 'cos sin e 7 ( ) (0)

9 9 Diferencijalne jednadžbe 7 RJEŠENJA / c c cos c e ln 70 / 70 ( + c e ) 70 / c e c + ln e + c e 707 e e + c e sin cos + c e 709 ( c + sin ) 70 cln ln 7 ( 6 + c) e 7 + e + e e e 7 e e + ( e e ) e 7 e + e arctg 9arctg cos e cos sin π BERNOULLIJEVA DIFERENCIJALNA JEDNADŽBA Bernoullijeva diferencijalna jednadžba ima oblik: d d + ) q( ) n Ako je n 0 ili n tada je ovo linearna jednadžba Ako je pak n 0 tada se n supstitucijom u Bernoullijeva jednadžba svodi na linearnu jednadžbu Preciznije ako pomnožimo Bernoullijevu jednadžbu sa n d d + ) n n q( ) n tada dobivamo: n d( ) ( ) n + p q( ) n d Sada supstitucijom u dobivamo da Bernoullijeva jednadžba prelazi u linearni oblik: du + ( n) ) u ( n) q( ) d Sada ovu linearnu jednadžbu riješimo koristeći razmatranja iz prethodne točke pa je traženo rješenje Bernoullijeve jednadžbe dano sa /( n) ( ) ( u( )) Ovaj postupak ćemo ponovit na nekoliko riješenih primjera

10 7 Mervan Pašić: Matan dodatak predavanjima za grupe GHI d 7 Riješiti diferencijalnu jednadžbu + d i) Množenjem jednadžbe sa dobivamo: ) d + d d( + d ; i iv) Sada supstitucijom u prethodna jednadžba postaje linearna du u ; d Ovu linearnu jednadžbu rješavamo primjenom postupka iz Teorema pa dobivamo da je: u( ) + + ce ; Na kraju traženo rješenje Bernoullijeve jednadžbe glasi: + + ce ( ) d 75 Riješiti diferencijalnu jednadžbu + Prvo je napišemo u obliku: d d d + Potom radimo slijedeće korake i) Množenjem jednadžbe sa i iv) dobivamo: d + d( ) + ; d d Sada supstitucijom u prethodna jednadžba postaje linearna du 8 + u ; d Ovu linearnu jednadžbu rješavamo primjenom postupka iz Teorema pa c dobivamo da je: u ( ) + ; 8 9 Na kraju traženo rješenje Bernoullijeve jednadžbe glasi: c ( ) 8 9 ± + ZADACI ZA VJEŽBU U slijedećim zadacima naći opće riješenje zadane diferencijalne jednadžbe 76 ' + sin ' + e 79 ' ' 70 ' tg cos 7 ' + + e 0 5

11 9 Diferencijalne jednadžbe 7 U slijedećim zadacima naći partikularno riješenje zadane diferencijalne jednadžbe ' + () 7 ' + () 75 ' tg + tg 0 (0) 77 ' + cos 0 () 5 ' ( ) ' + ( ) e RJEŠENJA 9 76 ( c e + cos + sin ) 0 0 / 77 c e ( + + ) 79 7 (e + c) i / ( + e ) 77 / + c e 8 c ( e + e ) / 7 95 EGZAKTNA DIFERENCIJALNA JEDNADŽBA Diferencijalna jednadžba f ( d + g( d 0 se zove egzaktna ukoliko postoji funkcija u ( takva da je: u f ( u i g( odnosno ukoliko je du f ( d + g( Tada egzaktna jednadžba poprima oblik du 0 dok je opće rješenje dano formulom u ( c Naravno pod uvjetom da smo pronašli iz prethodnih uvjeta funkciju u ( Primjetimo još da se svaka diferencijalna jednadžba prvog reda može napisati u obliku f ( d + g( d 0 Prije pronalaženja funkcije u ( bilo bi dobro provjeriti dali je dana jednadžba uopće egzaktna jer ako nije nećemo moći ni naći takvu funkciju Kriterij za utvrđivanje da li je neka diferencijalna jednadžba egzaktna je dan slijedećim rezultatom

12 7 Mervan Pašić: Matan dodatak predavanjima za grupe GHI Teorem Diferencijalna jednadžba f ( d + g( d 0 ako vrijedi: f g je egzaktna ako i samo To znači da ćemo za danu jednadžbu prvo provjeriti dali je egzaktna koristeći pri tome prethodni teorem a tek potom ćemo tražiti funkciju u ( Postupak za pronalaženje funkcije u ( dajemo u nekoliko slijedećih primjera 78 Nađimo opće rješenje diferencijalne jednadžbe ( + ) d + ( + d 0 Radimo u nekoliko koraka: i) + f ( + i g( ; f g računamo: + i + odnosno f g pa po teoremu zaključujemo da je ( + ) d + ( + d 0 egzaktna diferencijalna jednadžba; i po definiciji egzaktne jednadžbe postoji funkcija u( koja zadovoljava u f ( + iz čega integriranjem slijedi: i u g( + u ( ( + ) d + + c( u ( ( + d + + c( ) odnosno u ( + + c ; iv) S obzirom da je dana jednadžba egzaktna to opće rješenje () u ( c + c ima oblik: 79 Nađimo opće rješenje diferencijalne jednadžbe ( + e ) d + ( + e + d 0 Radimo u nekoliko koraka: i) f ( + e i g( + e + ; f g računamo: + e i + e odnosno f g pa po teoremu zaključujemo da je ( + e ) d + ( + e + d 0 egzaktna diferencijalna jednadžba; i po definiciji egzaktne jednadžbe postoji funkcija u( koja zadovoljava

13 9 Diferencijalne jednadžbe 75 u u f ( + e i g( + e + iz čega integriranjem slijedi: u( ( + e ) d + e + c( u( ( + e + d + e + odnosno u( + e + + c ; iv) S obzirom da je dana jednadžba egzaktna to opće rješenje () u ( c + e + c ima oblik: 70 Nađimo partikularno rješenje diferencijalne jednadžbe Radimo u nekoliko koraka: ( + sin ) d + (cos d 0 uz uvjet ( 0) i) f ( sin i g( cos ; f g f g računamo: sin i sin odnosno pa po teoremu zaključujemo da je ( + sin ) d + (cos d 0 egzaktna diferencijalna jednadžba; i po definiciji egzaktne jednadžbe postoji funkcija u( koja zadovoljava u f ( sin i u g( cos iz čega integriranjem slijedi: u ( ( + sin ) d + cos + c( u ( (cos d cos + c( ) odnosno u ( cos + c ; iv) S obzirom da je dana jednadžba egzaktna to opće rješenje () u ( c cos c ima oblik: v) Sada još trebamo odrediti konstantu c iz uvjeta ( 0) Uvrštavanjem ovog uvjeta u opće rješenje slijedi: cos0 0 c c pa je traženo rješenje zadatka funkcija: cos

14 76 Mervan Pašić: Matan dodatak predavanjima za grupe GHI ZADACI ZA VJEŽBU Naći opće rješenje dane egzaktne diferencijalne jednadžbe 7 ( + ) d + ( + d 0 7 ( e ) d + ( e ) d 0 7 ( + ' e d + ( d 0 75 e d ( + e ) d 0 76 d + ( + ln ) d 0 77 ( + sin ) d cos d 0 Naći partikularno rješenje 78 ( + ln d ( ) d 0 79 ( ) ' + ( () ( + + e (0) ) d + ( e + 0 RJEŠENJA 7 ( 6 + c 7 ( e ) c 7 + c 7 e ( ) c 75 e c 76 ln + c 77 cos c 78 + ln c e ( ) e 96 DIFERENCIJALNA JEDNADŽBA HOMOGENOG STUPNJA Diferencijalna jednadžba f( d+ g( d 0 je homogenog stupnja ukoliko se može svesti na oblik d h( ) Na primjer ukoliko su f ( ) i g ( polinomi homogenog d λ λ stupnja odnosno ako postoji broj λ takav da vrijedi f ( t t t f ( i g( t t t g( tada se diferencijalna jednadžba f ( d + g( d 0 može svesti na oblik d h( ) d Potom uvodimo supstituciju z te se početna jednadžba svodi na oblik riješiv metodom separacije varijabli To ćemo pokazati na nekoliko riješenih primjera 75 Riješiti diferencijalnu jednadžbu homogenog stupnja ( + 5 ) d + d 0 Nije teško primjetiti da su funkcije f ( ( + 5 ) i g ( polinomi homogenog

15 9 Diferencijalne jednadžbe 77 stupnja odnosno f ( t t t f ( i g ( t t t g( Stoga djeljenjem sa ovu jednadžbu svesti na oblik: d 5( ) + 0 d Supstitucijom z gdje je ' z' + z dobivamo: 5z + z' + z 0 z' + z z z Ova se jednadžba rješava separacijom varijabli: S obzirom da je je funkcija zdz d zdz d z ' + z + z z + z ln( 8 z odnosno z 8 c ( ) ± 75 Riješiti diferencijalnu jednadžbu: Supstitucijom z gdje je z' + z z z z c + z ) ln + c z 8 ćemo traženo rješenje jednadžbe ( + 5 ) d + d 0 ' e ' lako dobivamo da je: z z ' + e z' e Ova se jednadžba rješava separacijom varijabli: z z d z d z' e e dz e dz e z ln + c z ln(ln + c) S obzirom da je z odnosno z traženo rješenje jednadžbe ' e je funkcija ( ) ln(ln + c) ZADACI ZA VJEŽBU U slijedećim zadacima naći opće rješenje diferencijalne jednadžbe 75 ' + 75 ' 755 ' ' ( ) ' ' 759 ' ( ) ' 76 + ' ' 76 ( + ) '

16 78 Mervan Pašić: Matan dodatak predavanjima za grupe GHI 76 ' tg 76 ' e U slijedećim zadacima naći partikularno rješenje diferencijalne jednadžbe ' () 0 ' () ' () ' () 0 + ' () ( + ) ' () RJEŠENJA c 6 75 ln + c (log + c) c 6 c 757 c( + ) c +/ c 760 c / 76 ce 76 c i 0 76 sin c 76 ln lnc 765 ln ( + ln ) + ln 769 ( 5 / + ) 770

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

4. poglavlje (korigirano) LIMESI FUNKCIJA

4. poglavlje (korigirano) LIMESI FUNKCIJA . Limesi funkcija (sa svim korekcijama) 69. poglavlje (korigirano) LIMESI FUNKCIJA U ovom poglavlju: Neodređeni oblik Neodređeni oblik Neodređeni oblik Kose asimptote Neka je a konačan realan broj ili

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

1 Obične diferencijalne jednadžbe

1 Obične diferencijalne jednadžbe 1 Obične diferencijalne jednadžbe 1.1 Linearne diferencijalne jednadžbe drugog reda s konstantnim koeficijentima Diferencijalne jednadžbe oblika y + ay + by = f(x), (1) gdje su a i b realni brojevi a f

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA

5. poglavlje (korigirano) DERIVACIJA FUNKCIJA 5 Derivacija funkcija (sa svim korekcijama) 8 5 poglavlje (korigirano) DERIVACIJA FUNKCIJA U ovom poglavlju: Derivacija po definiciji, tablica deriviranja Derivacija zbroja, razlike, produkta i kvocijenta

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Obične diferencijalne jednadžbe

Obične diferencijalne jednadžbe Poglavlje 1 Obične diferencijalne jednadžbe 1.1 Primjeri diferencijalnih jednadžbi Primjer 1.1 (Kosi hitac). Tijelo mase m bačeno je u vis početnom brzinom v pod kutem α u polju sile teže. Odredite trajektoriju

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

3. poglavlje (korigirano) F U N K C I J E

3. poglavlje (korigirano) F U N K C I J E . Funkcije (sa svim korekcijama) 5. poglavlje (korigirano) F U N K C I J E U ovom poglavlju: Elementarne unkcije Inverzne unkcije elementarnih unkcija Domena složenih unkcija Inverz složenih unkcija Ispitivanje

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka.

MATEMATIKA 2. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić. Zbirka zadataka. Ivan Slapničar Nevena Jakovčević Stor Josipa Barić Ivančica Mirošević MATEMATIKA Zbirka zadataka http://www.fesb.hr/mat Sveučilište u Splitu Fakultet elektrotehnike, strojarstva i brodogradnje Split, ožujak

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

Obi ne diferencijalne jednadºbe

Obi ne diferencijalne jednadºbe VJEŽBE IZ MATEMATIKE Ivana Baranović Miroslav Jerković Lekcija 1 Obične diferencijalne jednadžbe 1. reda Obi ne diferencijalne jednadºbe Uvodni pojmovi Diferencijalne jednadºbe su jednadºbe oblika: f(,

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a. Determinante Determinanta A deta je funkcija definirana na skupu svih kvadratnih matrica, a poprima vrijednosti iz skupa skalara Osim oznake deta za determinantu kvadratne matrice a 11 a 12 a 1n a 21 a

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable

Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Riješeni zadaci: Realni brojevi i realne funkcije jedne realne varijable Infimum i supremum skupa Zadatak 1. Neka je S = (, 1) [1, 7] {10}. Odrediti: (a) inf S, (b) sup S. (a) inf S =, (b) sup S = 10.

Διαβάστε περισσότερα

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim.

1 Diferencijabilnost Motivacija. Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji limes f f(x) f(c) (c) = lim. 1 Diferencijabilnost 11 Motivacija Kažemo da je funkcija f : a, b R derivabilna u točki c a, b ako postoji es f f(x) f(c) (c) x c x c Najbolja linearna aproksimacija funkcije f je funkcija l(x) = f(c)

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

1 Evoluciona matrica sistema

1 Evoluciona matrica sistema Evoluciona matrica sistema Promatramo sistem linearnih iferencijalnih jenažbi prvog rea Uz sistem () vežemo pripani homogeni sistem U = A(x) U + B(x). () x U = A(x) U. () x Promatrat ćemo i ogovarajući

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Integrali Materijali za nastavu iz Matematike 1

Integrali Materijali za nastavu iz Matematike 1 Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije

Uvod Kako naći ortogonalne trajektorije. 1 Polje smjerova. 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda. 3 Ortogonalne trajektorije Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje 5 1 / 34 Sadržaj: Sadržaj 1 Polje smjerova 2 Eulerova metoda za rješavanje dif. jednadžbi prvog reda 3 Uvod Kako naći ortogonalne trajektorije

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA I N Ž E N J E R S K A M A T E M A T I K A 64 Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA 4 Osnovni pojmovi Činjenica da se mnogi zakoni fizike i drugih nauka iskazuju uz pomoć diferencijalnih jednačina

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 8 Pojam funkcije, grafa i inverzne funkcije Poglavlje 1 Funkcije Neka su X i Y dva neprazna skupa. Ako je po nekom pravilu, ozna imo ga

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije

Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije Osnovni teoremi diferencijalnog računa L Hospitalovo pravilo Derivacije višeg reda Derivacija

Διαβάστε περισσότερα

Metode dokazivanja nejednakosti

Metode dokazivanja nejednakosti IMO/MEMO pripreme 2016. Aleksandar Bulj, 8. 6. 2016. Uvod Metode dokazivanja nejednakosti Cilj ovoga predavanja je prikazati razne tehnike za dokazivanje nejednakosti. U prvom će poglavlju kroz nekoliko

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL. y' + 1 x. y'' + 4 y = 0. y 1 2. y(1) = 0. y'' + 2 y'+ y = 0, (1 + x 2 ) 2 y' 2 x = 0.

ELEKTROTEHNIČKI ODJEL. y' + 1 x. y'' + 4 y = 0. y 1 2. y(1) = 0. y'' + 2 y'+ y = 0, (1 + x 2 ) 2 y' 2 x = 0. MATEMATIKA ZADATCI: Nađite opće rješenje obične diferencijalne jednadžbe: y' + y e = Odredite partikularno rješenje obične diferencijalne jednadžbe za koje itovremeno vrijede jednakoti y'' + 4 y = 0 π

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R. Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Priprema za ispit znanja Vektori

Priprema za ispit znanja Vektori Priprema za ispit znanja Vektori 1. Dan je pravilni šesterokut ABCDEF. Ako je =, = izrazi pomoću vektore,,. + + =0 = E D = + F S C + + =0 = = A B + + =0 = = =+ 2. Točke A, B, C, D, E i F vrhovi su pravilnog

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

4. DERIVACIJA FUNKCIJE 1 / 115

4. DERIVACIJA FUNKCIJE 1 / 115 4. DERIVACIJA FUNKCIJE 1 / 115 2 / 115 Motivacija: aproksimacija funkcije, problemi brzine i tangente Motivacija: aproksimacija funkcije, problemi brzine i tangente Povijesno su dva po prirodi različita

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα