Dynamic models models with variables dated in different periods
|
|
- Γῆ Βικελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Panel Daa Economercs Semnar 4: Ocober 3,7 Soluon proposal by: Aleksander Sahnoun (7h semeser Problem 4.: Auoregressve models Problem 4. A: Dynamc models models wh varables daed n dfferen perods Panel daa handles dynamc models beer han cross-secon daa and me seres daa. Pure me seres daa can handle ndvdual-specfc heerogeney (can handle some me specfc heerogeney f has o some exend be parameerzed. h panel daa s possble o handle ndvdual-specfc heerogeney and me-specfc heerogeney whn he same framework. In auoregressve models, wh laggng LHS varables as explanaory varables, panel daa offers he possbly o handle me-lags beween me ndexed varables and ndvdualspecfc heerogeney. Problem 4. : ( y, c y, γ x, α u, u IID o σ,..., ;,...,,, (, Cross-secon daa: Assume ha y,, y,, and x, are observed varables. y c y γ x α u u IID( o, σ,,..., ; (, * * (' y y, x u α γ α α c e have equaon bu coeffcens, so s no possble o esmae all of hem. e are no able o esmae he ndvdual-specfc nercep erms from cross secon daa. Remark: Gven ha he model specfcaon s correc, and snce he dsurbance erm s IID, OLS on ('' y α y, δ x u ould be MVLUE.
2 Problem 4. C: I assume access o panel daa, * (3 y, α y, γ x, u u, x, y are ndependen for all (, α α γ < * c u IID o σ, (,,..., ;,...,, a hn-ndvdual esmaon explos nformaon from observaons whn each ndvdual over me. If y, were srcly exogenous we could have esmae OLS on (3. he OLS esmaor would concde wh he whn-ndvdual esmaor and would have gven MVLUE. s *, γ, γ α, s, s s y y ( x u If he process, for each ndvdual, have sared an nfnely long dsance back n me and γ <, follows ha α y x u x * s * s, γ ( α, s, s γ (, s u s s γ s, e can ransform (3 no an equaon n deparures from he ndvdual-specfc means, * * (4 ( y, y, ( α α ( y, y, γ ( x, x, ( u, u,,..., ; ( y, y, γ ( x, x, ( u, u,,...,, and apply OLS. y, s uncorrelaed wh u,, bu correlaed wh u, so we ge esmaors ha are conssen. (nconssen f s fne and are asympocally negavely based (larger han ½ when he number of ndvduals goes o nfny.. e can nerpre ˆ γ, ˆ w w as a weghed mean of ndvdual-specfc esmaors, all whch are conssen when goes o nfny. ( y y ( y y,,,, ˆ 45, 459 Y, Y Y, Y 98 ( y, y, γ ( y y ( x x,,,, ˆ 53,547 X, X X, Y 5 ( x, x, b ha do src exogeney requre?
3 e can ransform (3 no an equaon where we subrac he ndvdual specfc mean wh he global mean. e hen explo he nformaon beween ndvduals. (5 ( y y ( α α ( y y γ ( x x ( u u,,,,,..., ;,...,, If we assume ha he ndvdual specfc nerceps are uncorrelaed wh he RHS varables, we can wre he esmaors as: ( y y( y y,, ˆ 33,37 Y, Y Y, Y ( y, y γ ( y y ( x x,, ˆ 4,9449 X, X X, Y 54 ( x, x e can see ha he esmae of γ s volang our assumpon γ <. If he ndvdual specfc coeffcens are correlaed wh he RHS varables, he esmaors are : ( α α( y, y ˆ γ γ ( y, y ˆ ( α α( x,, ( x x x c rng he equaon n frs dfference form (5 ( y, y, ( y, y, γ ( x, x, ( u, u,,..., ; y y γ x u,...,,,,,, In (5 he lagged RHS varable y, s correlaed wh u, (5 ( y y ( y γ ( x x ( u u,, y,,,,,, Always based and nconssen?
4 ˆ γ ˆ,,,,, OLS ( y, y,, OLS ( y y ( y y ( y ( y,, G G Y, Y Y, Y ( y, ( y y ( x,,, ( x x,, ( y ( x x,,, G G X, X X, Y,57 ( x, 9, 6,56 8,44 5,33,54 he OLS esmaors are nconssen regardless of wheher, or boh go o nfny even hough he equaon s pu on dfference form. e can alernavely ransform he equaon, or esmae by nsrumen varables and GMM. he ndvdual nercep erm, In (a * ˆ ˆ * ˆ α y y λ x, ˆ α ˆ α c,,, * * *, c j j ˆ α ˆ α ˆ α ˆ α e have x equaons and unknown, so we don need any addonal nformaon. In (b e have unknown, bu we have jus lnear ndependen equaons, so we need some addonal knowledge/resrcons o esmaeα. 3 In (c he nercep vansh when we ake he equaon on dfference form. 3 Addonal condons?
5 Problem 4. D : * (6 y, α y, γ y, γ x, x, u,,..., ;,...,, (6' y, y, γ y, γ x, x, u, u, x, y are ndependen for all (, α * α c,..., ;,...,, u IID o σ, (, Snce we have a Panel Daa se,. e have seen n problem C ha we have o esmae he coeffcens wh IV o ge conssen and unbased esmaors. Snce x, or x, are correlaed wh y, y,, or y,, y, and uncorrelaed wh u,, u,, hey are vald nsrumens. he equaons: y,4 y,3γ y,γ x,4 x,3 u,4 y,5 y,4γ y,3γ x,5 x,4 u,4 M y y γ y γ x x u,,,,,, Vald nsrumens: z ( y, x, x for ( y, y, x, x,3,,4,3,,3,4,3 ( snce cov( y,, u, u, whle cov( y,, u, u, z,4 ( y,, y,, x,5, x,4 for ( y,3, y,4, x,5, x,4 M z ( y, y,..., y x, x for ( y, y, x, x n he (-3'h equaon,,,, 3,,,,,, e are able o esmae he coeffcens when 4 be used as IV s (uncorrelaed wh u, 4. hen we have enough varables ha can 4 hen are hey conssen and unbased?
6 Problem 4. E: α γ δ * (7 y, y, x, z, u, Assume: u, s sochascally ndependen of x,, y, z α, * α c for all (, u IID o σ, (,,..., ;,...,, he mnmzaon problem ( whn-ndvdual esmaon: mn ( y k y ˆ γ x ˆ z ˆ δ ˆ α k, γδα,,, foc :,,,. ˆ ˆ ˆ ( y ˆ ˆ, k y, γ x, zδ α k. ( y ˆ ˆ ˆ ˆ ˆ, k y, γ x, zδ α y, ˆ γ 3. ( y kˆ y ˆ γ x ˆ,,, ˆ z ˆ δ ˆ α x, 4. ( y ˆ ˆ ˆ ˆ ˆ, k y, γ x, zδ α z ˆ δ 5. ( y ˆ ˆ ˆ ˆ ˆ, k y, γ x, zδ α,..., ˆ α If he las equaons are sasfed, hen he frs and he fourh also hold. e hus only have lnear ndependen equaons, from whch we canno deermne 4 unknowns. From he las equaons s follows ha: kˆ ˆ ˆ ˆ ˆ zδ α y, γ x,,..., Insered n FOC (,3 ( ˆ,, ˆ y y γ γ x ˆ ˆ, ( zδ ˆ α kˆ y, ( y y ˆ γ x ˆ y ˆ γ x ˆ y,,,,,, ( ˆ ˆ,,, ( ˆ ˆ ˆ, ˆ y y γ x zδ α k x ( ˆ ˆ ˆ ˆ y, y, γ x, y, γ x, x, hch we can solve for ˆ γ and ˆ. he compose erm: kˆ z ˆ δ ˆ α y y,, ˆ λ x ˆ,
7 z e can only esmae he compose parameers k ˆ ˆ ˆ zδ α and ˆ, ˆ λ. e are unable o separae he fxed ndvdual-specfc effec ˆ α from he effec from he ndvdual specfc varable snce we have a mulcollneary problem. he esmaor of he wodmensonal varable x, concdes wh he one we could have obaned whou z. Problem 4.: Model wh sochasc slope coeffcens Problem 4. A: he model: ( y α x u u IID( o, σ,..., ;,...,, Indvdual-specfc nercep: α α ε ε IID( o, σ ε,..., ; Indvdual-dependen coeffcen δ δ IID( o, σ δ,..., ; ( ( y α ε δ x u α x δ x ε u v δ x ε u - Compose dsurbance ' ( y α x v,..., ;,...,, Assume ha x, ε, u, δ are sochascally ndependen for all and. Properes of he compose dsurbance: E( v x E( δ x ε u x E( δ x x E( ε x E( u x ( δ ε Ev ( x E x u x E( δ x x E( ε x E( u x E( δ x ( ε u x E( u ε x x σ δ σ ε σ σ σ σ x δ ε ( ( Evv ( s xx s E δx ε u δxs ε us xs E( δ x x x x E( ε x x E( u u x x s s s s s xxσ s δ xx sσ δ σ ε s
8 Varance covarance marx x σδ σε σ for j, s x xsσδ σε for j, s cov( vv js xx js, j,..., ; s,,...,, for j, s for j, s he compose dsurbance s heeroskedasc boh across ndvduals and perods (dfferen varance across ndvduals and perods. Ev ( x x σδ σε σ Furher, he dsurbance s auocorrelaed over perods, bur no across ndvduals (correlaon beween dfferen perods, bu no beween ndvduals. Evv ( s xx s xx sσ δ σ ε s he compose dsurbance erm s uncorrelaed wh he equaon s rgh hand sde varable. Usng he law of eraed expecaons: cov( v, x E( v x E E ( v x x E x E ( v x [ ] [ ] x v x v u he equaon ( RHV s no sochasc ndependen of he compose dsurbance, snce he condonal and margnal dsrbuon dffers. Usng he law of eraed expecaons: Ev ( x x σ σ σ δ ε E[ E( v x] Ev ( Ex ( σ σ σ Ex ( σ σ σ x v δ ε δ ε Ev ( Ex ( σ σ σ δ ε ogeher wh: 3 E( v x Ex[ Ev ( v x x ] Ex[ xev ( v x ] E x ( σδ σε σ E( x σδ E( x σε E( x σ 3 Evx ( Ex ( σ Ex ( σ Ex ( σ δ ε hs mples ha: cov( v, x Evx ( Evx ( Ev ( Ex ( 3 Ex ( σδ Ex ( σε Ex ( σ Ex ( Ex ( σδ σε σ ( 3 ( Ex ( Ex ( Ex ( δ ( Ex ( Ex ( ε ( Ex ( Ex ( σ σ σ cov( x, x σ δ So σ δ >, x s uncorrelaed wh v, bu correlaed wh v In marx noaon ( can be wren as:
9 (3 y eα x v v eε xδ u,..., ; ' ' j ' Σ eeσε σδ σ xx I (4 E( v, vj x, xj,j,...,, Σ j j e can also wre (3 as: (5 y X v here ( α, he varance covarance marx s hen: Σ K Σ Σ L ' (6 E( vv X M O M Snce he varance covarance marx has nonzero elemens ousde he dagonal GLS wll be MVLUE. (he GLS esmaor s more effcen han he OLS esmaor. CASE If he varances of he sochasc elemens are know ( σδ, σε, σ,..., σ esmaor s:, he GLS * ' ' XΣ X XΣ y he esmaor s hen weghed by he varance and covarances. * * ' - ' - Le denoe he ndvdual GLS esmaor XΣ X XΣ y,..., CASE If σδ, σε, σ,..., σ are unknown, we can esmae hem from her emprcal counerpar ˆΣ and hen esmae by GLS usng ˆΣ. hs s he mehod of FGLS/EGLS/wo Sep. Frs esmae ˆ and ˆ α by OLS when hey are consdered as unknown consans. hen fnd he resdual vecor y e ˆ α x ˆ. uˆ Form ˆ ε ˆ ˆ α α j and esmae j And symmerc for σ ˆδ. Form ˆ δ ˆ ˆ j and esmae j σ ε by s emprcal counerpar σ δ by s emprcal counerpar ˆ σ ˆ σ ˆ ε α j j ˆ δ j j
10 Problem 4. y α x u (7 where, α are consans. u IID( o, σ,..., ;,...,, σ for j, s for j, s cov( uu js xx s for j, s for j, s e can esmae he whn esmaor of. ˆ ' ' ( X X ( X y XX XY XX XX XY XY e use he varance whn he ndvdual o esmae ˆ. he GLS esmaor n A of s: ˆ GLS ' ' ' ' X ( I θ ( X X I X X ( I y θx ( I y XX θ XX XY θ XY σ here : θ σ ( σ σ ε δ In problem A we esmae he common slope coeffcen. he GLS esmaor s a weghed esmaor, weghed wh he nverse of he varance covarance marx. If α, are consans, we exrac he whn varance (and sesθ.
11 Problem 4. C es of heerogeney n slope coeffcen. Assumng unknown and consan α, (FE. Full ndvdual heerogeney: H : α,..., α and,..., are unresrced A Indvdual nercep heerogeney, homogeneous slopes: H : α,..., α and are unresrced Full homogeney: H : α α α and are unresrced C e make he assumpon u II(,, σ I ( replacng u IID(,, σ I II > Independen, dencally normally dsrbued. hs normaly assumpon ensure ha he F-es s vald. he sum of squared resduals are: SSR uˆ for model H A SSR uˆ for model H SSR uˆ for model H C A C e wan o es he null hypohess homogeneous slope coeffcen - agans he alernave hypohess heerogeneous slope coeffcen. he es can n general be wren as SSR SSR umber of resrcons under H F SSR umbers of degrees of freedom under H If we assume ndvdual nercep, he es would be: SSR SSRA K( SSR SSRA ( K FA SSR A SSR A K( ( K hch s F-dsrbued wh K(- and (-K- degrees of freedom under. H If we assume a random effec model, we mus use he reusch-pagan ess 5. 5 Lecure noe 7
12 Problem 4. D y α x ε δ x u (8 u IID( o, σ,..., ;,...,, α α ε δ u x, ε, δ ε (, σ,..., ; IID o ε δ IID( o, σ δ,..., ; Expandng he model allowng for correlaon beween α, and x,,...,. hs may reflec ha a laen ase varable for household - ε, δ-, s correlaed wh household s ncome - he observable explanaory varable x. Frs we formalze a correlaon beween ε and x. x Ex ( λ w w IID( o, σ [ ] ε If δ s correlaed wh x hen can be δ IID( o, σ δ, so we do he same formalzaon for δ : δ [ x E( x ] ϕ η η IID( o, σ μ (9 y ( α μλ x x xλ ϕxx w xη u where E( x μx k x x λ ϕx x Q where Q w x η u, k α μ λ x e have now conrolled for he problem wh laen heerogeney, bu we now have a problem wh he compose dsurbance erm. So we ransform he equaon as we dd n problem 4. a o ge a covarance-varance marx ha has zero ousde he dagonal. Σ K ' E( vv X M O M Σ Σ L he ransformed model can be wren: y% k% % x x % % x x Q% ( λ ϕ w OLS on wll gve he MVLUE esmaors.
13 Problem 4.3 Measuremen error models Problem 4.3 A ( ( y k ξ u x ξ η (3 ξ, u, η are ndependen for all, u η IID o σ (, IID o σ (, η,..., ;,...,, ˆ ( ( ( ( ( ( x x y y x ˆ x y y C x x x x (a plm ( x x( y y x x y y lm ˆ p plm ( ( ( x x Slusky plm ( x x plm ( x (( ( ( x xx η η u u plm ( x x plm (( x x( xx ( x ( ( ( x η η x x u u plm ( x x plm ( x x( x x plm (( x x ( plm ( x x ( u η η u plm ( x x p lm (( ξ η ξ η ( η η plm ( x x plm ( ξ ξ ( η η plm ( η η( η η plm ( x x p lm ( ξ (, ξ η η ξ ξ η η snce plm ( η η( η η plm ( η ηη η ( E( η E( ηη E( η, by assumpon E( η E( ηη E( η
14 b plm ( ξ ( lm ( ( ξ η η p lm ˆ η η η η ση p * plm ( ξ ξ plm ( η η plm ( ξ ξ ( η η b σ η * b plm ( ξ ξ snce: plm η ( ( lm ( η η η p η ηη η E( η E( η E( η E( η E( η ση,(snce s fne and by assumpon E( η c plm ( x x( y y x x y y lm ˆ p plm C ( ( ( x x Slusky plm ( x x plm ( x x( x x plm (( x x ( plm ( x x ( u η η p lm ( x x plm ( ξ ( plm ( ( ξ η η η η η η plm ( x x u d plm ( ξ ( lm ( ( ξ η η p lm ˆ η η η η ση p C * plm ( ξ ξ plm ( η η plm ( ξ ξ ( η η c σ η * c plm ( ξ ξ
15 Problem 4.3 ( ( (3 ξ, u, η, φ, ψ, α, γ are ndependen for all, (4 y k ξ α γ u x ξ φ ψ η, y k x α γ u φ ψ η u η IID o (, σ IID o σ (, η α φ IID o (, σα IID o σ (, φ ψ γ,..., ;,...,, IID o (, σψ IID o σ (, γ a plm ( x x( y y x x y y lm ˆ p plm ( ( ( x x Slusky plm ( x x plm ( x (( ( ( ( x x x α α u φ φ η η plm ( x x plm x x plm ( x x plm ( x ( lm ( ( x x x p x x η, plm ( x x plm ( x x u plm, ( ( x lm x φ p x x, α, plm ( x x plm (( ξ ξ η η φ φ ( η η plm (( ξ ξ η η φ φ φ plm ( x x p lm ( η η( ηη lm ( ( p φ φ φ φ plm ( x x So: p lm ˆ, (( ( x x ( φ φ ( x x ( α α( x x ( x x ( η η ( x x u
16 plm ( x x( y y x x y y lm ˆ p plm C ( ( ( x x Slusky plm ( x x plm ( x x( x x plm (( x x ( plm ( x x ( u η η p lm ( x x plm ( x ( lm (( ( x γ γ p x x ψ ψ plm ( x x plm (( η η ( η η plm ( ( ψ ψ( ψ ψ plm ( x x so : p lm, ˆC b s fne: u plm ( φ φ ( φ φ plm ( ( lm ˆ η η η η σ σ p * plm ( ξ ξ plm ( φ φ plm ( η η b * b plm ( ξ ξ p lm ˆ C ( η φ ( ση σφ c s Fne: p lm ˆ
17 plm ( x x( y y x x y y lm ˆ p plm C ( ( ( x x Slusky plm ( x x plm ( x x( x x plm (( x x ( η η plm ( x x ( u u p lm ( x x plm ( x ( lm (( ( x γ γ p x x ψ ψ plm ( x x plm (( η η ( η η plm ( ( ψ ψ( ψ ψ ( ση σψ * plm ( ξ ξ plm ψ ( p lm ( c ( ψ η ψ η σ σ η * c plm ( ξ ξ
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)
Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
arxiv: v1 [math.st] 5 Dec 2018
Esmaon of mulvarae asymmerc power GARCH models Y. Boubacar Maïnassara a, O. Kadmr a, B. Saussereau a a Unversé Bourgogne Franche-Comé, Laboraore de mahémaques de Besançon, UMR CNRS 6623, 16 roue de Gray,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
Χρονοσειρές Μάθημα 3
Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
On homeomorphisms and C 1 maps
arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
FORMULAE SHEET for STATISTICS II
Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
CNS.1 Compressible Navier-Stokes Time Averaged
CNS.1 Compressble Naver-Sokes Tme Averaged Insananeos flow conservaon prncples, compressble flow D M : L( ρ) = ρ + ( ρ ) = 0 x ρ D P : L( ρ ) = + ρ + pδ = 0 x D E : L( ρe) = ( ρe+ ρ / ) + ( ρh+ ρ / q)
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Reflection Models. Reflection Models
Reflecon Models Today Types of eflecon models The BRDF and eflecance The eflecon equaon Ideal eflecon and efacon Fesnel effec Ideal dffuse Thusday Glossy and specula eflecon models Rough sufaces and mcofaces
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows
Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
New symmetries of Black-Scholes equation
Proceedngs of he 03 Inernaonal Conference on Appled Mahemacs and Compuaonal Mehods New symmeres of Black-Scholes equaon TSHIDISO MASEBE Tshwane Unversy of Technology Mahs,Scence& Tech Deparmen No Aubrey
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η
# η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( "
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Ρηματική άποψη. (Aspect of the verb) Α. Θέματα και άποψη του ρήματος (Verb stems and aspect)
15 Ρηματική άποψη (Aspect of the verb) Α. Θέματα και άποψη του ρήματος (Verb stems and aspect) imperfective perfective Verb forms in Modern Greek are based either on the imperfective or the perfective
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Probabilistic Image Processing by Extended Gauss-Markov Random Fields
Pobablsc mage Pocessng b Eended Gauss-Makov Random Felds Kauuk anaka Munek asuda Ncolas Mon Gaduae School of nfomaon Scences ohoku Unves Japan and D. M. engon Depamen of Sascs Unves of Glasgow UK 3 Sepembe
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Chapter 29. Adjectival Participle
Chapter 29 Adjectival Participle Overview (29.3-5) Definition: Verbal adjective Function: they may function adverbially or adjectivally Forms: No new forms because adverbial and adjectival participles