PISA. Programme for International Student Assessment. Διεθνές Πρόγραμμα για την Αξιολόγηση των Μαθητών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "PISA. Programme for International Student Assessment. Διεθνές Πρόγραμμα για την Αξιολόγηση των Μαθητών"

Transcript

1 PISA Programme for International Student Assessment Διεθνές Πρόγραμμα για την Αξιολόγηση των Μαθητών

2 ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ

3 file:///c:/documents and Settings/eu2003gr.KEE/Επιφάνεια εργασίας/sy NEDRIO/KEE logo.png Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού Εισήγηση: Σταυρούλα Σκούρα Θήριου Ομάδα PISA ΚΕΕ - ΟΟΣΑ

4 ΠΑΤΙΝΙΑ Ο Ερρίκος κάνει συχνά πατίνι. Επισκέφθηκε ένα κατάστημα για να εξετάσει τις τιμές. Στο κατάστημα αυτό μπορείς να αγοράσεις ένα πατίνι με πλήρη εξοπλισμό. Μπορείς επίσης να αγοράσεις ξεχωριστά μία σανίδα για πατίνι, ένα σετ 4 τροχών, ένα σετ 2 αξόνων και ένα σετ εξαρτημάτων, για να κατασκευάσεις το πατίνι μόνος σου.

5 Οι τιμές του καταστήματος για τα προϊόντα αυτά σε ζεντ είναι οι παρακάτω:

6

7 Ερώτηση 1 Ο Ερρίκος θέλει να φτιάξει μόνος του ένα πατίνι. Ποια είναι η ελάχιστη και ποια η μέγιστη τιμή που πρέπει να πληρώσει στο κατάστημα αυτό, για να κατασκευάσει μόνος του το πατίνι; (α) Ελάχιστη τιμή: ζεντ. (β) Μέγιστη τιμή: ζεντ.

8 Ερώτηση 2 Το κατάστημα προσφέρει τρία διαφορετικά είδη σανίδας για πατίνι, δύο διαφορετικά σετ τροχών και δύο διαφορετικά σετ εξαρτημάτων. Διαθέτει όμως μόνο ένα σετ αξόνων. Πόσα διαφορετικά πατίνια μπορεί να κατασκευάσει ο Ερρίκος; Α. 6 Β. 8 Γ. 10 Δ. 12

9 Ερώτηση 3 Ο Ερρίκος διαθέτει 120 ζεντ και θέλει να αγοράσει με τα χρήματα αυτά το ακριβότερο πατίνι που μπορεί. Πόσα χρήματα έχει τη δυνατότητα να ξοδέψει ο Ερρίκος για καθένα από τα 4 μέρη του πατινιού; Να γράψεις τις απαντήσεις σου στον πίνακα που ακολουθεί.

10

11 ΛΕΙΧΗΝΕΣ Ένα από τα επακόλουθα της υπερθέρμανσης του πλανήτη μας είναι το λιώσιμο των πάγων. Δώδεκα χρόνια μετά το λιώσιμο των πάγων, αρχίζουν να αναπτύσσονται στους βράχους μικροσκοπικά φυτά που ονομάζονται λειχήνες. Κάθε λειχήνα αναπτύσσεται σε σχήμα περίπου κυκλικό. Ο παρακάτω τύπος χρησιμοποιείται για να υπολογιστεί κατά προσέγγιση, η διάμετρος (δ) της λειχήνας σε σχέση με την ηλικία της: όπου δ η διάμετρος της λειχήνας σε mm, και t ο αριθμός των ετών που έχουν περάσει μετά το λιώσιμο των πάγων. δ = 7,0 t 12 για t 12

12 Ερώτηση 1 Χρησιμοποιώντας τον παραπάνω τύπο, υπολογίστε τη διάμετρο που θα έχει μια λειχήνα, 16 έτη μετά το λιώσιμο των πάγων. Γράψτε την απάντησή σας στο χώρο που ακολουθεί.

13 Ερώτηση 2 Η Άννα μέτρησε τη διάμετρο μιας λειχήνας που βρήκε σε κάποιο μέρος και είδε ότι ήταν 35 mm. Πόσα χρόνια έχουν περάσει από το λιώσιμο των πάγων σε αυτό το μέρος; Εξηγήστε παρακάτω πώς βρήκατε την απάντησή σας.

14 Ερώτηση 3 Σε πόσα χρόνια από σήμερα, μια λειχήνα που τώρα έχει διάμετρο 35 mm θα έχει διπλασιάσει τη διάμετρό της; Εξηγήστε παρακάτω πώς βρήκατε την απάντησή σας.

15 ΣΥΝΘΕΣΕΙΣ ΜΕ ΚΥΒΟΥΣ Στη Μαριλένα αρέσει να κάνει συνθέσεις με μικρούς κύβους, όπως αυτός που βλέπετε στο παρακάτω σχήμα:

16 Η Μαριλένα έχει πολλούς μικρούς κύβους σαν αυτόν του σχήματος και χρησιμοποιεί κόλλα, για να τους ενώσει και να κάνει άλλες συνθέσεις.

17 Η Μαριλένα πρώτα κολλάει οκτώ κύβους μαζί, για να κάνει τη σύνθεση που φαίνεται στο παρακάτω σχήμα A: Σχήμα A

18 Στη συνέχεια η Μαριλένα κατασκευάζει τις συνθέσεις που φαίνονται στα παρακάτω σχήματα B και Γ: Σχήμα B Σχήμα Γ

19 Ερώτηση 1 Πόσους μικρούς κύβους θα χρειαστεί η Μαριλένα, για να κατασκευάσει τη σύνθεση του σχήματος B; Απάντηση: κύβους.

20 Ερώτηση 2 Πόσους μικρούς κύβους θα χρειαστεί η Μαριλένα, για να κατασκευάσει τη σύνθεση του σχήματος Γ; Απάντηση: κύβους.

21 Ερώτηση 3 Η Μαριλένα αντιλαμβάνεται ότι χρησιμοποίησε περισσότερους μικρούς κύβους από όσους πραγματικά χρειαζόταν, για να κατασκευάσει μια σύνθεση σαν αυτή του σχήματος Γ. Καταλαβαίνει ότι θα μπορούσε να έχει κολλήσει τους μικρούς κύβους αφήνοντας εσωτερικά ένα κενό. Ποιος είναι ο μικρότερος αριθμός κύβων που χρειάζεται, για να κατασκευάσει μια σύνθεση σαν αυτή του σχήματος Γ, που να έχει εσωτερικά κενό; Απάντηση: κύβοι.

22 Ερώτηση 4 Τώρα η Μαριλένα θέλει να κατασκευάσει μία σύνθεση που να έχει μήκος 6 μικρών κύβων, πλάτος 5 μικρών κύβων και ύψος 4 μικρών κύβων. Θέλει να χρησιμοποιήσει τον μικρότερο δυνατό αριθμό κύβων αφήνοντας το μεγαλύτερο δυνατό κενό στο εσωτερικό της σύνθεσης. Ποιος είναι ο μικρότερος αριθμός κύβων που θα χρειαστεί, για κατασκευάσει αυτή τη σύνθεση; Απάντηση: κύβοι.

23 ΒΕΡΑΝΤΑ Ο Nίκος θέλει να στρώσει με πλάκες την βεράντα του καινούργιου του σπιτιού που είναι σχήματος ορθογωνίου. Η βεράντα έχει μήκος 5,25 μέτρα και πλάτος 3,00 μέτρα. Για τη δουλειά αυτή, ο Νίκος θα χρειαστεί 81 πλάκες για κάθε τετραγωνικό μέτρο.

24 Ερώτηση Υπολογίστε πόσες πλάκες θα χρειαστεί ο Νίκος, για να στρώσει ολόκληρη τη βεράντα.

25 ΥΨΟΣ ΜΑΘΗΤΩΝ Μια μέρα, κατά τη διάρκεια του μαθήματος των Μαθηματικών, υπολογίστηκε το ύψος όλων των μαθητών. Το μέσο ύψος των αγοριών ήταν 160 cm και το μέσο ύψος των κοριτσιών ήταν 150 cm. Η Ελένη ήταν η ψηλότερη - το ύψος της ήταν 180 cm. Ο Κώστας ήταν ο πιο κοντός - το ύψος του ήταν 130 cm.

26 Δύο παιδιά απουσίαζαν την ημέρα εκείνη από την τάξη και ήρθαν την επομένη. Μετρήθηκε το ύψος τους και υπολογίστηκαν εκ νέου ο μέσοι όροι. Προς έκπληξη όλων, το μέσο ύψος των κοριτσιών και το μέσο ύψος των αγοριών δεν άλλαξαν. Ποιο από τα παρακάτω συμπεράσματα μπορούμε να εξάγουμε από αυτές τις πληροφορίες;

27 Να κυκλώσεις το «Ναι» ή το «Όχι» για κάθε συμπέρασμα.

28 ΦΑΡΟΣ Οι φάροι είναι πύργοι με ένα φωτεινό σηματοδότη στην κορυφή. Οι φάροι βοηθούν τα πλοία να βρουν το δρόμο τους μέσα στη νύκτα, όταν πλέουν κοντά στις ακτές Ο σηματοδότης του φάρου στέλνει φωτεινά σήματα με έναν κανονικό και καθορισμένο τρόπο. Κάθε φάρος έχει το δικό του ρυθμό που αναβοσβήνει.

29 Στο παρακάτω διάγραμμα βλέπεις το ρυθμό που αναβοσβήνει ένας συγκεκριμένος φάρος.

30 Το φως ανάβει εναλλάξ ανάμεσα σε σκοτεινέςπεριόδους. Αυτός είναι ένας συνηθισμένος τύπος φωτισμού. Ύστερα από κάποιο χρονικό διάστημα ο τύπος φωτισμού επαναλαμβάνεται. Ο χρόνος για έναν πλήρη κύκλο του τύπου φωτισμού, πριν αρχίσει να επαναλαμβάνεται, ονομάζεται περίοδος. Αν βρεις την περίοδο ενός τύπου φωτισμού, είναι εύκολο να επεκτείνεις το διάγραμμα για τα επόμενα δευτερόλεπτα ή λεπτά ή ώρες.

31 Ερώτηση 1 Ποιο από τα παρακάτω θα μπορούσε να είναι η περίοδος του τύπου φωτισμού αυτού του φάρου; Α. 2 δευτερόλεπτα. Β. 3 δευτερόλεπτα Γ. 5 δευτερόλεπτα Δ. 12 δευτερόλεπτα.

32 Ερώτηση 2 Για πόσα δευτερόλεπτα ο φάρος στέλνει φωτεινά σήματα κατά τη διάρκεια ενός λεπτού; Α 4 Β 12 Γ 20 Δ 24

33 Ερώτηση 3 Στα παρακάτω τετραγωνάκια να σχεδιάσεις ένα διάγραμμα για τον πιθανό τύπο φωτισμού ενός φάρου που στέλνει φωτεινά σήματα διάρκειας 30 δευτερολέπτων σε κάθε λεπτό. Η περίοδος αυτού του τύπου φωτισμού πρέπει να είναι ίση με 6 δευτερόλεπτα.

34 ΜΗΛΙΕΣ Ένας αγρότης θέλει να φυτέψει μηλιές σε σειρές και σε τετράγωνο σχήμα. Σκέφτεται να προστατέψει τις μηλιές από τον αέρα, περιφράζοντάς τις με κυπαρίσσια.

35 Στα παρακάτω διαγράμματα βλέπουμε τη διάταξη των δέντρων, όπως τα φαντάζεται ο αγρότης. Κάθε διάγραμμα περιλαμβάνει διαφορετικές σειρές από μηλιές. (ν = σειρές από μηλιές)

36 Ερώτηση 1: Συμπληρώστε τα στοιχεία που λείπουν στον παρακάτω πίνακα:

37 ΕΡΩΤΗΣΗ 2 Οι τύποι που μπορείτε να χρησιμοποιήσετε, για να υπολογίσετε το πλήθος των δέντρων μηλιάς και το πλήθος των κυπαρισσιών στα παραπάνω διαγράμματα, είναι δύο: Πλήθος δέντρων μηλιάς = ν 2 Πλήθος κυπαρισσιών = 8ν όπου ν είναι ο αριθμός των σειρών που σχηματίζουν οι μηλιές. Υπάρχει μια τιμή του ν, για την οποία το πλήθος των δέντρων μηλιάς ισούται με το πλήθος των κυπαρισσιών. Να βρείτε αυτήν την τιμή του ν και να περιγράψετε παρακάτω τον τρόπο, με τον οποίο την υπολογίσατε

38 Σωστό Οι παρακάτω κωδικοί αφορούν τη σωστή απάντηση ν=8, που δίνεται με διαφορετικούς τρόπους επίλυσης Κωδικός 11: ν=8. Στην απάντηση χρησιμοποιεί εμφανώς αλγεβρική μέθοδο. Π.χ. ν 2 = 8ν, ν 2 8ν = 0, ν(ν 8)=0, ν = 0 & ν = 8, άρα ν =8 Κωδικός 12: ν=8. Δεν φαίνεται αναλυτικά η αλγεβρική μέθοδος ή δεν φαίνεται ο τρόπος επίλυσης. Π.χ. ν 2 = 8 2 = 64, 8ν = 8 Χ 8 = 64 ν 2 = 8ν. Αυτό συνεπάγεται ν= = 64, ν=8 ν = = 8 2 Κωδικός 13: ν=8. Χρησιμοποιούνται άλλες μέθοδοι, π.χ. χρησιμοποιούν σχέδιο ή αναπτύσσουν την ακολουθία.

39 Οι παρακάτω κωδικοί αφορούν τη σωστή απάντηση, ν=8, ΚΑΙ επιπλέον την απάντηση ν=0, με διαφορετικούς τρόπους επίλυσης. Κωδικός 14: Όπως και για τον Κωδικό 11 (εμφανής αλγεβρική μέθοδος), αλλά δίνει ταυτόχρονα δύο απαντήσεις ν=8 ΚΑΙ ν=0. Π.χ. ν 2 = 8ν, ν 2 8ν = 0, ν(ν 8)=0, ν = 0 & ν = 8 Κωδικός 15: Όπως και για τον Κωδικό 12 (όχι εμφανής αλγεβρική μέθοδος), αλλά δίνει ταυτόχρονα δύο απαντήσεις ν=8 ΚΑΙ ν=0

40 Λάθος Κωδικός 00: Οποιαδήποτε άλλη απάντηση, συμπεριλαμβανόμενης και της απάντησης ν=0. ν 2 = 8ν (επαναλαμβάνει το ζητούμενο της ερώτησης) ν 2 = 8 ν=0. Δεν μπορούμε να χουμε τον ίδιο αριθμό, γιατί σε κάθε μηλιά, αντιστοιχούν 8 κυπαρίσσια. Κωδικός 09: Λείπει η απάντηση

41 ΕΡΩΤΗΣΗ 3 Ας υποθέσουμε ότι ο αγρότης μεγαλώνει συνέχεια το περιβόλι του προσθέτοντας συνεχώς σειρές δέντρων. Ενώ ο αγρότης μεγαλώνει το περιβόλι του προσθέτοντας σειρές, θα χρειαστεί περισσότερες μηλιές ή κυπαρίσσια; Γράψτε παρακάτω τον τρόπο με τον οποίο βρήκατε την απάντησή σας

42 ΤΑΧΥΤΗΤΑ ΑΓΩΝΙΣΤΙΚΟΥ ΑΥΤΟΚΙΝΗΤΟΥ Στην παρακάτω γραφική παράσταση, παρουσιάζονται οι μεταβολές της ταχύτητας ενός αγωνιστικού αυτοκινήτου που τρέχει το δεύτερο γύρο του σε μια μη κυκλική επίπεδη διαδρομή μήκους 3 χιλιομέτρων.

43 Γράφημα

44 ΕΡΩΤΗΣΗ 1 Πόση περίπου απόσταση έχει διανύσει το αυτοκίνητο από την γραμμή εκκίνησης μέχρι να φτάσει στην αρχή του μακρύτερου ευθύγραμμου τμήματος της διαδρομής; Κυκλώστε τη σωστή απάντηση. Α. 0,5 km Β. 1,5 km Γ. 2,3 km Δ. 2,6 km

45 ΕΡΩΤΗΣΗ 2 Σε ποιο σημείο της διαδρομής του δεύτερου γύρου σημειώθηκε, κατά προσέγγιση, η μικρότερη ταχύτητα; Κυκλώστε τη σωστή απάντηση. Α. Στη γραμμή εκκίνησης. Β. Στα 0,8 km περίπου. Γ. Στα 1,3 km περίπου. Δ. Περίπου στο μισό της διαδρομής.

46 ΕΡΩΤΗΣΗ 3 Διαβάστε τις παρακάτω προτάσεις και κυκλώστε την πρόταση που δείχνει τι συμβαίνει στην ταχύτητα του αυτοκινήτου μεταξύ των ενδείξεων 2,6 km και 2,8 km. Κυκλώστε τη σωστή απάντηση. Α. Η ταχύτητα του αυτοκινήτου παραμένει σταθερή. Β. Η ταχύτητα του αυτοκινήτου αυξάνεται. Γ. Η ταχύτητα του αυτοκινήτου μειώνεται. Δ. Η ταχύτητα του αυτοκινήτου δεν μπορεί να προσδιοριστεί από τη γραφική παράσταση.

47 ΕΡΩΤΗΣΗ 4 Στο σχήμα βλέπετε πέντε διαφορετικές διαδρομές αυτοκινητικών αγώνων: Σε ποια από τις παρακάτω διαδρομές έτρεξε το αυτοκίνητο της άσκησης, για να δώσει την προηγούμενη γραφική παράσταση της ταχύτητας; Κυκλώστε το σωστό σχήμα.

48 ΣΕΙΣΜΟΙ Σε ένα ντοκυμαντέρ για τους σεισμούς και το πόσο συχνά αυτοί εμφανίζονται υπήρχε συζήτηση για την πρόβλεψη των σεισμών. Ένας γεωλόγος ανέφερε ότι: «Στα επόμενα είκοσι χρόνια, η πιθανότητα να εμφανιστεί σεισμός στην πόλη του Ζεντ είναι δύο προς τρία». Ποιο από τα παρακάτω αντανακλά καλλίτερα την έννοια της δήλωσης του γεωλόγου;

49 Α ⅔ 20 = 13.3, ώστε ανάμεσα σε 13 και 14 χρόνια από τώρα θα συμβεί σεισμός στην πόλη του Ζεντ. B Το ⅔ είναι μεγαλύτερο του ½, έτσι είσαι σίγουρος ότι θα συμβεί σεισμός στην πόλη του Ζεντ κάποια στιγμή κατά τη διάρκεια των επόμενων είκοσι χρόνων. C Η πιθανότητα να συμβεί σεισμός στην πόλη του Ζεντ κάποια στιγμή κατά τη διάρκεια των επόμενων είκοσι χρόνων είναι μεγαλύτερη από την πιθανότητα να μη συμβεί σεισμός. D Δε μπορείς να πεις για το τι θα συμβεί, διότι κανένας δεν μπορεί να είναι σίγουρος πότε θα συμβεί ένας σεισμός.

50 Ευχαριστούμε για τη συμμετοχή σας

Ακολουθίες ΕΝΟΤΗΤΑ. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας.

Ακολουθίες ΕΝΟΤΗΤΑ. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας. ΕΝΟΤΗΤΑ Ακολουθίες Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε την ακολουθία. Να ορίζουμε τι είναι όρος ακολουθίας. Να αναπαριστούμε τις ακολουθίες με διάφορους τρόπους. Να βρίσκουμε τον επόμενο όρο ή τον

Διαβάστε περισσότερα

Β. Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού

Β. Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού Β. Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού ΒΗΜΑΤΙΣΜΟΣ Θέμα που δόθηκε στους μαθητές για το Πρόγραμμα PISA 2003 Στην παραπάνω φωτογραφία βλέπετε τις πατημασιές κάποιου άνδρα. Η απόσταση

Διαβάστε περισσότερα

Β. Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού

Β. Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού Β. Θέματα για την Αξιολόγηση του Μαθηματικού Αλφαβητισμού ΒΗΜΑΤΙΣΜΟΣ Θέμα που δόθηκε στους μαθητές για το Πρόγραμμα PISA 2003 Στην παραπάνω φωτογραφία βλέπετε τις πατημασιές κάποιου άνδρα. Η απόσταση

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 1.1 Ευθύγραμμη κίνηση 1. Να αναφέρετε ποια από τα σώματα που φαίνονται στην εικόνα κινούνται. Α. Ως προς τη Γη B. Ως προς το αυτοκίνητο. Α. Ως προς τη Γη κινούνται το αυτοκίνητο, το αεροπλάνο και ο γλάρος.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.

Διαβάστε περισσότερα

1.1. Κινηματική Ομάδα Δ.

1.1. Κινηματική Ομάδα Δ. 1.1.41. Μια μπάλα κινείται. 1.1. Ομάδα Δ. Στο παραπάνω σχήμα φαίνεται μια μπάλα που κινείται ευθύγραμμα, κατά μήκος ενός χάρακα, ενώ στο διτο χρόνο. πλανό σχήμα δίνεται η γραφική παράσταση της θέσης της

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια.

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά * Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. * Ο βαθμός για την κάθε

Διαβάστε περισσότερα

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc

Γ. Β Α Λ Α Τ Σ Ο Σ. 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1. Γιώργος Βαλατσός Φυσικός Msc 4ο ΓΥΜΝΑΣΙΟ ΛΑΜΙΑΣ 1 1. Πότε τα σώματα θεωρούνται υλικά σημεία; Αναφέρεται παραδείγματα. Στη φυσική πολλές φορές είναι απαραίτητο να μελετήσουμε τα σώματα χωρίς να λάβουμε υπόψη τις διαστάσεις τους. Αυτό

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις

ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ. Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις ΕΡΓΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΟΜΕΝΗ ΚΙΝΗΣΗ Κινητική του υλικού σηµείου Ερωτήσεις Ασκήσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο φύλλο των απαντήσεών

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-2015 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ 22 ΚΕΦΑΛΑΙΟ 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Α. ΚΙΝΗΣΗ - ΜΕΤΑΤΟΠΙΣΗ ΧΡΟΝΟΣ - ΤΑΧΥΤΗΤΑ 1. Πάνω σε έναν άξονα xοx επιλέγουμε τα σημεία Α(0), Β(-3m), Γ(5m) και Δ(3m). Να βρείτε το διάστημα και τη μετατόπιση του κινητού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. A Λυκείου Ύλη: Ευθύγραμμη Κίνηση 13-11-2016 Θέμα 1 ο : 1) Η έκφραση 2m/s 2 όταν αναφέρεται σε κινητό που εκτελεί ευθύγραμμη κίνηση σημαίνει ότι: α) η θέση του κινητού αλλάζει

Διαβάστε περισσότερα

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα.

THE GRAMMAR SCHOOL ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011. Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. THE GRAMMAR SCHOOL ΑΡΙΘΜΟΣ: ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 6 ΑΠΡΙΛΙΟΥ 2011 ΘΕΜΑ : ΧΡΟΝΟΣ : ΜΑΘΗΜΑΤΙΚΑ 1 ΩΡΑ ΚΑΙ 30 ΛΕΠΤΑ Οδηγίες προς τους εξεταζόμενους. 1. Γράψετε τον αριθμό σας στη πρώτη σελίδα. 2. Απαγορεύεται

Διαβάστε περισσότερα

ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ 7 ος Πανελλήνιος Διαγωνισμός Φυσικής Β Γυμνασίου. ΘΕΜΑΤΑ 7 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ.

ΕΝΩΣΗ ΕΛΛΗΝΩΝ ΦΥΣΙΚΩΝ 7 ος Πανελλήνιος Διαγωνισμός Φυσικής Β Γυμνασίου. ΘΕΜΑΤΑ 7 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ. ΘΕΜΑΤΑ 7 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ Β ΓΥΜΝΑΣΙΟΥ Σελίδα 1 από 11 ΘΕΜΑ Α ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Να χαρακτηρίσετε στο απαντητικό φύλλο, χωρίς αιτιολόγηση, καθεμία από τις παρακάτω προτάσεις ως Σωστή (Σ) ή ως Λάθος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ / Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 21-12-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ- ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ A Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα Μαθητή/τριας:... Τμήμα: Αρ.:

ΓΥΜΝΑΣΙΟ. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ Όνομα Μαθητή/τριας:... Τμήμα: Αρ.: ΓΥΜΝΑΣΙΟ. ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΒΑΘΜΟΣ ΦΥΣΙΚΗΣ Αριθμητικώς:... Ολογρ.:... Υπογραφή:... ΒΑΘΜΟΣ ΦΥΣΙΚΑ Αριθμητικώς:... Ολογρ.:... Υπογραφές:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΤΑΞΗ: Β ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Φύλλο Εργασίας για την y=αx 2

Φύλλο Εργασίας για την y=αx 2 Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ ΩΡΑ: 07:45π.μ. - 09:15π.μ.

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ ΩΡΑ: 07:45π.μ. - 09:15π.μ. ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2017-2018 ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΒΑΘΜΟΣ Αριθμητικώς:... Ολογρ.:... Υπογραφή:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ- ΙΟΥΝΙΟΥ 2018 ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 29 Μαΐου 2018 ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.

Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0. ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης

Διαβάστε περισσότερα

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ

Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 13/10/2013 ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΛΥΚΕΙΟΥ ΣΕΙΡ: (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙ: 13/1/13 ΘΕΜ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Κουρτίδου Ελένη

ΚΕΦΑΛΑΙΟ 2 Κουρτίδου Ελένη 3 ο Γυμνάσιο Ξάνθης ΦΥΣΙΚΗ B ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Κουρτίδου Ελένη 1 ΣΗΜΕΙΟ ΑΝΑΦΟΡΑΣ: Το σημείο που χρησιμοποιούμε σαν αρχή για να μετράμε ΘΕΣΗ ( χ ) : Εξαρτάται απ την επιλογή του σημείου αναφοράς Είναι

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

Ένας οδηγός χρονομέτρησε τη διαδρομή από την είσοδο της ευθύγραμμης σήραγγας του Αρτεμισίου μέχρι την έξοδο και βρήκε ότι χρειάστηκε 70s.

Ένας οδηγός χρονομέτρησε τη διαδρομή από την είσοδο της ευθύγραμμης σήραγγας του Αρτεμισίου μέχρι την έξοδο και βρήκε ότι χρειάστηκε 70s. 1 ευθύγραμμη ομαλή κίνηση Θέμα 1 ο Ένας οδηγός χρονομέτρησε τη διαδρομή από την είσοδο της ευθύγραμμης σήραγγας του Αρτεμισίου μέχρι την έξοδο και βρήκε ότι χρειάστηκε 70s. α. Πόσο είναι το μέτρο της μέσης

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα :

ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ. υ = σταθερη (1) - Με διάγραμμα : Πρότυπο Πρότυπα ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΗ ΚΙΝΗΣΗ Η Φυσική για να ερμηνεύσει τα φαινόμενα, δημιουργεί τα πρότυπα ή μοντέλα. Τα πρότυπα αποτελούνται από ένα πλέγμα

Διαβάστε περισσότερα

1 / 6. Ασκήσεις Κινηματικής

1 / 6. Ασκήσεις Κινηματικής Ασκήσεις Κινηματικής 1. Ένα κινητό κινείται με σταθερή ταχύτητα 20 m/s πάνω σε μια ευθεία που έχει βαθμολογηθεί ως άξονας, ξεκινώντας από το χ ο = 400m. a) Να γραφεί η εξίσωση της θέσης χ=f(t). b) Πότε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν:

ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ. «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: ΑΣΚΗΣΕΙΣ ΜΕ ΠΡΑΞΕΙΣ ΑΣΚΗΣΕΙΣ ΠΡΟΕΤΟΙΜΑΣΙΑΣ ΓΙΑ ΤΟ ΔΙΑΓΩΝΙΣΜΟ «Παιχνίδι και Μαθηματικά» 1. Να συμπληρώσεις στα κουτάκια τους αριθμούς που λείπουν: : 11+ 15= 24 : 17+ 11= 16 : 11 13= 17 : 11 14= 26 i 7+

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις

ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. Λυμένες Ασκήσεις ΑΣΚΗΣΕΙΣ ΣΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ Λυμένες Ασκήσεις 1. Στο παρακάτω σχήμα να βρείτε τις συντεταγμένες των σημείων Α, Β, Γ, Δ, Ε, Ζ, Η, Θ και Ι Οι συντεταγμένες των ζητούμενων σημείων είναι: Α(2,3),

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

ΤΕΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ANΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ Ειδικότητες: Όλες Ώρα εξέτασης: 07:30-09:30

ΤΕΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ANΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ Ειδικότητες: Όλες Ώρα εξέτασης: 07:30-09:30 ΤΕΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2014 2015 ΓΡΑΠΤΕΣ ANΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Μάθημα: ΦΥΣΙΚΗ (2ωρο) Τάξη: Α Αρ. Μαθητών: 7 Κλάδος: Όλοι Ημερομηνία: Ειδικότητες: Όλες Ώρα εξέτασης:

Διαβάστε περισσότερα

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:

Διαβάστε περισσότερα

Φυσική γενικής παιδείας

Φυσική γενικής παιδείας Προτεινόμενα Θέματα Α ΓΕΛ ΝΟΕΜΒΡΙΟΣ 015 Φυσική γενικής παιδείας ΘΕΜΑ Α Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. H αλγεβρική

Διαβάστε περισσότερα

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10

7. Ποιο είναι το άθροισμα των ψηφίων του (δεκαδικού) αριθμού ; Α: 4 Β: 6 Γ: 7 Δ: 10 20 Φεβρουαρίου 2010 1. Σ ένα ημερολόγιο διαγράφουμε τις ημερομηνίες του μηνός Ιουλίου 2004 οι οποίες περιέχουν ένα τουλάχιστον περιττό ψηφίο. Ποιος είναι ο αριθμός των ημερών που μένουν; Α: 9 Β: 10 Γ:

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2017-2018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ (ΕΝΔΕΙΚΤΙΚΕΣ) ΗΜΕΡΟΜΗΝΙΑ: 03/12/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Φυσική Α Λυκείου Διαγώνισμα Κινηματική. Θέμα 1 ο. Φυσική Α Λυκείου: Διαγώνισμα Ποια από τις παρακάτω προτάσεις είναι σωστή;

Φυσική Α Λυκείου Διαγώνισμα Κινηματική. Θέμα 1 ο. Φυσική Α Λυκείου: Διαγώνισμα Ποια από τις παρακάτω προτάσεις είναι σωστή; Φυσική Α Λυκείου Διαγώνισμα Κινηματική. Θέμα 1 ο 1.1. Ποια από τις παρακάτω προτάσεις είναι σωστή; Μια κίνηση χαρακτηρίζεται ως ευθύγραμμη ομαλή όταν: α) Η τροχιά είναι ευθεία. β) Η ταχύτητα έχει σταθερό

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΒΑΘΜΟΣ : ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Αριθμητικά.. ΗΜΕΡΟΜΗΝΙΑ: 1/6/015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Α Ολογράφως:... ΧΡΟΝΟΣ: ώρες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα Τι παρατηρήσατε στο video; 1η δραστηριότητα (Φύλλο Εφαρμογής (1) Στο ορθογώνιο τρίγωνο ΑΒΓ

Διαβάστε περισσότερα

Φυσική γενικής παιδείας

Φυσική γενικής παιδείας Προτεινόμενα Θέματα Α ΓΕ.Λ. Νοέμβριος 016 Φυσική γενικής παιδείας ΘΕΜΑ Α Στις προτάσεις από Α1-Α4 να επιλέξετε τη σωστή απάντηση. Α1. Στην ευθύγραμμη ομαλά επιταχυνόμενη κίνηση: α) η επιτάχυνση είναι σταθερή

Διαβάστε περισσότερα

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ. Το εξεταστικό δοκίμιο αποτελείται από οκτώ (8) σελίδες και χωρίζεται σε δύο μέρη Α και Β στα οποία αντιστοιχούν συνολικά 50 μονάδες.

ΟΔΗΓΙΕΣ. Το εξεταστικό δοκίμιο αποτελείται από οκτώ (8) σελίδες και χωρίζεται σε δύο μέρη Α και Β στα οποία αντιστοιχούν συνολικά 50 μονάδες. ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2017-2018 ΒΑΘΜΟΣ ΒΑΘΜΟΣ Αριθμητικώς:... / 50 Αριθμητικώς:... / 20 Ολογράφως:... Ολογράφως:... Υπογραφή:... Υπογραφή:.. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ - ΙΟΥΝΙΟΥ 2018

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 2017

1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 2017 1 ο Διαγώνισμα Α Λυκείου Σάββατο 18 Νοεμβρίου 017 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Αν υ η ταχύτητα ενός κινητού και α η επιτάχυνσή

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

µε το µέτρο του µεγέθους. ii. Στη γλώσσα που χρησιµοποιούµε στην καθηµερινή µας ζωή ορίζουµε ως µέση ταχύτητα το

µε το µέτρο του µεγέθους. ii. Στη γλώσσα που χρησιµοποιούµε στην καθηµερινή µας ζωή ορίζουµε ως µέση ταχύτητα το Ερωτήσεις βιβλίου. Συµπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείµενο έτσι ώστε οι προτάσεις που προκύπτουν να είναι επιστηµονικά ορθές: i. Η θέση ενός σώµατος καθορίζεται σε σχέση µε ένα σηµείο

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14. Μιχαηλίδου Αγγελική Λάλας Γεώργιος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ 2013/14 Μιχαηλίδου Αγγελική Λάλας Γεώργιος Περιγραφή Πλαισίου Σχολείο: 2 ο Πρότυπο Πειραματικό Γυμνάσιο Αθηνών Τμήμα: Β 3 Υπεύθυνος καθηγητής: Δημήτριος Διαμαντίδης Συνοδός: Δημήτριος Πρωτοπαπάς

Διαβάστε περισσότερα

Ευθύγραμμη ομαλή κίνηση: Θέση Μετατόπιση Ταχύτητα Διαγράμματα

Ευθύγραμμη ομαλή κίνηση: Θέση Μετατόπιση Ταχύτητα Διαγράμματα Ευθύγραμμη ομαλή κίνηση: Θέση Μετατόπιση Ταχύτητα Διαγράμματα 1. Ένας πεζοπόρος κινείται σε ευθύ δρόμο με σταθερό μέτρο ταχύτητας υ = 2m/s. Την χρονική στιγμή t o = 0 βρίσκεται στην θέση x αρχ = 10m. Α.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ Πότε δύο ποσά λέγονται ανάλογα; Ποια είναι η σχέση που συνδέει δύο ανάλογα ποσά x, y; Τι είναι ο συντελεστής αναλογίας; Πάνω σε τι σχήµα βρίσκονται τα ζεύγη (x, y) για δύο ανάλογα ποσά x, y; Πότε δύο ποσά

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 16 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2010 Χρόνος: 60 λεπτά Δ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Ποια από τις ακόλουθες παραστάσεις έχει το ίδιο αποτέλεσμα με (15-5) + 6 ; Α) (15-6)

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014

Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 1 Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 Ζήτημα 1 o Α) Να επιλέξτε την σωστή απάντηση 1) Η μετατόπιση ενός κινητού που κινείται ευθύγραμμα σε άξονα Χ ΟΧ είναι ίση με μηδέν : Αυτό σημαίνει ότι: α) η αρχική

Διαβάστε περισσότερα

Α) ΕΝΑ ΚΙΝΗΤΟ. 1) Πληροφορίες από διάγραμμα x-t.

Α) ΕΝΑ ΚΙΝΗΤΟ. 1) Πληροφορίες από διάγραμμα x-t. Α) ΕΝΑ ΚΙΝΗΤΟ 1) Πληροφορίες από διάγραμμα x-t Ένα κινητό κινείται ευθύγραμμα και στο σχήμα φαίνεται η μετατόπισή του σε συνάρτηση με τον χρόνο Ποιες από τις ακόλουθες προτάσεις είναι σωστές και ποιες

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΓΥΜΝΑΣΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΠΛΑΤΥ ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 6/6/2014 ΒΑΘΜΟΣ ΒΑΘΜΟΣ:... ΤΑΞΗ: Γ Αριθμητικά.. ΧΡΟΝΟΣ: 1,5 ώρες Ολογράφως:...

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Ευθύγραμμες Κινήσεις Μεγέθη της Κίνησης. Η ένδειξη της ταχύτητας σε ένα αυτοκίνητο είναι 7km/h και σε μία μοτοσικλέτα 08km/h. Ποιες είναι οι ταχύτητες των δύο οχημάτων σε μονάδες του διεθνούς συστήματος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ- ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/02/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ- ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/02/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ- ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 05/02/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Καραβοκυρός Χρήστος ΘΕΜΑ Α Να γράψετε στην κόλα σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y

5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y . Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 1 ο ΣΥΣΤΗΜΑΤΑ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Όταν έχουμε δύο γραμμικές εξισώσεις αx+βy=γ και α x+β y=γ και ζητάμε τις κοινές λύσεις τους, τότε λέμε ότι έχουμε να λύσουμε ένα γραμμικό

Διαβάστε περισσότερα

1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015

1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015 1 ο Διαγώνισμα Α Λυκείου Κυριακή 15 Νοεμβρίου 2015 Διάρκεια Εξέτασης 3 ώρες Ονοματεπώνυμο. ΘΕΜΑ Α: Στις ερωτήσεις Α1 ως και Α4 επιλέξτε την σωστή απάντηση: Α1. Αν υ η ταχύτητα ενός κινητού και α η επιτάχυνσή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014

ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Μάθημα: ΦΥΣΙΚΗ (2ωρο) Τάξη: Α Αρ. Μαθητών: 156 Κλάδος: ΟΛΟΙ Ημερομηνία: 03/06/14

Διαβάστε περισσότερα

Ευθύγραμμες Κινήσεις

Ευθύγραμμες Κινήσεις Οι παρακάτω σημειώσεις διανέμονται υπό την άδεια: Creaive Commons Αναφορά Δημιουργού - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 Διεθνές. 1 Θέση και Σύστημα αναφοράς Στην καθημερινή μας ζωή για να περιγράψουμε

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016

ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΓΥΜΝΑΣΙΟ ΑΓΙΑΣ ΒΑΡΒΑΡΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015-2016 ΚΑΤΩ ΠΟΛΕΜΙΔΙΩΝ ΒΑΘΜΟΣ ΦΥΣΙΚΗΣ ΒΑΘΜΟΣ ΦΥΣΙΚΑ Αριθμητικώς:... Ολογρ.:... Υπογραφή:... Αριθμητικώς:... Ολογρ.:... Υπογραφές:... ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). 1 ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΘΕΜΑ 1 Ο Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). *1. Μια κίνηση είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα

Διαβάστε περισσότερα

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

Επιτροπή Διαγωνισμού του περιοδικού. 2 ος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-361774 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ

1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ 1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Μαθαίνω στη γάτα να σχεδιάζει» Δραστηριότητα 1 Παρατηρήστε τις εντολές στους παρακάτω πίνακες,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2.

Διαβάστε περισσότερα

1. Μια σφαίρα κινείται ευθύγραμμα και στο παρακάτω σχήμα βλέπετε την θέση της Α για t=0.

1. Μια σφαίρα κινείται ευθύγραμμα και στο παρακάτω σχήμα βλέπετε την θέση της Α για t=0. 1. Μια σφαίρα κινείται ευθύγραμμα και στο παρακάτω σχήμα βλέπετε την θέση της Α για t=0. Αν η ταχύτητα της σφαίρας μεταβάλλεται όπως στο διπλανό διάγραμμα: A) Χαρακτηρίστε την κίνηση της σφαίρας: i) Από

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ:

ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: Ταχύτητα θέση Ταχύτητα θέση ΓΥΜΝΑΣΙΟ ΑΡΑΔΙΠΠΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 Μάθημα: Φυσική Τάξη: Γ Ημερομηνία: 12 / 06 / 2014 Ώρα : 07:30-9:00 Ονοματεπώνυμο: Τμήμα

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1. Ο άνθρωπος ξεκινά τη στιγμή t=0 από τη θέση x=50 m και όπως φαίνεται στο παρακάτω διάγραμμα κινείται προς τα αριστερά. Στη συνέχεια σε κάθε σημειωμένη θέση στο

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Φυσική Α Λυκείου

Επαναληπτικές Ασκήσεις Φυσική Α Λυκείου Επαναληπτικές Ασκήσεις Φυσική Α Λυκείου Επιμέλεια: Αγκανάκης Α Παναγιώτης Ευθύγραμμη Ομαλή Κίνηση 1 Ένα σώμα, το οποίο αρχικά είναι ακίνητο, εκτελεί ΕΟΚ Την χρονική στιγμή το σώμα έχει ταχύτητα Να υπολογίσετε:

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015

ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΛΑΝΙΤΕΙΟ ΓΥΜΝΑΣΙΟ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 014-015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 015 ΤΑΞΗ : Α ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ: ΗΜΕΡΟΜΗΝΙΑ : 05/06/015 ΔΙΑΡΚΕΙΑ : ώρες ΒΑΘΜΟΣ ΟΛΟΓΡΑΦΩΣ:. ΩΡΑ : 07:45 09:45 ΥΠΟΓΡΑΦΗ

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 7 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 7 ο, Τμήμα Α Δεδομένα Συχνότητα Μέτρα θέσης Μέτρα διασποράς Στοχαστικά μαθηματικά διαφέρουν από τα κλασσικά μαθηματικά διότι τα φαινόμενα δεν είναι αιτιοκρατικά,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ» ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,

Διαβάστε περισσότερα

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ

Ασκήσεις Επανάληψης: Β ΓΥΜΝΑΣΙΟΥ Σχολική Χρονιά: 015-016 Ασκήσεις Επανάληψης για την B Γυμνασίου Ενότητα 1: Πραγματικοί Αριθμοί Πυθαγόρειο Θεώρημα 1. Να γράψετε σε μορφή δύναμης τα πιο κάτω: 1) ².³ = ) (³) 5 = 3) 5 : 8 = 4) ( 5. 7 ) :

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ ΜΑΘΗΜΑΤΙΚΑ. Να λύσετε τα προβλήματα 1 και 2 και να αιτιολογήσετε τις απαντήσεις σας.

ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ ΜΑΘΗΜΑΤΙΚΑ. Να λύσετε τα προβλήματα 1 και 2 και να αιτιολογήσετε τις απαντήσεις σας. ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2017- ΜΑΘΗΜΑΤΙΚΑ Να λύσετε τα προβλήματα 1 και 2 και να αιτιολογήσετε τις απαντήσεις σας. Πρόβλημα 1. Η Ελένη, ο Ευκλείδης και ο Σαμπέρ αγόρασαν από ένα

Διαβάστε περισσότερα

1.1. Κινηµατική Οµάδα Γ.

1.1. Κινηµατική Οµάδα Γ. 1.1. Οµάδα Γ. 1.1.21. Πληροφορίες από το διάγραµµα θέσης-χρόνου..ένα σώµα κινείται ευθύγραµµα και στο διάγραµµα βλέπετε τη θέση του σε συνάρτηση µε το χρόνο. i) Βρείτε την κλίση στο διάγραµµα x-t στις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. m αγόρια και n κορίτσια στην παρέλαση (M032295)

ΑΛΓΕΒΡΑ. m αγόρια και n κορίτσια στην παρέλαση (M032295) ΛΕΡ m αγόρια και n κορίτσια στην παρέλαση (M032295) Σε μία παρέλαση λαμβάνουν μέρος m αγόρια και n κορίτσια. Κάθε παιδί κρατάει δυο μπαλόνια. Ποια από τις παρακάτω εκφράσεις αντιπροσωπεύει τον συνολικό

Διαβάστε περισσότερα

1.1. Κινηματική Ομάδα Ε

1.1. Κινηματική Ομάδα Ε 1.1. Ομάδα Ε 61. Μετά από λίγο αρχίζει να επιταχύνεται. Δυο αυτοκίνητα Α και Β κινούνται σε ευθύγραμμο δρόμο με σταθερές ταχύτητες υ Α=21,8m/s και υ Β=12m/s, προς την ίδια κατεύθυνση. Σε μια στιγμή τα

Διαβάστε περισσότερα

Ασκήσεις στις κινήσεις

Ασκήσεις στις κινήσεις Ασκήσεις στις κινήσεις 1. Αμαξοστοιχία κινείται με ταχύτητα 72km/h και διασχίζει σήραγγα μήκους 900m. Ο χρόνος που μεσολάβησε από τη στιγμή που το μπήκε η μηχανή μέχρι να βγει και το τελευταίο βαγόνι από

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ. Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος

ΜΕΤΡΗΣΗ. Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος ΜΕΤΡΗΣΗ Θέματα: - Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία) - Κλίμακα - Έννοιες χρόνου - Εκτίμηση - Περίμετρος, εμβαδόν, όγκος 1 Μονάδες μέτρησης (μήκος, μάζα, χωρητικότητα, θερμοκρασία)

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2018

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2018 ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2017-2018 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΑΞΗ: Β ΗΜΕΡΟΜΗΝΙΑ: 04/06/2018 ΧΡΟΝΙΚΗ ΔΙΑΡΚΕΙΑ: 1,5 ώρα ΩΡΑ: 10:30-12:00 ΒΑΘΜΟΣ Αριθμητικώς:...

Διαβάστε περισσότερα

Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά

Θεωρία. Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα. Ιδιότητα αντιστρόφως ανάλογων ποσών. Αντιστρόφως ανάλογα ή αντίστροφα ποσά Μαθηματικά Κεφάλαιο 36 Αντιστρόφως ανάλογα Όνομα: Ημερομηνία: / / ή αντίστροφα ποσά Θεωρία Αντιστρόφως ανάλογα ή αντίστροφα λέγονται δύο ποσά, στα οποία, όταν πολλαπλασιάζεται η τιμή του ενός ποσού με

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

2. Δύο αυτοκίνητα Α και Β κινούνται σε προσανατολισμένη ευθεία, ομαλά. Οι ταχύτητες των αυτοκινήτων είναι αντίστοιχα, A

2. Δύο αυτοκίνητα Α και Β κινούνται σε προσανατολισμένη ευθεία, ομαλά. Οι ταχύτητες των αυτοκινήτων είναι αντίστοιχα, A ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΚΙΝΗΜΑΤΙΚΗ - 1 Ος,2 Ος ΝΟΜΟΣ ΝΕΥΤΩΝΑ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ Ημερομηνία: 22/12/14 Διάρκεια διαγωνίσματος: 120 Υπεύθυνος καθηγητής: Τηλενίκης Ευάγγελος ΖΗΤΗΜΑ 1 Στις ερωτήσεις 1-6

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

4 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

4 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 6 79 ΑΘΗΝΑ Τηλ. 366532-367784 - Fax: 36425 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 6 79 - Athens

Διαβάστε περισσότερα