UKUPAN BROJ OSVOJENIH BODOVA

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "UKUPAN BROJ OSVOJENIH BODOVA"

Transcript

1 ŠIFRA DRŽAVNO TAKMIČENJE VIII razred UKUPAN BROJ OSVOJENIH BODOVA Test pregledala/pregledao Podgorica, godine

2 UPUTSTVO TAKMIČARIMA Zadatak Bodovi br Ukupno: Za izradu testa planirano je 120 minuta. - U toku izrade testa učenici mogu koristiti hemijsku olovku i kalkulator. - Mobilni telefoni i ostala pomagala nisu dozvoljeni za upotrebu.

3 1.Koliko se kubnih centimetara živine pare,pri normalnim uslovima može dobiti iz kapljice žive,teške 2grama? Ar(Hg)=200,6 g mol 2. Za potpunu oksidaciju 10 molova smješe propana i propina utroši se 46 molova kiseonika.koji je odnos propana i propina u smješi? 3. Slova u jednačinama zamijenite supstancama H 2 O, O 2, H 2, Na, Na 2 O Napišite naziv jedinjenja Đ. 2V + D 2G ; 4B + D 2A ; A + G 2Đ

4 4. Na raspolaganju su jedan atom kalcijuma,četiri atoma azota i jedanaest atoma kiseonika.sastavite formulu soli i oksida tako da potrošite sve atome. 5. Sagorijevanjem 2,5 mola jednog alkina dobije se 5 mola vode.odnos mase alkina i vode je 5:4,5. O kom je alkinu riječ? Ar(C) = 12g mol ; Ar(H) = 1g mol 6. Odgovorite sa DA ili NE a) U organskim jedinjenjima ugljenikov atom nije uvijek četvorovalentan DA NE b) Vodom se može gasiti plamen gasa koji gori iznad kalcijum-karbida DA NE c) U 2,2,5- trimetil heksanu nalaze se tri tercijarna atoma ugljkenika DA NE d) Da li je masa proizvoda sagorijevanja nafte veća od mase uzete nafte DA NE e) U molekulu tetrahlormetana su nepolarne veze DA NE

5 7. Dopunite jednačine datih hemijskih reakcija: a) CH 3 CH 2 CH 3 + O 2 b) C 2 H 5 OH + O 2 c) CH 3 CH=CH 2 + Cl 2 d) C 6 H Cl 2 e) C 6 H 6 + KMnO 4 8. Koliko je grama glukoze potrebno za alkoholno vrenje kako bi se dobilo 100 grama etanola? Mr(C 6 H 12 O 6 ) = 186g/mol ; Mr( C 2 H 5 OH) = 46g/mol 9. Koliko je grama tripostotnog rastvora natrijum-hidroksida(ω 1 =3%) potrebno za potpunu neutralizaciju 100 grama sirćeta (ω 2 = 5%). Mr( CH 3 COOH) = 60g/mol;Mr(NaOH) =40 g/mol.

6 10. Pored podataka u koloni A upišite broj kojim je označena supstanca koja mu odgovara iz kolone B. A B a) Rastvarač u proizvodnji boja... 1.glicerol b) Bezbojna uljasta tečnost... 2.etil-etanoat c) Boja... 3.minijum d) Otrovan... 4.oleinska kiselina e) Proizvodnja kozmetičkih preparata ,2-etan-diol 6.cink-oksid 11. Od čega se sastoje molekuli složenih proteina? 12. Objasni mehanizam otklanjanja nečistoća djelovanjem sapuna

7 Z A D A C I 1.Koliko se kubnih centimetara živine pare,pri normalnim uslovima može dobiti iz kapljice žive,teške 2grama? Ar(Hg)=200,6 g/mol V Hg =? m(hg)= 2 gr Vm = V(Hg) / n (Hg) ; V( Hg) = Vm n(hg) ; n(hg) = m(hg) / M(Hg) = 2g / 200,6 g/mol = 0,001 mol V(Hg) = 22,4 dm 3 /mol 0,001 mol = 0,0224 dm 3 1 dm 3 = 1000 cm 3 ; V(Hg) = 22,4 cm 3 10 poena 2.Za potpunu oksidaciju 10 molova smješe propana i propina utroši se 46 molova kiseonika.koji je odnos propana i propina u smješi? 1.korak: Napisati jednačine reakcija sagorijevanja propana i propina C 3 H 8 + 5O 2 3CO 2 + 4H 2 O C 3 H 4 + 4O 2 3CO 2 + 2H 2 O 2.korak: Rješavanje zadatka je najednostavnije ako se primijeni sistem,postavljane dvije jednačine sa dvije nepoznate.ako molove propana u smjesi označimo sa X,a molove propina sa Y,pa možemo da napišemo jednačinu: X + Y = 10 3.korak: Prema jednačini reakcije oksidacije propana vidi se da za oksidaciju 1 mola propana treba utrošiti 5 molova kiseonika.za oksidaciju X molova propana treba utrošiti 5X molova kiseonika. Prema jednačini reakcije oksidacije propina za oksidaciju 1 mola treba utrošiti 4 mola kiseonika.za oksidaciju Y molova propina potrebno je 4Y molova kiseonika. Na osnovu ovih podataka i činjenice da je ukupno utrošeno 46 mola kiseonika pa može da se napiše druga jednačina: 5X + 4Y = 46 4.korak: Rješavanjem ove dvije jednačine dobija se: X + Y = 10 5X + 4Y = X = 10 Y 5(10-Y) + 4Y = Y + 4Y = 46 X = 6 Y = 4 Smjesa ugljovodonika se sastoji od 6 mola propana i 4 mola propina 10 poena

8 3.Slova u jednačinama zamijenite supstancama H 2 O, O 2,H 2, Na, Na 2 O. Napišite naziv jedinjenja Đ. 2V + D 2G ; 4B + D 2A ; A + G 2Đ A= Na 2 O ; B=Na : D=O 2 ; G=H 2 O ; V=H 2 ; Đ= NaOH 2H 2 + O 2 2H 2 O ; 4Na + O 2 2Na 2 O ; Na 2 O +H 2 O 2NaOH 10 poena 4.Na raspolaganju su jedan atom kalcijuma,četiri atoma azota i jedanaest atoma kiseonika.sastavite formulu soli i oksida tako da potrošite sve atome. Ca(NO 3 ) 2 i N 2 O 5 5 poena 5.Sagorijevanjem 2,5 mola jednog alkina dobije se 5 mola vode.odnos mase alkina i vode je 5:4,5. O kom je alkinu riječ? Ar(C) = 12g/mol ; Ar(H) = 1g/mol; Ar(O) =16g/mol n(c x H 2x-2 ) = 2,5 mol ; n(h 2 O) = 5 mol m(c x H 2x-2 ) : m(h 2 O) = 5 : 4,5 m(c x H 2x-2 ) = 2,5 mol M(C x H 2x-2 ) m(h 2 O) =n M= 9 m(c x H 2x-2 ) = m(h 2 O 4,5 2,5 mol M(C x H 2x-2 ) : 90 g = 5 : 4,5 ; M(C x H 2x-2 ) = 40 g/mol Mr(C x H 2x-2 ) = x Ar(C) + (2x-2) Ar(H) = x 12 + (2x-2) 1 40 = 14 x -2 ; x = 3 C x H 2x-2 je C 3 H 4 propin 10 poena 6.Odgovorite sa DA ili NE a) U organskim jedinjenjima ugljenikov atom nije uvijek četvorovalentan DA NE b) Vodom se može gasiti plamen gasa koji gori iznad kalcijum-karbida DA NE c) U 2,2,5- trimetil heksanu nalaze se tri tercijarna atoma ugljkenika DA NE d) Da li je masa proizvoda sagorijevanja nafte veća od mase uzete nafte DA NE e) U molekulu tetrahlormetana su nepolarne veze DA NE 5 poena

9 7.Dopunite jednačine datih hemijskih reakcija: a) CH 3 CH 2 CH 3 +5 O 2 3 CO 2 + 4H 2 O b) C 2 H 5 OH +3 O 2 2CO 2 + 3H 2 O c) CH 3 CH=CH 2 + Cl 2 CH 3 -CH-CH 2 -Cl Cl d) C 6 H Cl 2 C 6 H 6 Cl 6 e) C 6 H 6 + KMnO 4 reakcija nije moguća 10 poena 8.Koliko je grama glukoze potrebno za alkoholno vrenje kako bi se dobilo 100 grama etanola? Mr(C 6 H 12 O 6 ) = 186g/mol ; Mr( C 2 H 5 OH) = 46g/mol m(c 6 H 12 O 6 ) =? m( C 2 H 5 OH)= 100 g xg 100g C 6 H 12 O 6 2C 2 H 5 OH + 2CO 2 180g/mol 46g/mol 180 g/mol : 2 46 g/mol = x g : 100g X = 195,65 grama 10 9.Koliko je grama tripostotnog rastvora natrijum-hidroksida(ω 1 =3%) potrebno za potpunu neutralizaciju 100 grama sirćeta (ω 2 = 5%). Mr( CH 3 COOH) = 60g/mol; Mr(NaOH) =40 g/mol. m(naoh (aq) ) = m(rastvor 1) -? m(naoh) = ω 1 m(rastvor 1) ω(naoh)= ω 1= 3% = 0,003 m( CH 3 COOH (aq) ) = m (rastvor 2) = 100g ω( CH 3 COOH) = ω 2 = 5% = 0,05 m( CH 3 COOH) = ω 2 m(rastvora 2) =0, = 5,0g 5,0 g ω 1 m(rastvor 1) CH 3 COOH + NaOH CH 3 COONa + H 2 O 5,o g : ω 1 m(rastvor 1) = 60g/mol : 40 g/mol 3 ω 1 m(rastvor 1) = 10 ; 3 0,03 m(rastvor 1) = 10 g m(rastvora 1) = 10g/0,09 = 111,11 grama 10

10 10.Pored podataka u koloni A upišite broj kojim je označena supstanca koja mu odgovara iz kolone B. A B a) Rastvarač u proizvodnji boja glicerol b) Bezbojna uljasta tečnost... 1,4 2.etil-etanoat c) Boja... 3,6 3.minijum d) Otrovan... 3,5 4.oleinska kiselina e) Proizvodnja kozmetičkih preparata ,2-etan-diol 6.cink-oksid Od čega se sastoje molekuli složenih proteina? Rješenje : Molekuli složenih proteina se sastoje od ostataka molekula proteina i od prostetičnih grupa.prostetične grupe kod složenih proteina mogu biti razne neorganske ili organske supstance kao što su :fosforna kiselina(kod fosfoproteina),neki lipid(kod lipoproteina),neki ugljeni hidrat(kod glikoproteina).. 5

11 12.Objasni mehanizam otklanjanja nečistoća djelovanjem sapuna Za uklanjanje nečistoća,sapuni se uvijek koriste u kombinaciji sa vodom.alkalne soli viših karboksilnih kiselina se rastvaraju u vodi pri čemu disosuju na pozitivne jone alkalnog metala i negativne karboksilatne jone.karboksilatni jon se sastoji od polarnog dijela(«glave») i nepolarnog dijela(«repa») CH 3 -CH 2 -CH 2 -CH 2 -CH CH 2 COO - r e p glava Prilikom otklanjanja nečistoće,nepolarni dio karboksilatnog jona se rastvara u nečistoći koja je u cjelini nepolarna,a polarni dio u vodi koja je polarna.proticanjem vode karboksilatni joni otiču sa njom pvlačeći sa sobom molekule nečistoće. 5

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA UPUTSTVO TAKMIČARIMA Zadatak br. Bodovi 1. 10 2. 10 3. 10 4. 10 5. 1o 6. 10 7. 10 8. 10 9. 10 10. 10 Ukupno: 100 bodova - Za izradu testa planirano je 120 minuta. - U toku izrade

Διαβάστε περισσότερα

SREDNJA ŠKOLA HEMIJA

SREDNJA ŠKOLA HEMIJA SREDNJA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 6 2. 10 3. 12 4. 8 5. 6 6. 10 7. 8 8. 8 9. 4 10. 10 11. 8 12. 10 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 7 ΙΟΥΝΙΟΥ 003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ ο Για τις ερωτήσεις. -.4 να γράψετε στο

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Α1 Α2 Α3 Α4 Α5 γ β γ α β

Α1 Α2 Α3 Α4 Α5 γ β γ α β Χημεία Θετικής Κατεύθυνσης 27-5-2015 ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ ΑΔΑΜ ΓΙΑΝΝΗΣ ΒΑΡΒΑΡΙΓΟΣ ΜΑΝΟΣ ΘΕΟΔΩΡΟΠΟΥΛΟΣ ΠΑΝΑΓΙΩΤΗΣ ΚΑΠΛΑΝΗΣ ΘΑΝΑΣΗΣ ΚΑΛΑΜΑΡΑΣ ΓΙΑΝΝΗΣ ΚΩΣΤΟΠΟΥΛΟΣ ΛΕΩΝΙΔΑΣ ΣΙΔΕΡΗ ΦΙΛΛΕΝΙΑ 1 ΘΕΜΑ Α Α1 Α2 Α3 Α4

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine?

3. Koliko g Fe može da se dobije iz 463,1 g rude gvoždja koja sadrži 50 % minerala magnetita (Fe 3 O 4 ) i 50 % jalovine? PRIJEMNI ISPIT IZ HEMIJE NA RUDARSKO-GEOLOŠKOM FAKULTETU UNIVERZITETA U BEOGRADU Katedra za hemiju; Prof. dr Slobodanka Marinković I) Oblasti 1. Jednostavna izračunavanja u hemiji (mol, molska masa, Avogadrov

Διαβάστε περισσότερα

XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ. Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων. ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β. Β1. α.

XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ. Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων. ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β. Β1. α. 27 Μαΐου 2015 XHMEIA ΚΑΤΕΥΘΥΝΣΗΣ Απαντήσεις Θεμάτων Πανελληνίων Επαναληπτικών Εξετάσεων Γενικών Λυκείων ΘΕΜΑ Α Α1. γ Α2. β Α3. δ Α4. γ Α5. α ΘΕΜΑ Β Β1. α. Σωστό Το γινόμενο της Κ a ασθενούς οξέος ΗA με

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

@elimo vam uspeh u radu!

@elimo vam uspeh u radu! MINISTARSTVO PROSVETE I SPORTA REPUBLIKE SRBIJE SRPSKO HEMIJSKO DRU[TVO OP[TINSKO TAKMI^EWE IZ HEMIJE MART, 2005. GODINE TEST ZA VIII RAZRED [ifra u~enika: Pa`qivo pro~itajte tekstove zadataka. U prilogu

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ)

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΕΡΙΕΧΟΝΤΑΙ ΚΑΙ ΟΙ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 9 ΙΟΥΝΙΟΥ

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΘΕΜΑ Α. Α1. γ. Α2. α. Α3. β. Α4. γ. Α5. α ΘΕΜΑ Β Β1. α)uh2 = - Δ[H2] = Uμ = 1 3. UH2 = 0.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΘΕΜΑ Α. Α1. γ. Α2. α. Α3. β. Α4. γ. Α5. α ΘΕΜΑ Β Β1. α)uh2 = - Δ[H2] = Uμ = 1 3. UH2 = 0. ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΠΟΥ ΥΠΗΡΕΤΟΥΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: XHMEIA ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α2. α Α3. β Α4.

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Ημερομηνία 1/6/2012

ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Ημερομηνία 1/6/2012 ΘΕΜΑ Α Α 1 = γ Α 2 = β Α 3 = β Α 4 = γ Α 5 α) Σελίδα 13 σχολικό βιβλίο β) Σελίδα 122 σχολικό βιβλίο ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Ημερομηνία 1/6/2012 ΘΕΜΑ Β Β1. α) N : 1s 2 2s 2 2p 3 ή K(2) L(5)

Διαβάστε περισσότερα

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim

Διαβάστε περισσότερα

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ)

Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Βασικές γνώσεις Χημείας Λυκείου (Α, Β, Γ) Διαλύματα Εκφράσεις περιεκτικότητας α λ% w/v: Σε 100 ml Διαλύματος περιέχονται λ g διαλυμένης ουσίας β λ% w/w: Σε 100 g Διαλύματος περιέχονται λ g διαλυμένης ουσίας

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.4 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης.

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.4 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό της ερώτησης. ΜΑΘΗΜΑ / ΤΑΞΗ : ΧΗΜΕΙΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 ΗΜΕΡΟΜΗΝΙΑ: 16 / 02 /2014 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α.1 έως Α.4 να γράψετε το γράμμα που αντιστοιχεί στη σωστή απάντηση δίπλα στον αριθμό

Διαβάστε περισσότερα

Ispitna pitanja iz medicinske hemije

Ispitna pitanja iz medicinske hemije Ispitna pitanja iz medicinske hemije Periodni sistem elemenata 1. Alkalni metali (1. grupa) u najvišem energetskom nivou imaju elektronsku konfiguraciju: a) s 2 p 1 b) s 2 c) s 1 d) s 1 p 1 e) s 2 p 3

Διαβάστε περισσότερα

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ)

http://ekfe.chi.sch.gr ΦΕΒΡΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ) http://ekfe.chi.sch.gr 7 η - 8 η Συνάντηση ΦΕΒΡΟΥΑΡΙΟΣ 010 Πειράματα Χημείας ΑΝΙΧΝΕΥΣΗ ΑΙΘΙΝΙΟΥ-ΑΝΟΡΘΩΣΗ ΤΡΙΠΛΟΥ ΔΕΣΜΟΥ ΠΑΡΑΣΚΕΥΗ ΚΑΙ ΚΑΥΣΗ ΑΙΘΙΝΙΟΥ(ΑΚΕΤΥΛΕΝΙΟΥ) ΑΝΙΧΝΕΥΣΗ ΑΛΔΕΥΔΩΝ ΚΑΙ ΑΠΛΩΝ ΣΑΚΧΑΡΩΝ ΟΞΕΙΔΩΣΗ

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ NEO ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 30 ΜΑΪΟΥ 016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA

RAVNOTEŽE U RASTVORIMA KISELINA I BAZA III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

προσθέτουµε 500ml ΗΝΟ ( ) ) . Επίσης, θ = 25 C

προσθέτουµε 500ml ΗΝΟ ( ) ) . Επίσης, θ = 25 C Θέµ ο ( ) ( ) προσθέτουµε 500ml ΗΝΟ ( ) ) Α ιθέτουµε διάλυµ όγκου 500ml που περιέχει τις σθενείς βάσεις Β κι Γ µε συγκεντρώσεις 0,4Μ γι την κάθε µί Στο διάλυµ διλύµτος συγκέντρωσης 0,8Μ κι προκύπτει διάλυµ

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Το ποσό θερμότητας που εκλύεται μέχρι να αποκατασταθεί η ισοοροπία μπορεί να είναι :

Το ποσό θερμότητας που εκλύεται μέχρι να αποκατασταθεί η ισοοροπία μπορεί να είναι : ΜΑΘΗΜΑ / ΣΑΞΗ : ΧΗΜΕΙΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΜΑΣΟ: ΧΗΜΕΙΑ ΠΡΟΑΝΑΣΟΛΙΜΟΤ ΘΕΜΑ 1 A. Το στοιχείο της τρίτης περιόδου, του οποίου το χλωρίδιο έχει το μικρότερο σημείο βρασμού έχει

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

BANKA PITANJA IZ HEMIJE

BANKA PITANJA IZ HEMIJE BANKA PITANJA IZ HEMIJE NEORGANSKA HEMIJA PUFERI 1. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće acidoze. 2. Predstaviti reakciju glavnog pufernog sistema krvi u uslovima moguće

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

PRIRUČNIK ZA PRIJEMNI ISPIT

PRIRUČNIK ZA PRIJEMNI ISPIT PRIRUČNIK ZA PRIJEMNI ISPIT 1 OPŠTA I NEORGANSKA HEMIJA Visoka škola strukovnih studija Aranđelovac PRIRUČNIK ZA POLAGANJE PRIJEMNOG ISPITA IZ HEMIJE ARANĐELOVAC, 2017. 2 PRIRUČNIK ZA PRIJEMNI ISPIT PREDGOVOR

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Για τις ερωτήσεις. -.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση... Με προσθήκη νερού δεν μεταβάλλεται

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Α5. α. Σ β. Σ γ. Λ δ. Λ, ε. Σ

Α5. α. Σ β. Σ γ. Λ δ. Λ, ε. Σ ΘΕΜΑ Α Α1. β Α2. α Α3. δ Α4.β Α5. α. Σ β. Σ γ. Λ δ. Λ, ε. Σ ΘΕΜΑ Β Β1. α. 12 Mg 2+ : 1s 2 2s 2 2p 6 15P: 1s 2 2s 2 2p 6 3s 2 3p 3 19K: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 26Fe 2+ : 1s 2 2s 2 2p 6 3s 2 3p 6 3d

Διαβάστε περισσότερα

http://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων

http://ekfe.chi.sch.gr ΙΑΝΟΥΑΡΙΟΣ 2010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων http://ekfe.chi.sch.g 5 η - 6 η Συνάντηση ΙΑΝΟΥΑΡΙΟΣ 010 Πειράματα Χημείας Χημικές αντιδράσεις και ποιοτική ανάλυση ιόντων Παρασκευή διαλύματος ορισμένης συγκέντρωσης αραίωση διαλυμάτων Παρασκευή και ιδιότητες

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Τετάρτη, 27 Μαΐου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ

Τετάρτη, 27 Μαΐου 2009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 009 Τετάρτη, 7 Μαΐου 009 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΘΕΜΑ ο Για τις ερωτήσεις. -.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση...

Διαβάστε περισσότερα

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku

Διαβάστε περισσότερα

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ

1. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ Επαναληπτικά δέντρα.. Ανόργανης στο ph. Στο παρακάτω διάγραμμα τα γράμματα Α, Β, Γ, Δ, Ε, Ζ, Θ, Κ, Λ αναφέρονται σε υδατικά διαλύματα. Το διάλυμα Α έχει όγκο 00mL και ph = HCl 00mL Ca(OH) 2 900mLH2O 0,448L

Διαβάστε περισσότερα

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU

KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU ИНФОРМАТОР 29 UNIVERZITET U BEOGRADU jun 2005. godine KLASIFIKACIONI ISPIT IZ HEMIJE ZA UPIS NA TEHNOLOŠKO-METALURŠKI FAKULTET U BEOGRADU Šifra zadatka: 51501 Test ima 20 pitanja. Netačan odgovor donosi

Διαβάστε περισσότερα

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Β Λυκείου. ΘΕΜΑ 1 ο

Φροντιστήριο ΕΠΙΓΝΩΣΗ Αγ. Δημητρίου Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Β Λυκείου. ΘΕΜΑ 1 ο Προτεινόμενα θέματα τελικών εξετάσεων Χημεία Β Λυκείου ΘΕΜΑ 1 ο Για τις ερωτήσεις 1.1 έως 1.5 να επιλέξετε τη σωστή απάντηση: 1.1 Οι οργανικές ενώσεις που περιέχουν τη χαρακτηριστική ομάδα ΟΗ ονομάζονται

Διαβάστε περισσότερα

ΣΑ ΘΔΜΑΣΑ ΣΖ ΣΡΑΠΔΕΑ ΥΖΜΔΗΑ Β' ΛΤΚΔΗΟΤ

ΣΑ ΘΔΜΑΣΑ ΣΖ ΣΡΑΠΔΕΑ ΥΖΜΔΗΑ Β' ΛΤΚΔΗΟΤ 16503 ΣΑ ΘΔΜΑΣΑ ΣΖ ΣΡΑΠΔΕΑ ΥΖΜΔΗΑ Β' ΛΤΚΔΗΟΤ 2.1 Α) Να βνάρεηε ημοξ ζοκηαηηζημφξ ηφπμοξ ηαζ ηα μκυιαηα: α) εκυξ αθηεκίμο ιε ηνία άημια άκεναηα β) ιζαξ ημνεζιέκδξ ιμκμζεεκμφξ ηεηυκδξ ιε ηέζζενα άημια άκεναηα

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Α5. α. Σ β. Σ γ. Λ δ. Λ ε. Λ

Α5. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ΘΕΜΑ Α Α1. β Α2. α Α3. α Α4.δ Α5. α. Σ β. Σ γ. Λ δ. Λ ε. Λ ΘΕΜΑ Β Β1. α. 20 Ca: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 26Fe: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 16S: 1s 2 2s 2 2p 6 3s 2 3p 4 β. 20 Ca: 4 η περίοδος

Διαβάστε περισσότερα

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα

Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1. Θέματα Χημεία Β Λυκείου Γενικής Παιδείας: Διαγώνισμα 1 Θέματα Θέμα 1 ο 1. Ποιες από τις παρακάτω ενώσεις είναι ακόρεστες και ποιες κορεσμένες; C O HO C 1... 5. 5 μονάδες. Σε ποια ομόλογη σειρά ανήκει καθεμιά

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή.

Για τις προτάσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή επιλογή. ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ(5) Για τις προτάσεις Α1 έως και Α5 να γράψετε

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α1. Η ηλεκτρονιακή δομή, στη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α κ. Στον παρακάτω πίνακα δίνονται τα PH τριών διαλυµάτων. τριών µονοπρωτικών βάσεων Β

ΔΙΑΓΩΝΙΣΜΑ Α κ. Στον παρακάτω πίνακα δίνονται τα PH τριών διαλυµάτων. τριών µονοπρωτικών βάσεων Β ΔΙΑΓΩΝΙΣΜΑ Α κ Θέµα 1 ο Στον παρακάτω πίνακα δίνονται τα PH τριών διαλυµάτων 1,, τριών µονοπρωτικών βάσεων Β 1, Β, Β αντίστοιχα. Επίσης δίνεται ο όγκος V ενός πρότυπου διαλύµατος HCl που χρειάστηκε για

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Χημεία Α Λυκείου Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr 1 57 1.. 1 kg = 1000 g 1 g = 0,001 kg 1

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ

Επαναληπτικά Θέµατα ΟΕΦΕ 2010 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 010 1 ΘΕΜΑ 1 ο 1.1. δ 1.. α 1.. γ 1.4. β 1.5. α. ΛΑΘΟΣ β. ΛΑΘΟΣ γ. ΣΩΣΤΟ δ. ΣΩΣΤΟ ε. ΛΑΘΟΣ ΘΕΜΑ ο Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΧΗΜΕΙΑ ΑΠΑΝΤΗΣΕΙΣ.1. α. Για το Α: 1s s p 6 s p 6

Διαβάστε περισσότερα

ΘΕΜΑ 1 Ο. 1.1 γ 1.2 α 1.3 β 1.4 γ 1.5 α Λ β Λ γ Σ δ Σ ε Λ. ΘΕΜΑ 2 Ο 2.1 α) i) 1s 2, 2s 2, 2p 6, 3s 2, 3p 3 Z 1 = 15

ΘΕΜΑ 1 Ο. 1.1 γ 1.2 α 1.3 β 1.4 γ 1.5 α Λ β Λ γ Σ δ Σ ε Λ. ΘΕΜΑ 2 Ο 2.1 α) i) 1s 2, 2s 2, 2p 6, 3s 2, 3p 3 Z 1 = 15 ΘΕΜΑ 1 1.1 γ 1.2 α 1.3 β 1.4 γ 1.5 α Λ β Λ γ Σ δ Σ ε Λ ΘΕΜΑ 2 2.1 α) i) 1s 2, 2s 2, 2p 6, 3s 2, 3p 3 Z 1 = 15 ii) 1s 2, 2s 2, 2p 6, 3s 2, 3p 6, 4s 2, 3d 3 ή 1s 2, 2s 2, 2p 6, 3s 2, 3p 6, 3d 3, 4s 2 Z 2

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 200 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 01 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1: γ Α: β Α3: β Α4: γ ΑΠΑΝΤΗΣΕΙΣ A5: α) Είναι αδύνατον να υπάρχουν στο ίδιο άτοµο δύο ηλεκτρόνια

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Χημεία Γ Λυκείου Κεφάλαιο: 1 ο -4 ο και 7 ο Ονοματεπώνυμο Μαθητή: Ημερομηνία: 30-10-2017 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΧΗΜΕΙΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 30 Μαΐου 2016 ΧΗΜΕΙΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Απαντήσεις Θεμάτων Πανελλαδικών Εξετάσεων Ημερησίων Γενικών Λυκείων (Νέο Σύστημα) ΘΕΜΑ Α Α.1 γ Α.2 δ Α.3 γ Α.4 α Α.5 α. Σωστό β. Λάθος γ. Λάθος

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α1. γ Α2. β Α3. β Α4.γ

ΘΕΜΑ Α. Α1. γ Α2. β Α3. β Α4.γ ΘΕΜΑ Α Α1. γ Α2. β Α3. β Α4.γ Α5. α. Σύμφωνα με την απαγορευτική αρχή του Pauli είναι αδύνατο να υπάρχουν στο ίδιο άτομο δύο ηλεκτρόνια με ίδια τετράδα κβαντικών αριθμών (n, l, m l, m s ). Α5. β. Δείκτες

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΕΚΦΩΝΗΣΕΙΣ ΧΗΜΕΙΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 200 ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1-1.4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΚΩΛΕΤΤΗ 9- -068 0 8464 0 847670 www.irakleitos.gr ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 0 ΜΑΙΟΥ 06 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ) ΕΝΔΕΙΚΤΙΚΕΣ

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 27 ΜΑΪΟΥ 2009 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7 ΜΑΪΟΥ 009 ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις 1.1 1. να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

3. Κατά Arrhenius απαραίτητο διαλυτικό μέσο είναι το νερό ενώ η θεωρία των. β) 1. Η ηλεκτρολυτική διάσταση αναφέρεται στις ιοντικές ενώσεις και είναι

3. Κατά Arrhenius απαραίτητο διαλυτικό μέσο είναι το νερό ενώ η θεωρία των. β) 1. Η ηλεκτρολυτική διάσταση αναφέρεται στις ιοντικές ενώσεις και είναι ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ 01 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α. β Α. δ Α4. Β Α5. α) 1. Κατά Arrhenius μια βάση όταν διαλυθεί στο νερό μπορεί να δώσει λόγω διάστασης OH - ενώ κατά

Διαβάστε περισσότερα

Γενικές εξετάσεις Χημεία Γ λυκείου θετικής κατεύθυνσης

Γενικές εξετάσεις Χημεία Γ λυκείου θετικής κατεύθυνσης Γενικές εξετάσεις 003 Χημεία Γ λυκείου θετικής κατεύθυνσης Θέμα ο Για τις ερωτήσεις. -.4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση... Με

Διαβάστε περισσότερα

Mesto održavanja amfiteatar. laboratorija 90a predavanja

Mesto održavanja amfiteatar. laboratorija 90a predavanja Naziv predmeta Medicinska hemija Odgovorni nastavnik prof. dr S. Borozan Fond časova 2+2 Ostali nastavnici mr M. Krstić Mesto održavanja Mesto održavanja amfiteatar laboratorija 90a predavanja vežbi Raspored

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΘΗΑ - ΕΞΕΤΑΖΟΕΝΗ ΥΛΗ ΧΗΕΙΑ Γ ΛΥΚΕΙΟΥ ΚΑΘΗΓΗΤΗΣ ΤΗΑ ΠΑΡΑΡΤΗΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΑ Α ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΑΤΩΝ Α1. 3, Α2. 3, Α3. 2, Α4. 3 Α5. 1. Λάθος, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Σωστό. ΘΕΑ Β Β1. Ι) 1.

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΧΗΜΕΙΑΣ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΧΗΜΕΙΑΣ Θέμα Α Α1. δ Α. γ Α. α Α4. β Α5. δ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ 11 -- ΠΕΙΡΑΙΑΣ -- 185 -- ΤΗΛ. -4475, 4687 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΧΗΜΕΙΑΣ Θέμα Β Β1. α. F: περίοδος, VIIA ομάδα Na: περίοδος, IA ομάδα Κ: 4 περίοδος, IA ομάδα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ÅÍ-ÔÁÎÇ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ ÅÍ-ÔÁÎÇ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 15 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ

XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΜΑΘΗΜΑ: ΘΕΜΑΤΑ: XHMEIA Α ΛΥΚΕΙΟΥ GI_A_CHIM_0_3499 ΗΜΕΡΟΜΗΝΙΑ: 26/05/2014 ΟΙ ΚΑΘΗΓΗΤΕΣ: ΜΑΡΑΓΚΟΥ ΝΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Θέµα 2ο 2.1 Α) Να υπολογιστεί ο αριθµός οξείδωσης του αζώτου στις παρακάτω χηµικές ενώσεις:

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2015 27-5-2015 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ Α2. β Α3. γ Α4. α Α5. β ΘΕΜΑ Β Β1. α. Λάθος Εξαρτάται από ph του διαλύματος της ισχυρής βάσης που προστίθεται.

Διαβάστε περισσότερα

PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA

PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA I RAČUNSKE EŽBE PREGLED OSNONIH ELIČINA ZA DEFINISANJE SASTAA RASTORA Za izražavanje kvantitativnog sastava rastvora u heiji koriste se različite fizičke veličine i odnosi. Koriste se i različite jedinice.

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23/04/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 23/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Α3. Το συζυγές οξύ του NH. α. ΝΗ 3 β. NH. γ. ΝΗ 2 ΟΗ

Μονάδες 5. Μονάδες 5. Α3. Το συζυγές οξύ του NH. α. ΝΗ 3 β. NH. γ. ΝΗ 2 ΟΗ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 0 1 0 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8.05.10 ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

II RASTVORI. Borko Matijević

II RASTVORI. Borko Matijević Borko Matijević II RASTVORI Rastvori predstavljaju složene disperzne sisteme u kojima su fino usitnjene čestice jedne supstance ravnomerno raspoređene između čestica druge supstance. Supstanca koja se

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Μονάδες 5 Α3. Ποια από τις παρακάτω ηλεκτρονιακές δομές παραβιάζει τον κανόνα του Hund;

Μονάδες 5 Α3. Ποια από τις παρακάτω ηλεκτρονιακές δομές παραβιάζει τον κανόνα του Hund; Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 0 1 6 Χ Η Μ Ε Ι Α Κ Α Τ Ε Υ Θ Υ Ν Σ Η Σ Γ Λ Υ Κ Ε Ι Ο Υ 0 0 0 1 6 ΘΕΜΑ Α Για τις προτάσεις Α1 έως και Α να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΧΗΜΕΙΑ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1 β Α2 δ Α3 β Α4 γ Α5 β Α6 ΣΩΣΤΗ Α7 ΣΩΣΤΗ Α8 ΣΩΣΤΗ Α9 ΣΩΣΤΗ Α10 ΛΑΝΘΑΣΜΕΝΗ

ΧΗΜΕΙΑ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α1 β Α2 δ Α3 β Α4 γ Α5 β Α6 ΣΩΣΤΗ Α7 ΣΩΣΤΗ Α8 ΣΩΣΤΗ Α9 ΣΩΣΤΗ Α10 ΛΑΝΘΑΣΜΕΝΗ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 β Α2 δ Α3 β Α4 γ Α5 β Α6 ΣΩΣΤΗ Α7 ΣΩΣΤΗ Α8 ΣΩΣΤΗ Α9 ΣΩΣΤΗ Α10 ΛΑΝΘΑΣΜΕΝΗ ΘΕΜΑ B Α α) Γράφουμε τις ηλεκτρονιακές κατανομές των δοθέντων

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2012 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α Α1. γ Α. β Α. β Α4. γ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 01 ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Α5. α. Θεωρία σχολικού

Διαβάστε περισσότερα

Τρίτη 13 Μαΐου 2014 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Επιμέλεια: ΦΡΟΝΤΙΣΤΗΡΙΑ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ

Τρίτη 13 Μαΐου 2014 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Επιμέλεια: ΦΡΟΝΤΙΣΤΗΡΙΑ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ Τρίτη 13 Μαΐου 2014 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2014 Επιμέλεια: ΦΡΟΝΤΙΣΤΗΡΙΑ «ΟΜΟΚΕΝΤΡΟ» ΦΛΩΡΟΠΟΥΛΟΥ ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1:γ Α2:β Α3:δ Α4:β Α5:α)διαφορές θεωρίας του Arrhenius- Brönsted

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα