ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΓΕΩΜΕΤΡΙΑ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
|
|
- Φώτις Κολιάτσος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.1. Σημείο - Ευθύγραμμο τμήμα - Ευθεία - Ημιευθεία - Επίπεδο - Ημιεπίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / 1. Σχεδιάστε το ευθύγραμμο τμήμα Α και το ευθύγραμμο τμήμα ΓΔ A B Γ Δ 2. Τα σημεία Α και λέγονται.του ευθύγραμμου τμήματος Α 3. Τα σημεία Α και λέμε επίσης ότι το ευθύγραμμο τμήμα Α 4. Να προεκτείνετε απεριόριστα το παρακάτω ευθύγραμμο τμήμα Α A B Πώς ονομάζεται το σχήμα που προέκυψε ;. 5. A B Να ονοματίσετε με 3 τρόπους την παραπάνω ευθεία 1)., 2)., 3).. 6. Πόσες ευθείες διέρχονται από το σημείο Α ; A Άρα από ένα σημείο διέρχονται..ευθείες 7. Πόσες ευθείες διέρχονται από τα σημεία Α και ; A B Σελίδα 1
2 Άρα από δύο σημεία διέρχεται Στο παρακάτω σχήμα Να ονοματίσετε όλα τα ευθύγραμμα τμήματα που σχηματίζονται : A Γ A Ε 9. Έχουμε το τρίγωνο ΑΓ Δ Πώς ονομάζονται τα σημεία Α,, Γ ;. Πώς ονομάζονται τα ευθύγραμμα τμήματα Α,ΑΓ,Γ ;.. Γ 10. Να προεκτείνετε απεριόριστα το παρακάτω ευθύγραμμο τμήμα Α προς το μέρος του Το νέο σχήμα που έχει αρχή το Α και δεν έχει τέλος λέγεται.. και την ονομάζουμε ημιευθεία. 11. Να προεκτείνετε απεριόριστα το παρακάτω ευθύγραμμο τμήμα Α προς το μέρος του Α A A Το νέο σχήμα που έχει αρχή το και δεν έχει τέλος λέγεται.. και την ονομάζουμε ημιευθεία. 12. Δινεται η ευθεία χχ και ένα σημείο της Ο χ Ο Πόσες ημιευθείες σχηματίζονται ;.. Και οι δύο ημιευθείες «σχηματίζουν» μια. Χ Δύο τέτοιες ημιευθείες ονομάζονται Να ονομάσετε όλες τις ημιευθείες που σχηματίζονται στο διπλανό σχήμα Σελίδα 2
3 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΝΟΤΗΤΑ.1.2. Γωνία - Γραμμή - Επίπεδα σχήματα - Ευθύγραμμα σχήματα - Ίσα σχήματα ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / x Ο ω... Α Ο ψ Α. Κ Ονόμασε τις παραπάνω γωνίες Α Γ (α) Ποια γωνία του τριγώνου περιέχεται στις πλευρές Α και Γ; Ποια γωνία του τριγώνου περιέχεται στις πλευρές ΑΓ και Γ; (β) Ποια πλευρά είναι απέναντι από τη γωνία ; Ποια πλευρά είναι απέναντι από τη γωνία ; (γ) Ποιες γωνίες είναι προσκείμενες στην πλευρά Α; Ποιες γωνίες είναι προσκείμενες στην πλευρά Γ; Δ Γ Ονόμασε όλες τις γωνίες του διπλανού σχήματος Α Σελίδα 3
4 Τεθλασμένη γραμμή είναι μια πολυγωνική γραμμή, που αποτελείται από διαδοχικά ευθύγραμμα τμήματα, τα οποία δε βρίσκονται στην ίδια ευθεία. Ευθύγραμμο σχήμα ονομάζεται κάθε τεθλασμένη γραμμή, της οποίας τα άκρα συμπίπτουν. Μια τεθλασμένη γραμμή ονομάζεται κυρτή, όταν η προέκταση κάθε πλευράς της αφήνει όλες τις άλλες πλευρές στο ίδιο ημιεπίπεδο. Διαφορετικά λέγεται μη κυρτή. Σχεδίασε μια Κυρτή τεθλασμένη Γραμμή που αποτελείται από 3 ευθύγραμμα τμήματα Σχεδίασε μια Μη Κυρτή τεθλασμένη Γραμμή που αποτελείται από 4 ευθύγραμμα τμήματα Ποια από τα παρακάτω ευθύγραμμα σχήματα είναι κυρτά ; α α β γ Σελίδα 4
5 ΕΝΟΤΗΤΑ.1.3. Μέτρηση, σύγκριση και ισότητα ευθυγράμμων τμημάτων - Απόσταση σημείων - Μέσο ευθύγραμμου τμήματος ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Μονάδα μήκους είναι το Πολλαπλάσιο του μέτρου είναι το ( συμβολίζουμε Κm) που ισούται με 1Km =...m Υποδιαιρέσεις του μέτρου Ονομασία Συμβολισμός Σχέση με το μέτρο Δεκατόμετρο η παλάμη dm 1dm = Εκατοστόμετρο ή πόντος cm 1cm = Χιλιοστόμετρο ή χιλιοστό mm 1mm ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Nα βρείτε την απόσταση των σημείων Α και Α 2. Να κατασκευάσετε ένα ευθύγραμμο τμήμα ίσο με το Α με χρήση διαβήτη Α 3. Να κατασκευάσετε ένα ευθύγραμμο τμήμα ίσο με το Α με χρήση χάρακα Α 4. Να βρείτε το μέσο του ευθύγραμμου τμήματος Α Α Σελίδα 5
6 Α Γ 5. Να συγκριθούν τα παρακάτω ευθύγραμμα τμήματα η Α περίπτωση με διαβήτη και οι, Γ με χάρακα( υποδεκάμετρο) Α περίπτωση περίπτωση Γ περίπτωση Δ Α Γ Δ Α Γ Δ συμπέρασμα συμπέρασμα συμπέρασμα Α..ΓΔ Α..ΓΔ Α.ΓΔ 6. Να συμπληρώσετε τα παρακάτω 2 km =...m 3dm =...m 32cm =...dm 1235m =...km 35 m =...dm 54 m =...cm 7dm =...cm 3,2 km =...dm 7. Ένας Αγρότης θέλει να περιφράξει έναν αγρό σχήματος τετραγώνου και πλευράς 15,3 m. διαθέτει συρματόπλεγμα 60m 3dm 18cm.θα του φτάσει η πρέπει να αγοράσει και άλλο; 8. Στην παρακάτω ευθεία πάρε στη σειρά τα σημεία Α,,Γ,Δ έτσι ώστε Α = 2,5 cm, BΓ = 3cm και ΓΔ = 2,5 cm. Έπειτα εξέτασε εάν τα ΑΓ και Δ είναι ίσα Σελίδα 6
7 ΕΝΟΤΗΤΑ.1.4. Πρόσθεση και αφαίρεση ευθυγράμμων τμημάτων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / /. Το ευθύγραμμο τ μήμα ΑΓ λέγεται άθροισμα των τμημάτων Α και Γ και γράφουμε : ΑΓ =.. +. Το ευθύγραμμο τμήμα Γ λέγεται διαφορά των τμημάτων ΑΓ και Γ και γράφουμε : Γ = Η ΑΓΔΕ ονομάζεται. Γραμμή Το μήκος μιας τεθλασμένης γραμμής είναι ίσο με το άθροισμα των μηκών των ευθυγράμμων τμημάτων που την απαρτίζουν : Α +Γ+ΓΔ+ΔΕ =.cm Μπορείτε χωρίς να μετρήσετε να συγκρίνετε το μήκος της τεθλασμένης γραμμής με το μήκος του ευθύγραμμου τμήματος ΑΕ;. Να βρείτε την περίμετρο του παρακάτω ευθύγραμμου σχήματος Σελίδα 7
8 . Σε μια ευθεία παίρνουμε τα σημεία Α,, Γ, Δ ώστε : Α =4 cm, Γ= 1 cm, ΑΔ = 7 cm α. Nα βρείτε το άθροισμα των Α και Γ Α + Γ = Ποιο ευθύγραμμο τμήμα είναι ; β. Nα βρείτε την διαφορά των ΑΔ και Α ΑΔ - Α = Ποιο ευθύγραμμο τμήμα είναι ; γ. Δ = + = cm δ. ΓΔ= + = cm ε. ΑΓ Α = = cm στ. ΑΓ- Γ = =. cm = ζ. Δ Γ = = cm =. ΑΔ +ΔΕ =. ΓΔ + Δ =. ΑΓ +ΓΕ =. ΑΕ ΑΔ =.. Α- ΑΕ = ΓΕ- ΓΔ =... Nα πάρετε σε μια ευθεία τα σημεία Α,, Γ, Δ με την σειρά ώστε : ΑΔ = 6 cm, ΓΔ = 1 cm, Α =2 cm και να βρείτε τα ΑΓ = Γ = Δ = Σελίδα 8
9 ΕΝΟΤΗΤΑ.1.5. Μέτρηση, σύγκριση και ισότητα γωνιών - Διχοτόμος γωνίας ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / /. Να συγκρίνετε τις παρακάτω γωνίες με ένα διαφανές χαρτί. Σχεδιάστε με το μοιρογνωμόνιο μια γωνία 68. Να βρεθεί το μέτρο των παρακάτω γωνιών. Σχεδιάστε την διχοτόμο της παρακάτω γωνίας με το μοιρογνωμόνιο. Στο διπλανό ισοσκελές τρίγωνο συγκρίνετε τις προσκείμενες στην βάση Γ γωνίες και Γ Σελίδα 9
10 Σελίδα 10
11 ΕΝΟΤΗΤΑ.1.6. Είδη γωνιών - Κάθετες ευθείες ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / /. Συμπληρώνουμε τον παρακάτω πίνακα Γωνία Ονομασία Σχέση Α Γ = < Α Γ <... Α Γ >.. Α Γ =... Α Γ =... Οι πλευρές της.. γωνίας είναι ημιευθείες Α Γ =.. < Α Γ <.... < Α Γ <.. Σελίδα 11
12 . Κάθετες ονομάζονται δύο ευθείες που τέμνονται και σχηματίζουν μεταξύ τους ορθή γωνία. Ο συμβολισμός ε 1 ε 2 δηλώνει ότι οι ευθείες ε 1 και κάθετα. Το ε 1 ε 2 διαβάζεται «η ευθεία ε 1 είναι κάθετη με «οι ε 1 και ε 2 είναι κάθετες μεταξύ τους». ε 2 τέμνονται την ευθεία ε 2» ή. Πώς φέρνουμε κάθετη από ένα σημείο Α σε μια ευθεία ε 1 :. Φέρτε τις κάθετες από το σημείο Α προς την ευθεία ε Α. Στο δίπλα τρίγωνο να φέρετε την κάθετη από την κορυφή Α προς την πλευρά Γ Γ Σελίδα 12
13 ΕΝΟΤΗΤΑ.1.7. Εφεξής και διαδοχικές γωνίες - Άθροισμα γωνιών ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Εφεξής γωνίες είναι δύο γωνίες που έχουν την ίδια κορυφή, μία κοινή πλευρά και δεν έχουν κανένα άλλο κοινό σημείο Διαδοχικές γωνίες ονομάζονται περισσότερες από δύο γωνίες, που βρίσκονται στο ίδιο επίπεδο και καθεμιά από αυτές είναι εφεξής γωνία με την προηγούμενη ή την επομενή της Να εξετάσετε αν τα παρακάτω ζευγη γωνιών είναι εφε ξής Σελίδα 13
14 Για να βρούμε το άθροισμα δύο γωνιών, τις κάνουμε εφεξής και βρίσκουμε το άθροισμα των μέτρων των δύο γωνιών. Nα βρεθεί το άθροισμα δύο γωνιών Να γράψεις τις εφεξής και τις διαδοχικές γωνίες που υπάρχουν στα παρακάτω σχήματα. Nα βρεθεί το άθροισμα των παρακάτω γωνιών Σελίδα 14
15 ΕΝΟΤΗΤΑ.1.8. Παραπληρωματικές και συμπληρωματικές γωνίες - Κατακορυφήν γωνίες. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Παραπληρωματικές Ονομάζονται δυο γωνίες που έχουν άθροισμα 180. Η κάθε μια από αυτές λέγεται παραπληρωματική της άλλης. Οι πλευρές των παραπληρωματικών γωνιών είναι αντικείμενες ημιευθείες Άν δύο γωνίες είναι παραπληρωματικές τότε α + β = 180 Συμπληρωματικές Ονομάζονται δυο γωνίες που έχουν άθροισμα 90. μια από αυτές λέγεται συμπληρωματική της άλλης. πλευρές των παραπληρωματικών γωνιών είναι κάθετες ημιευθείες Η κάθε Οι Άν δύο γωνίες είναι συμπληρωματικές τότε α + β = 90 Κατακορυφήν ονομάζονται οι γωνίες που έχουν την κορυφή ους κοινή και τις πλευρές τους αντικείμενες ημιευθείες Οι κατακορυφήν Γωνίες είναι μεταξύ τους ίσες γ = δ Σελίδα 15
16 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σε ποιες από τις παρακάτω περιπτώσεις οι γωνίες είναι κατακορυφήν και γιατί; 2. Να υπολογίσετε και να σχεδιάσετε την παραπληρωματική της παρακάτω γωνίας 3. Να υπολογίσετε και να σχεδιάσετε την συμπληρωματική της παρακάτω γωνίας 4. Να υπολογίσετε τις γωνίες α, β, γ, σε κάθε περίπτωση. Σελίδα 16
17 ΕΝΟΤΗΤΑ.1.9. Θέσεις ευθειών στο επίπεδο. ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Δύο ευθείες του ίδιου επιπέδου λέγονται παράλληλες όταν δεν έχουν κανένα κοινό σημείο όσο και αν προεκταθούν Για να δηλώσουμε ότι δύο ευθείες ε1 και ε2 είναι παράλληλες, χρησιμοποιούμε το σύμβολο // και γράφουμε ε1//ε2. Δύο ευθείες του ιδίου επιπέδου που έχουν ένα κοινό σημείο ονομάζονται τεμνόμενες και το κοινό τους σημείο λέγεται σημείο τομής των δύο ευθειών. Δύο ευθείες που βρίσκονται στο ίδιο επίπεδο ή θα είναι παράλληλες ή θα τέμνονται. Δύο ευθύγραμμα τμήματα που βρίσκονται πάνω σε δύο παράλληλες ευθείες, θα λέγονται παράλληλα ευθύγραμμα τμήματα και γράφουμε Α//ΓΔ. Από ένα σημείο Α, εκτός ευθείας ε, διέρχεται μία και μοναδική ευθεία ε1 παράλληλη στην ε. Σελίδα 17
18 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. ε 3 ε 4 ε 1 ε 2 Οι ε 1 και ε 2 είναι Οι ε 1 και ε 3 είναι και στο σημείο. Οι ε 1 και ε 4 είναι και στο σημείο. Οι ε 4 και ε 2 είναι και στο σημείο. Οι ε 4 και ε 2 είναι και στο σημείο. 2. Να φέρετε από το σημείο Α παράλληλη προς την ευθεία ε ήμα 1: Φέρνουμε την ευθεία ε 1 από το Α που είναι κάθετη στην ε ήμα 2 : Φέρνουμε την κάθετη στην ε 1 στο σημείο Α Γενικότερα: { ε 1 ε ε 2 ε } τότε ε 1 // ε 2 Σελίδα 18
19 ΕΝΟΤΗΤΑ Απόσταση σημείου από ευθεία - Απόσταση παραλλήλων ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Να υπολογίσετε πόσο απέχει το σημείο Α από την ευθεία ε Οι ευθείες ε και ε1 είναι παράλληλες. Να υπολογίσετε πόσο απέχουν Να σχεδιάσετε μια ευθεία παράλληλη στην ε1 που απέχει από αυτήν 1 cm Ένα πλοίο ταξιδευει πάνω στην ευθεία ε1. Στην θέση Α βρίσκεται ένας φάρος. Αν 1cm αντιστοιχεί σε 1Km να υπολογίσετε την κοντινότερη απόσταση τοπυ πλοίου από τον φάρο Σελίδα 19
20 Να σχεδιάσετε τα ευθύγραμμα τμήματα που το μήκος τους είναι ίσο με τις αποστάσεις του σημείου Τα από τις πλευρές του τριγώνου ΑΓ `Ποιο από τα παρακάτω ευθύγραμμα τμήματα έχει το μικρότερο μήκος; Σελίδα 20
21 ΕΝΟΤΗΤΑ Κύκλος και στοιχεία του κύκλου ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Κύκλος λέγεται το σύνολο όλων των σημείων του επιπέδου που απέχουν την ίδια απόσταση από ένα σταθερό σημείο Ο. Η απόσταση αυτή συμβολίζεται με ρ και λέγεται του κύκλου. Το σημείο Ο λέγεται. του κύκλου. Στον παραπάνω κύκλο σχεδιάστε Την χορδή Α ( το ευθύγραμμο τμήμα που ενώνει τα σημεία Α,) Μια διάμετρο του κύκλου ( μια χορδή που διέρχεται από το κέντρο του κύκλου) Το τόξο Α ( τα σημεία του κύκλου από το Α εώς το ) Κυκλικός δίσκος (Ο, ρ) είναι ο κύκλος (Ο, ρ) μαζί με το μέρος του επιπέδου που περικλείει. Όλα τα σημεία του κυκλικού δίσκου απέχουν από το κέντρο Ο απόσταση μικρότερη ή ίση με την ακτίνα ρ. Σελίδα 21
22 Να σχεδιάσετε δύο κύκλους με το ίδιο κέντρο O και ακτίνες 2 cm και 3cm O Να σχεδιάσετε έναν κύκλο με διάμετρο ΓΔ Να βρείτε ένα σημείο που απέχει 3cm από το Κ και 2cm από το Λ Nα κατασκευάσετε ένα τρίγωνο με πλευρές 3cm,2 cm, 1cm Σελίδα 22
23 ΕΝΟΤΗΤΑ Θέσεις ευθείας και κύκλου ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΗΜΕΡΟΜΗΝΙΑ / / Πόσα κοινά σημεία έχει ο κύκλος και η ευθεία;... Η ευθεία ε ονομάζεται του κύκλου. Η απόσταση του κέντρου Ο από την ευθεία είναι ΟΜ ρ Πόσα κοινά σημεία έχει ο κύκλος και η ευθεία;... Η ευθεία ε ονομάζεται του κύκλου. Η απόσταση του κέντρου Ο από την ευθεία είναι ΟΜ ρ Ισχύει ότι ΟΜ στην ευθεία ε Πόσα κοινά σημεία έχει ο κύκλος και η ευθεία;... Η ευθεία ε ονομάζεται του κύκλου. Η απόσταση του κέντρου Ο από την ευθεία είναι ΟΜ ρ 1. Να φέρετε ένα κύκλο που εφάπτεται στην ε στο σημείο Α Σελίδα 23
24 2. Να φέρετε την εφαπτομένη του κύκλου στο σημείο Α 3. Σελίδα 24
Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες.
Μαθηματικά A Γυμνασίου Κεφάλαιο 1 ο. Βασικές γεωμετρικές έννοιες. 1. Τι λέμε σημείο; Η άκρη του μολυβιού μας, οι κορυφές ενός σχήματος, η μύτη μιας βελόνας, μας δίνουν την έννοια του σημείου. 2. Τι λέμε
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότεραΣυνοπτική Θεωρία Μαθηματικών Α Γυμνασίου
Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α.
ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΟΝΟΜΑΣΙΕΣ Σημείο Το σημείο το ονομάζουμε με ένα κεφαλαίο γράμμα. Λέμε: το σημείο Α. Ευθύγραμμο τμήμα Το ευθύγραμμο τμήμα, το ονομάζουμε με δύο κεφαλαία γράμματα (των σημείων που
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
Διαβάστε περισσότεραΓραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Διαβάστε περισσότεραΣωστό -λάθος. 2) Δύο τρίγωνα που έχουν τις γωνίες τους ίσες μία προς μία είναι ίσα
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1)Δύο ισόπλευρα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50. Ύλη: Βασικές γεωμετρικές έννοιες Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.)
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 50 Ον/μο:.. Α Γυμνασίου Ύλη: Βασικές γεωμετρικές έννοιες 13-02-17 Θέμα 1 ο : Α. Τι ονομάζουμε κυκλικό δίσκο; (5 μον.) Β. Ποιες είναι οι σχετικές θέσεις μιας ευθείας κι ενός κύκλου;
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας
Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο
Διαβάστε περισσότεραΤο εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.
Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι η Ευκλείδια διαίρεση; Είναι η διαδικασία κατά την οποία όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε βρίσκουμε άλλους δύο φυσικούς αριθμούς π και υ,
Διαβάστε περισσότερα1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου
1. Γωνία Ο Δημήτρης ζωγράφισε ένα δέντρο στο δωμάτιο του. Το δέντρο απλώνει τα κλαδιά του στα δυο επίπεδα των τοίχων του δωματίου και στο επίπεδο της οροφής. Στη γωνία αυτή θα τοποθετήσει όλα τα παιχνίδια
Διαβάστε περισσότεραΟι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
Διαβάστε περισσότεραΠαράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».
Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία Οι γωνίες που βρίσκονται ανάμεσα στις ευθείες ε 1 και ε ονομάζονται «εντός» (των ευθειών)και όλες οι άλλες «εκτός». Οι γωνίες B 4, B 3, 1, είναι εντός
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΣωστό -λάθος. 3) Δύο ευθείες κάθετες προς μία τρίτη ευθεία είναι μεταξύ τους παράλληλες.
Σωστό -λάθος Α. Για καθεμιά από τις παρακάτω προτάσεις να γράψετε στο τετράδιό σας τον αριθμό της και, ακριβώς δίπλα, την ένδειξη (Σ), αν η πρόταση είναι σωστή, ή (Λ), αν αυτή είναι λανθασμένη. 1) Οι οξείες
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Β : Γεωμετρία Κεφάλαιο 1 - Βασικέ Γεωμετρικέ έννοιε
Α Γυμνασίου, Μέρο Β : Γεωμετρία Κεφάλαιο 1 - Βασικέ Γεωμετρικέ έννοιε Αυτό το υλικό διατίθεται με άδεια Creative Commons Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 (http://creativecommons.org/licenses/by-sa/4.0/).
Διαβάστε περισσότεραΕρωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.
1. ΑΝΑΓΝΩΡΙΣΗ, ΟΝΟΜΑΣΙΑ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ a. Αναγνώριση και ονομασία Δραστηριότητα 1 1. Ας κατασκευάσουμε όσο το δυνατόν περισσότερες γραμμές μπορούμε να σκεφτούμε. 2. Έχουμε ξανασυναντήσει
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ
Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι
Διαβάστε περισσότεραΕυκλείδεια Γεωμετρία
Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου
Διαβάστε περισσότεραΜαθηματικά Α Γυμνασίου. Επαναληπτικές Ασκήσεις
Μαθηματικά Α Γυμνασίου Επαναληπτικές Ασκήσεις.: Δυνάμεις φυσικών αριθμών.4: Ευκλείδεια διαίρεση - διαιρετότητα.: Χαρακτήρες διαιρετότητας - ΜΚΔ - ΕΚΠ - Ανάλυση αριθμού σε γινόμενο πρώτων παραγόντων Κεφάλαιο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Χρήστος Π. Μουρατίδης 2013 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΤΑΞΗ Α ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ B Κ 1.1 ΕΝΟΤΗΤΑ : Βασικές Γεωμετρικές ένοιες Τάξη : A Γυμνασίου. Καθ. Χρήστος Μουρατίδης
Διαβάστε περισσότεραΓεωµετρία Α Γυµνασίου. Ορισµοί Ιδιότητες Εξηγήσεις
Γεωµετρία Α Γυµνασίου Ορισµοί Ιδιότητες Εξηγήσεις Ευθεία γραµµή Ορισµός δεν υπάρχει. Η απλούστερη από όλες τις γραµµές. Κατασκευάζεται µε τον χάρακα (κανόνα) πάνω σε επίπεδο. 1. ύο σηµεία ορίζουν την θέση
Διαβάστε περισσότεραΓενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραΑ Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία
Α Γυμνασίου, Μέρο Β, Γεωμετρία, Κεφάλαιο 2, Συμμετρία Περιοδική Έκδοση για τα Μαθηματικά Γυμνασίου Μαθηματικά Α Γυμνασίου Μέρο Β - Κεφάλαιο 2, Β. 2.2. Άξονα συμμετρία σχήματο ονομάζεται η ευθεία που χωρίζει
Διαβάστε περισσότεραΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΜαθηματικά A Γυμνασίου
Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 6/ 11/ 2016
εν είναι δυνατή η προβολή αυτής της εικόνας αυτή τη στιγµή. ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:...
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ. Βαγγέλης. Βαγγέλης Νικολακάκης Μαθηματικός.
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΘΕΜΑΤΑ ΑΠΟ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρον φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
Διαβάστε περισσότεραΔύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία.
ΜΑΘΗΜΑ 2 Δύο ημιευθείες OX, OY με κοινό άκρο O, χωρίζουν το επίπεδο σε δύο μέρη και ορίζουν μία κυρτή γωνία ή απλά γωνία και μία μη κυρτή γωνία. Κυρτή γωνία ή απλά γωνία λέγεται το σχήμα που συμβολίζουμε
Διαβάστε περισσότερα3, ( 4), ( 3),( 2), 2017
ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x. Να λυθούν οι εξισώσεις: α) 3x x 3 3 5x x β) 4 3 x x x 0
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες
17 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΓΕΩΜΕΤΡΙΙΑΣ Κεφάλαιο 1 ο : Βασικές Γεωμετρικές έννοιες Β. 1. 1 81. Τι ονομάζεται ευθεία και ποιες προτάσεις αναφέρονται σ αυτή; Ονομάζεται ευθεία το σχήμα που προκύπτει
Διαβάστε περισσότεραΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).
ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Διαβάστε περισσότεραΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)
ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα στον ορισμό τη επίκεντρης
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου;
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Να γράψετε τον τύπο της Ευκλείδειας διαίρεσης. Πώς ονομάζεται κάθε σύμβολο του τύπου; 2. Τι ξέρετε για το υπόλοιπο που προκύπτει από μια Ευκλείδεια διαίρεση; 3. Τι ονομάζουμε τέλεια
Διαβάστε περισσότεραΔΡΑΣΤΗΡΙΟΤΗΤΑ. Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου. Σκεφτόμαστε. Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων. Όχι κάθετες πλευρές
- 218 - Μέρος Kεφάλαιο 3 ο - Τρίγωνα - Παραλληλόγραμμα - Τραπέζια.3.1. Στοιχεία τριγώνου - Είδη τριγώνων Θυμόμαστε - Μαθαίνουμε Κύρια στοιχεία τριγώνου κορυφή Κάθε τρίγωνο έχει τρεις κορυφές,,, τρεις πλευρές,,
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ
ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ Ένα «ανοικτό» αρχείο, δηλαδή επεξεργάσιμο που όλοι μπορούν να συμμετέχουν είτε προσθέτοντας είτε διορθώνοντας υλικό. Μετά
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης
ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που
Διαβάστε περισσότεραΤο επίπεδο του ημιεπιπέδου σ χωρίζει το χώρο σε δύο ημιχώρους. Καλούμε Π τ τον ημιχώρο στον οποίο βρίσκεται το ημιεπίπεδο τ Επίσης, το επίπεδο του
ΣΤΕΡΕΑ ΜΑΘΗΜΑ 10 Δίεδρες γωνίες Δύο επίπεδα α και β που τέμνονται, χωρίζουν τον χώρο σε τέσσερα μέρη, που λέγονται τεταρτημόρια. Ορίζουν επίσης σχήματα ανάλογα των γωνιών που ορίζουν δύο τεμνόμενες ευθείες
Διαβάστε περισσότεραΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ. Α Γυμνασίου ΜΑΘΗΜΑΤΙΚ. B τεύχος ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ
YΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ A Γυμνασίου B Tεύχος ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Α Γυμνασίου ΜΑΘΗΜΑΤΙΚ B τεύχος ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»
ΕΠΝΛΗΠΤΙΚΕΣ ΣΚΗΣΕΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΜΕΡΟΣ ο «ΕΩΜΕΤΡΙ». 1. Να υπολογίσετε τα εμβαδά των σχημάτων,, χρησιμοποιώντας ως μονάδα μέτρησης εμβαδών το. Τι παρατηρείτε; ρίσκουμε ότι τα εμβαδά των,, είναι : 5,
Διαβάστε περισσότεραΑνακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691
ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691 1.. 2.. 1.,. ( ) ( ) (2 ).. ( ) (5 ),,. ; ; 2.,,. 3.,.,,. (,,,, ). : ), ) ),, ),...1 16692 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 4. 5.. 6. (,, ). 1.,
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ. Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1
2 Η γωνία - Ο κύκλος Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ηµιεπίπεδο Κάθε ευθεία ε επιπέδου Π χωρίζει τα σηµεία του επιπέδου που δεν ανήκουν στην ε σε δύο σηµειοσύνολα Π 1, Π 2 τα οποία ονοµάζονται ηµιεπίπεδα
Διαβάστε περισσότεραΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ
ΜΕΡΟΣ Α ο ΚΕΦΑΛΑΙΟ. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών. Ονομάζεται αλγεβρική παράσταση μια παράσταση
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :
ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν
Διαβάστε περισσότεραΑ ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. πότε ίσο με το 1. Δώστε από ένα παράδειγμα
49 0 ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2011-2012 Α ΓΥΜΝΑΣΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ : 22 ΜΑΪΟΥ 2012 ΘΕΩΡΙΑ 1 η : Να γράψετε πότε ένα κλάσμα είναι μικρότερο,
Διαβάστε περισσότεραΌμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.
Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο
Διαβάστε περισσότερα1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
Διαβάστε περισσότεραΚεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί
ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραX Άπειρες ευθείες, X Μία µόνο ευθεία, X ύο µόνο ευθείες.
1. Συµπλήρωσε τα παρακάτω κενά: α. Το µήκος του ευθύγραµµου τµήµατος ΑΒ, που ενώνει δύο σηµεία Α και Β λέγεται απόσταση των σηµείων. β. Μέσο ενός ευθυγράµµου τµήµατος ΑΒ ονοµάζουµε το σηµείο του Μ που
Διαβάστε περισσότεραΕρωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
Διαβάστε περισσότερα6 Γεωμετρικές κατασκευές
6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 η ΕΚΑ Α
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ η ΕΚΑ Α. Πότε δύο γωνίες λέγονται εφεξής; Ποιο σχήµα ονοµάζουµε κύκλο µε κέντρο Ο και ακτίνα ρ ; Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε αριθµό της πρώτης στήλης µε ένα γράµµα της
Διαβάστε περισσότερα1 x και y = - λx είναι κάθετες
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
Διαβάστε περισσότερα2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ
1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός
Διαβάστε περισσότεραΕρωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
Διαβάστε περισσότεραΚεφάλαιο 1 ο : Οι Φυσικοί αριθμοί
ΕΡΩΤΗΣΕΙΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ 2 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ ΑΡΙΘΜΗΤΙΚΗΣ -- ΑΛΓΕΒΡΑΣ Κεφάλαιο 1 ο : Οι Φυσικοί αριθμοί Α. 1. 1 1. Ποιοι αριθμοί ονομάζονται φυσικοί και ποια είναι η χαρακτηριστική
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότεραίου σεις Θεωρίας Ερωτήσ Επιµέλεια
ΜΑΘΗΜΑΤΙΚΑ Α Γυµνασί ίου Ερωτήσ σεις ς Επιµέλεια Θ Ε Μ Ε Λ Η Σ Ε Υ Ρ Ι Π Ι Η Σ 1 ο Κεφάλαιο Φυσικοί Αριθµοί 1.1 Φυσικοί αριθµοί ιάταξη φυσικών Στρογγυλοποίηση 1. Ποιοι φυσικοί αριθµοί ονοµάζονται άρτιοι
Διαβάστε περισσότερα