Literatura WEB: Teorija signala. Signal. Prvi dio: osnove. Kontinuirani i diskretni signali. Klasa signala

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Literatura WEB: Teorija signala. Signal. Prvi dio: osnove. Kontinuirani i diskretni signali. Klasa signala"

Transcript

1 Teorja sgnala Prof. dr. sc. Hrvoje Babć, Prof. dr. sc. Damr Seršć ZESOI - ER Lerara WEB: hp://s.zeso.fer.hr H. Babć: Sgnal ssav, Zavodsa srpa ER, Zagreb, 996. hp://ss.zeso.fer.hr, 22.. de Colon: Sgnal Theor and Processng, Arech Hose, Dedham, 986. L.E. rans: Sgnal Theor, Prence Hall, Englewood Clffs, 969. A. Papols: Sgnal Analss, McGraw-Hll, 977. Prv do: osnove Klase sgnala ssava Vremens onnran dsren Bezmemorjs ssav ncjs relacjs bloov Memorjs ssav Memorjse predcjse operacje Model s varjablama sanja Odzv lnearnh ssava Sgnal Sgnal: fenomen oj nos ne nformacj. Sgnale - vremense fncje označava ćemo malm slovma - x, v,. Trenna vrjednos: (), R. Ao je ogrančen na T R, onda je sgnal preslavanje : T U, gdje je T domena, a U odomena od. {(, ()) T}. Klasa sgnala ea je U sp svh sgnala z T na U. Tada je sgnal varjabla z lase sgnala U. Razljemo: odomena od () je U (sp brojeva), odomena od je U (sp fncja). Konnran dsren sgnal Ao je domena T neprebrojv nepren (onnran) sp, onda se rad o vremens onnranom sgnal. Ao je domena T prebrojv sp renaa {,, 2,..., }, onda je o vremens dsrean sgnal

2 Dsrena vremensa varjabla Trene možemo poreda rasć nz < < 2 <..., j. ves ndesacj spa T, T. Trene prdržjemo sp cjelh brojeva : Z R. l () je vrjednos na cjelom broj Z, gdje je ndes l ora nza. {(, ) K}; K Z. Dsrena vremensa varjabla... zove vrem. renaa označavamo ao..., -,,, 2,... l {()}, Z l { }, Z ajjednosavnj prmjer: armeč nz {, +T, +2T,...}, gdje je T onsana (van vremena). Jednola dsrezacja vremena T Z. T 2T 3T 4T Amplde sgnala Ao je podrčje amplda sgnala U R, neprebrojv onnran sp, sgnal je nevanzran l analogan. Ao je podrčje amplda sgnala prebrojv sp U {..., -2, -,,, 2,...}, sgnal je vanzran. Dsrezacja amplde Dsrezacja amplde... Indesacja amplda n je preslavanje : Z U, { n n }, Z. ajjednosavnj prmjer: armeč nz {..., a -Q, a, a +Q, a +2Q,...}, gdje je Q onsana (van amplde). n Q n n. 4Q 3Q 2Q Q

3 Dsrezacja... Jednolo dsrezran sgnal (po vremen po ampld) može se zraz samo spovma ndesa n (z poznae T Q). {n()}, K Z, n Z. Konnran sgnal n n 4Q 3Q 2Q Q T 2T 3T 4T 5T 6T 7T Aperodčn sgnal Aperodčn sgnal μ () rc () pd () λ () T T Sepenca Pravon pls, μ ( ), < rc( ) μ( ) μ( T) Plsn dble pd( ) μ( ) 2μ( T 2) + μ( T) Kosna, λ( ), < r () Aperodčn sgnal δ () Perodčn sgnal δ T() T T Tron pls r( ) λ( ) 2λ( T 2) + λ( T) Impls, δ ( ), Implsn nz δ ( ) δ ( T) T Tp Plsn nz p( T) δ ( ) d δ ( ) ϕ( ) d ϕ() Snsoda x( ) a sn( ω + ϕ)

4 Aperodčn sgnal Aperodčn sgnal sn d sn d 2 e α d d e 2 α Aperodčn sgnal Aperodčn sgnal Im Re x( ) e s s σ + jω Czoda τ lm e δ () τ τ Osnovn dsren sgnal (nzov) Jednčn nz δ...,,,,,,... (z s jednčnm članom l zorom, Kronecerov dela, δ nz) δ ( ) δ() za, Z za Osnovn dsren sgnal (nzov) Jednčna sepenca (Heavsdeov nz) za, Z S...,,,,,,... S ( ) za < S()

5 Snsn nz () U cos (ωt + ζ ), gdje je ω frevencja dodrnce () Osnovn dsren sgnal (nzov) Osnovn dsren sgnal (nzov) () U cos (Ω + ζ ), Z U - amplda ζ - faza Ω ωτ - ora argmena radanma analogan frevencj () cos (Ω + ζ ), Z Svojsva snsnog nza Ω π / 6 Ω 2 π / 6 Za Ω 2π - Δ zlaz () cos (2π - Δ) cos (-Δ) cos Δ Iz raspoložvog nza se ne može razlova da l je frevencja dodrnce Ω 2π - Δ l Ω 2 Δ Svojsva snsnog nza Vd se da se z ovog nza ne može razlova frevencja Ω od blo oje Ω n Ω + 2nπ, n Z jer je cos [(Ω +2nπ)] cos (Ω +2nπ) cos (Ω ) Da b se Ω mogao odred jednoznačno z nza moramo b sgrn da je Ω < π, odnosno ω < π / T l 2 f < / T. n, Z Operacje na sgnal, ssav Promjene na sgnal se događaj ad sgnal prolaz roz medj l ssav. Ssav je cjelna sasavljena od međsobno povezanh objeaa gdje svojsva objeaa njhovo međdjelovanje određj svojsva vladanje cjelne. Mldscplnarn problem: odred, podes, predvdje vladanje ssava, l pa realzra ssav željenh svojsava.

6 Preslavanje sgnala Jednosavno preslavanje - ompozcja fncja: v() f(()), vf(), U, v V. Trenna vrjednos preslava se renn. Složenje preslavanje - operaor prdržje sgnal drg sgnal: v (), U, v V. Složeno preslavanje... ea preslava sgnal z nervala [, 2 ] sgnal v nerval [, 2 ]. v ( ) [, ] [ ] 2, 2 Trenna vrjednos v(), z [, 2 ] zavs od svh rennh vrjednos (τ) z nervala τ [, 2 ]! () ( ) ( τ) dτ + Složeno preslavanje... Trenna vrjednos v() može se zraz ao: ( ) v( ) [ ],, 2 gdje je fnconal oj fncj na nerval [, 2 ] prdržje broj v(). Posebce s zanmljve 2 mogćnos: v() ovs od segmena [, ) - prje, l v() ovs od segmena (, 2 ] - poslje. Trenc, 2 mog b besonačnos. Operacje međ sgnalma Djelovanje vše sgnala na jedan rezlrajć može se opsa fncjom: v() f( (), 2 (), 3 (),...). Općeno, o je nelnearna fncja, npr. v ( ) l lnearna, npr. [ ( )] 2 ( ), v( ) α ( ) + β2( ). 2 2 f v Operacje međ sgnalma Elemenarne operacje - ne mog se dalje razlaga. Važne elemenarne operacje: zbrajanje v + 2 množenje v 2 Razlaganje f na elemenarne operacje - Talorov red s onačnm brojem članova. Osnovne operacje na nzovma elemen dsrenog ssava Zbrajanje nzova Zbroj dva nza + v l {()} {()} + {v()} je nz s općm članom () () + v() za sva Z. Prod nzova Prod dva nza v l {()} {()} {v()} je nz s općm članom () () v() za sva Z. v v +

7 Osnovne operacje na nzovma elemen dsrenog ssava Množenje s onsanom a l {()} a{()} {a ()} () a() za sva Z. ncjs blo f () l {()} f [{()}] () f [()] za sva Z. a f Klasfacja ssava Bezmemorjs l renn () f (, ()), memorjs l azaln () (, (-, ] ), predvn (ancpavn) l anazaln () (, [, ) ), memorjso-predvn l neazaln () (, (-, ) ). eazaln ssav česo se dobvaj pr snez ssava, sljed dealzranh zahjeva. Spajanje ssava Ssav se predsavlja ao blo Ssav s vše laza zlaza može se jednosavno razlož na vše ssava s vše laza, al samo s po jednm zlazom. Dva vše objeaa l podssava mog se spoj ao da zajedno čne jedan složen ssav. Ssav od ojh je sasavljen složen ssav zov se podssav. Pravla spajanja Izlaz z bloova se ne spajaj međsobno. Sva laz bloa spaja se na zlaz neog bloa l je laz spojen složen ssav. Sv laz podssava s angažran. Izlaz bloa može b zlaz složenog ssava. ajmanje jedan zlaz podssava je zlaz spojenog ssava. Konnran ssav bez memorje Ssav onačnom nom nerval Izlaz ren ovs samo o vrjednos laznog sgnala ren Elemen ssava prazan fncjsm bloom ncjs blo opsan fncjom ) ( 2 f ( ( ), ( ),..., ( )) ( ), ( ) R m 2 3 f(.,.,.) Vladanje ssava glavnom pramo na onačnom vremensom nerval (, ] oj nazvamo nerval promaranja. Zanma nas, dale, odsječa odzva (, ] ao posljedca odsječa pobde (, ].

8 Ssav onačnom nom nerval Pobda se može podjel na (, ], (, ]. (, ] (, ] Izlaz ssava (, ] je posljedca oba segmena () ( (, ], (, ] ), >. ( x, ) ( ) (, ] Memorjse predcjse operacje dsrenog ssava naprjed (predcja) Poma nza - E E l {()} E {()} () (E)() () ( +). jednčn poma daje z laznog nza, nz poman za jedan ora. narag (ašnjenje pamćenje) E - E - l {()} E - {()} () (E - )() () ( -) >. Operacja pomaa nza naprjed raž neazalan ssav pa je neosvarva. Zao se ssavma slžmo redovo jedncama za ašnjenje, odnosno operacjom E -. () () ( +) ( ) ( ), > Dferencja nza zlazna slazna Δ Δ l {()} Δ {()} l {()} {()} () (Δ)() (+) - () () ( )() () - (-) {()} (E - ){()} {()} ( - E - ){()} E + E - + Dferencja všeg reda n Δ n n r n r { ( )} (E ) { ( )} ( ) E { ( )} r n r n n n r { } { } { } r ( ) ( E ) ( ) ( ) E ( ) r n r n nn n n r n r ( )( 2) K ( - + )! r! r!( n r)! Amlacja nza Andferencjs operaor Δ - daje nz {()} Δ - {()} aav da je Δ{()} {()} + j Može se poaza da vrjed Δ ( j) K { ( ) } Za slčaj azalnh sgnala ( j) + K ( j) + K ( ) j j Prema ome ( ), Δ { ( )} ( j) + K ( ) ( ) + ( j) > j, j Σ

9 Lnearn ssav Lnearn ssav Prncp sperpozcje Sperpozcjs negral smacja Odzv ssava na mpls zora Konvolcjs negral smacja Karaersčne fncje lnearnog ssava Sablnos lnearnog ssava Ssav: sp operacja na sgnal () Analza ssava: odzv poznaog ssava na ražen pobd, Sneza ssava: ssav željenog odzva na ražen pobd, Za odzv ssava počevš od neog rena reba počeno sanje x pobda (, ] (, ] ( x, ) ( ) (, ] x Bdć da je odzv posljedca dvaj nezavsnh zroa x mamo (, ] a) jednoznačn zavsnos odzva od pobde samo ao je počeno (, ] sanje nla x b) jednoznačn zavsnos odzva od x samo ao ssav nje pobđen j. () za x Ssav može b vremens onnran l dsrean zavsno od oga da l s varjable ssava fncje od neprebrojvog l prebrojvog spa renaa Ssav je vremens salan ao vremens poma pobde za onsanno vrjeme ( ) zroje samo s vremens poma odzva ( ) Drga bna lasfacja ssava je na lnearan nelnearan ssav

10 Lnearn ssav Da b ssav s jednm lazom jednm zlazom (x) bo lnearan reba zadovolj () vje homogenos: ( ax) a( x) Ao je odzv ssava na x ( (x) ) ada je a odzv ssava na ax za sva a. x, ax a () vje advnos ( x + x2) ( x) + ( x2) Ao je (x ) odzv na x, ada je + 2 odzv na x + x 2. x, x + x Oba vjea napsana zajedno ( ax + bx2) a( x ) + b( x2) daj prncp sperpozcje On je nžan dovoljan vje, da je ssav lnearan (nače je ssav nelnearan) Lnearne operacje na sgnalma Preposavmo složen sgnal predsavljen lnearnom ombnacjom od elemenarnh sgnala ( ) a ( ), R, Z Preslavanjem lnearnm operaorom može se jednosavno odred oršenjem prncpa sperpozcje v a a( ) av gdje je v ( ), dobven preslavanjem samo omponene, odnosno odzvom ssema na. a 2 a n an () ( ) a a 2 n gdje je ) a a an ( Za renne vrjednos () možemo napsa ( ) a( ) (, ) v( ) Ovo je obl sperpozcje l ransformacje gdje je domena sgnala onnrana, a paramear cjel broj sgnal je jednoznačno određen spom l nzom amplda a( ) v(, ) Ao sp elemenarnh fncja { } posane posve gs odnosno paramear λ neprebrojv, ežnsa onsana posaje onnrana fncja paramera a(, a smacja negral v ( ) a( v(, dλ Sgnal v je predsavljen negralom elemenarnh sgnal (, s ežnsom fncjom a( sperom, ojom je jednoznačno određen

11 Prmjena lnearnog operaora (v) na zvorn sgnal daje ( v) a( ( dλ a( ( ( ) dλ a( z( dλ ( ) ) gdje je ( z( λ Za renne vrjednos sgnala oj se nazva sperpozcjs a negral. Pogodan je za analz vremens promjenjvh ssava. ( ) ( z(, dλ Slčno možemo predsav vremens dsrean vremens ssav v() s elemenarnm nzovma v v[ ] a v a[ v[, Prmjenom operaora možemo dob a[ [ ( [ ) gdje je v[, [ Za zore zlaz [ ] a[ v[, sperpozcjsa smacja pogodna za analz vremens promjenjvh ssava. { ( )} a[ a[ v[ Sperpozcjs negral smacj smo dobl z prncpa sperpozcje Doves ćemo h vez s odzvom ssava na jednčn zora δ [] jednčn mpls δ () Preposavmo ne sgnal [] nzom zoraa [ ] a[ δ[ Bdć da je δ[ za za Pa zlaz za da je a() () Sva nz se dade rasav na jednčne zore [ ] [ δ[ Prmjena operaora vod na ( ) [ h[, gdje je h[, δ[, ( ( )) Iso ao možemo razlož sgnal na sm l negral mplsa ao nza elemenarnh fncja ( ) a( δ ( dλ ( δ ( dλ aon prmjene lnearnog operaora na gornj prezenacj sgnala, zlaz sperpozcjs negral gdje je h(, odzv ssava na mpls ren λ. ( ) ( h(, dλ U slčaj vremens salnh ssava h(, τ) je vje s samo asn za τ olo asn pobdna δ fncja j. h(, τ ) h( τ ) Sperpozcjs negral dobva obl oj se nazva onvolcjs negral ( ) ( τ ) h( τ ) dτ h( τ ) ( τ ) dτ Operacja zmeđ h nazva se onvolcjom

12 Za vremens dsrene ssave dobva se obl [ ] [ h[ h[ [ oj se nazva onvolcjsom smacjom Svojsva onvolcjse smacje negrala onvolcjso preslavanje vrjed za sve lnearne vremens salne ssave oj se zao nead nazvaj onvolcjs ssav Odzv dsrenog ssava s h() h() na pobd 4 sepencom (4) h( ) μ( ) { } {} 8 Za azalan odzv h[], azaln pobd [] za <. Odzv na sepenc dobva se amlacjom zoraa odzva na zora h( ) Konvolcjs negral preslava fncj pobde fncj odzva, ao da je renna vrjednos odgovarajće () određena negralom, odnosno cjelm jeom odzva h pobde Vdmo da je o zasa preslavanje fncje fncj. Uzmmo ao prmjer ( ) h( τ ) ( τ ) dτ h, ( τ ) a vrjednos () ječe pobda z nervala (, ) Iz prmjera zraza se vd da b se zvršla onvolcja dobla vrjednos () za rena reba zvrš sljedeće:. Vremens nverzj sgnala na os τ 2. Mlplacj sgnala ao soje 3. Inegrra prod od do h(τ ) τ Iz prmjera se vd da je odzv na sepenc negral mplsnog odzva h( τ ) μ( τ ) dτ ( ) h( τ ) dτ Grance negrala prozlaze z azalnos pobde mplsnog odzva h( ) za τ < μ( ) zaτ > Preposavmo da s sgnal,, z, h defnran na cjeloj vremensoj os (, ) Može se poaza da za operacj onvolcje vrjed omavnos h h asocjavnos ( h ) z ( h z) dsrbvnos h ( z) h + h z mlplacja s onsanom α( h ) ( αh) h ( α) dferencranje D( h ) Dh h D olo desne srane posoje

13 Spor onvolcje Sp l podrčje vremensh renaa za oje je sgnal razlč od Ao je spor od h neom nerval [a, b], a od nerval [c, b] s m da se a c evenalno proež do, a b d do, ada je spor onvolcje [a+c, b+d] Karaersčne fncje Pobda ao lnearna ombnacja sgnala Odzv ao lnearna ombnacja sgnala a Ovo osgrava jednosavn analz ssava Može se još pojednosavn ao b se našla ava fncja za oj b prmjena operaora bla jednosavna a v pr. jednae fncje za sasavljanje pobde odzva ncje oje mog slž snez pobde odzva ssava danog operaorom, rebaj zadovolj vje: ( ) H, gdje je H realan l omplesan broj ao da se v razlj samo za saln faor H. Kaže se da s o vlase l araersčne fncje operaora Esponencjalna fncja je araersčna fncja lnearnog saconarnog ssava šo se može poaza onvolcjom s Odredmo odzv na esponencjal e, s σ + jω s( τ ) s s h( τ ) ( τ ) dτ h( τ ) e dτ e h( τ ) e Inegral zagrad je onsana l je fncja od s azva se vlasom vrjednošć l fncjom operaora. H ncje s jednae, razlj se samo za saln faor Za esponencjal ao elemenarn fncj zlaz s s e H ( s ) e odnosno s s a ( ) ae ah ( s ) e Ta svojsva esponencjala prozlaze z čnjence da se operaor lnearnog ssava sasoj od ombnacja dervacja negrala, a e operacje na esponencjal daj ope esponencjal Slčno se može zaljč da je dsrena esponencjala l -a poencja od z, vlas nz dferencjsog operaora h[ [ h[ z z z H ( z), H ( z) h[ z Šo znač da za lnearn ombnacj pobd dobvamo lnearn ombnacj odzv a [ ] a z a H ( z ) z h[ z

14 Sablnos ssava Lnearn vremens promjenjv ssav je sablan ao ma omeđen odzv ( ) M na blo oj omeđen pobd ( ) M žan dovoljan vje je apsolno negrablan mplsn odzv ssava ea je: h(,τ ) dτ ( ) h(, τ ) ( τ ) dτ < M h(, τ ) dτ ( ) < M < <

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

II ANALIZA SISTEMA AUTOMATSKOG UPRAVLJANJA

II ANALIZA SISTEMA AUTOMATSKOG UPRAVLJANJA II ANALIZA SISTEMA AUTOMATSKOG UPRAVLJANJA II 1. UVOD Analza projetovanje savremenh SAU, na današnjem stepen razvoja nae tehne, ao neophodnost spnjavanja veoma strogh zahteva oj se nameć valtet dnamčog

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Elementi energetske elektronike

Elementi energetske elektronike ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

4. Perspektiviteti i perspektivne figure. Desarguesov teorem

4. Perspektiviteti i perspektivne figure. Desarguesov teorem 4 Persektvtet ersektvne fgure Desarguesov teorem Promatrajmo rojektvnu ravnnu kao oeratvn rostor u njoj nz točaka ramen ravaca ( ) s vrhom, r čemu točka ne lež na ravcu ( ) na nosocu Jednoznačno obostrano

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

FUNKCIJE UTJECAJA I UTJECAJNE LINIJE

FUNKCIJE UTJECAJA I UTJECAJNE LINIJE FUNKCIJE UTJECJ I UTJECJNE LINIJE Funkcje ujecaja ujecajne lnje korse se kod proračuna konsrukcja na djelovanje pokrenh operećenja. Zadaak: odred onaj položaj pokrenog operećenja koj će da najnepovoljnj

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici. VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK

F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Periodičke izmjenične veličine

Periodičke izmjenične veličine EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.

Διαβάστε περισσότερα

Korelacijska i regresijska analiza

Korelacijska i regresijska analiza Korelacjska regresjska analza Odnos među pojavama Odnos među pojavama može bt: determnstčk l funkconaln stohastčk l statstčk Kod determnstčkoga se odnosa za svaku vrjednost jedne pojave točno zna vrjednost

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Prema tome, kao sredstva koja uvrštavamo u portfolio pojavljuju se sredstvo 3, sa najvećim iznosom Sharpe-ovog indeksa, i sredstvo 2.

Prema tome, kao sredstva koja uvrštavamo u portfolio pojavljuju se sredstvo 3, sa najvećim iznosom Sharpe-ovog indeksa, i sredstvo 2. Prmer 7. 1) Da su podac za r sredsva u peroda osmarana, R 1,518 R 3, 031 R3 3, 9533 r 1 1, 0383 r 0, 837 r 3 1, 48 r 1 r 0,1919 r 1 r 3 0, 698 r r 3 0, 1801 na osnovu dah sumranh vrednos odred očekvanu

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Skup prirodnih brojeva...

Skup prirodnih brojeva... Kompleksn brojev Skup prrodnh brojeva Skup cjelh brojeva Skup raconalnh brojeva Skup raconalnh brojeva Skup realnh brojeva Skup magnarnh brojeva Skup kompleksnh brojeva Računske operacje s kompleksnm brojevma

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

10.1. Bit Error Rate Test

10.1. Bit Error Rate Test .. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa

Διαβάστε περισσότερα

Lekcija 6: Redukcija reda modela i LMI problem

Lekcija 6: Redukcija reda modela i LMI problem Lekcja 6: Redukcja reda modela LMI problem Prof.dr.sc. Jasmn Velagć Elektrotehnčk fakultet Sarajevo Kolegj: Multvarjabln sstem /3 Redukcja reda modela U ovom djelu se zučava: Ops metoda za reducranje reda

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

gdje je E k, max kinetička energija izbijenog elektrona, a W izlazni rad. Formula se može i ovako napisati: c

gdje je E k, max kinetička energija izbijenog elektrona, a W izlazni rad. Formula se može i ovako napisati: c Zadata (Maro, gnazja) Cezjev ploč obajao eletroagnet zračenje valne dljne 450 n. Kola je razla potenjala potrebna za zatavljanje eje eletrona z ploče? Izlazn rad za ezj zno ev. (Planova ontanta h 6.66

Διαβάστε περισσότερα

6 Polinomi Funkcija p : R R zadana formulom

6 Polinomi Funkcija p : R R zadana formulom 6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

DOMAĆA ZADAĆA 5. /Formulacije i rješenja zadataka/ - INŽENJERSKA MATEMATIKA 1 ak. 2009/2010. Selma Grebović. Sarajevo, Decembar 2009.

DOMAĆA ZADAĆA 5. /Formulacije i rješenja zadataka/ - INŽENJERSKA MATEMATIKA 1 ak. 2009/2010. Selma Grebović. Sarajevo, Decembar 2009. UNIVERZITET U SARAJEVU ELEKTROTEHNIČKI FAKULTET SARAJEVO DOMAĆA ZADAĆA 5 /Formulacije i rješenja zadaaka/ - INŽENJERSKA MATEMATIKA ak. 9/. Selma Grebović Sarajevo, Decembar 9. godine Zad.. Za realnu funkciju

Διαβάστε περισσότερα

1 Aksiomatska definicija skupa realnih brojeva

1 Aksiomatska definicija skupa realnih brojeva 1 Aksiomatska definicija skupa realnih brojeva Definicija 1 Polje realnih brojeva je skup R = {x, y, z...} u kojemu su definirane dvije binarne operacije zbrajanje (oznaka +) i množenje (oznaka ) i jedna binarna

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA

RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X

Διαβάστε περισσότερα

Da se podsetimo Algoritam optimizacije. Odrediti vrednosti parametara kola koje će garantovati da odziv F(x, p) ima željenu vrednost F * (x).

Da se podsetimo Algoritam optimizacije. Odrediti vrednosti parametara kola koje će garantovati da odziv F(x, p) ima željenu vrednost F * (x). Aotam otmzac Da s odstmo Aotam otmzac Aotam otmzac Aotam otmzac : Oddt vdost aamtaa oa [,... ] o ć aatovat da odzv (x, ma žu vdost * (x. Mtod: až mmuma fuc š E(x,; (oma za vattatvu ocu odstuaa dobo od

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Άσκηση η Να υπολογιστεί η έξοδος του συστήματος με κρουστική απόκριση h()=u()-u(-4) και είσοδο x()=u(-) u(-3)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

PRILOG 2. Zanimanje : EKONOMIST / ICA. Nastavno pismo: NASTAVNI PREDMET STATISTIKA. Nastavna cjelina: Srednje vrijednosti. Autor: Suzana Mikulić

PRILOG 2. Zanimanje : EKONOMIST / ICA. Nastavno pismo: NASTAVNI PREDMET STATISTIKA. Nastavna cjelina: Srednje vrijednosti. Autor: Suzana Mikulić PRILOG za IV. Razred Zanmanje : EKOOMIST / ICA astavno psmo: ASTAVI PREDMET STATISTIKA astavna cjelna: Srednje vrjednost Autor: Suzana Mulć Splt,009. 3.Srednje vrjednost Srednje vrjednost su onstante ojma

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα