Idealno gasno stanje-čisti gasovi

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Idealno gasno stanje-čisti gasovi"

Transcript

1 Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim T i n 2. Gej-Lisakov: V T pri konstantnim P i n 3. Šarlov:P T pri konstantnim V i n 4. Avogadrov: V n pri konstantnim P i T Jednačina idealnog gasnog stanja: PV nrt R je molarna gasna konstanta

2 Idealno gasno stanje-smeše gasova Ako gasni zakoni i jednačina idealnog gasnog stanja važi za čiste gasove, važiće i za smešu gasova. Gasni zakoni za smešu gasova: 1. Daltonov: PP 1 + P 2 + P P i pri konstantnoj T P i n i RT/Vx i P 2. Amagaov: VV 1 +V 2 +V V i pri konstantnim P i T V i n i RT/Px i V Srednja molarna masa: n m i n n M x M x M... n n i n M + n M n +... n M x n M n

3 Jedinice pritiska Ime paskal bar atmosfera Torr mm živinog stuba funta po kvadratnom inču Simbol 1 Pa 1 bar 1 atm 1 Torr 1 mmhg 1 psi Vrednost 1 N m -2, 1 kg m -1 s Pa Pa 133,32 Pa 133,322 Pa 6, kpa

4 Vežba a. Pretvoriti 723 torr u kilopaskale (kpa). Rešenje: (723 torr) x (101,325 kpa/760 torr) 96,4 kpa 1.b. Atmosferski pritisak na Marsu iznosi 0,61 kpa. Koliko iznosi ovaj pritisak u torima? Rešenje: 610:133,3224,58 Torr

5 Vežba 1.2 Koliko atoma Xe ima u uzorku koji sadrži 1,8 mol Xe? Rešenje: (1,8 mol) x (6.022 x mol -1 ) 1,08 x 10 24

6 Vežba 1.3 (a) Koju količinu H 2 O ima 100 g vode? (b) Koliko molekula H 2 O ima u 100 g vode? (a) 100 g x (1 mol/18,015 g) 5.55 mol (b) 100 g x (1 mol/18,015 g) x ( x mol -1 ) 3,34 x molekula

7 Vežba 1.4. Propan se koristi kao gas u spreju za osvežavanje vazduha. Koja je zapremina propana ako se 1 dm 3 sa pritiska od 1 atm komprimuje do 2,5 atm. Rezultat izraziti u jedinici SI sistema. Rešenje: PV Pa PV 2 2 V P2 2, Pa PV m m 3

8 Vežba 1.5. U industrijskom procesu azot se zagreva do 500 K u sudu konstantne zapremine. Ako je na 300K pritisak gasa 100 atm, koliki pritisak će gas pokazivati na 500 K? Početno Krajnje Isto Isto Isto Isto P P P T T T T P 500K P2 100atm 300K 166,67atm Primedba:Eksperiment pokazuje da je stvarni pritisak 183 atm pod ovim uslovima, tako da pretpostavka idealnog gasnog stanja dovodi do greške od 10%

9 Vežba 1.6. Uzorak kiseonika zapremine 0,432 L je skupljen pri pritisku od 745 mmhg i na 24 0 C. Gas će na 0 0 C i istom pritisku zauzimati zapreminu (m 3 ) od: a) 0,421 b) 0,397 c) 0,407 d) 0, e) 0, f) ne znam

10 Vežba 1.7. Koja je krajnja zapremina gasa u SI koji se greje od 25 o C do 1000 o C čiji pritisak raste od 10,0 kpa do 150,0 kpa, ako je početna zapremina 15 ml? Rešenje: Rešenje: V 2 (p 1 V 1 /T 1 )(T 2 /p 2 ) V 2 (10,0 kpa x 15 ml/ 298 K)(1273 K / 150,0 kpa) 4,27 ml4, m 3

11 Vežba 1.8. Sud zapremine 12 L ispunjen je gasom pod pritiskom od 0,4 MPa. U drugom sudu zapremine 3 L je vakuum. Koliki će biti pritisak gasa ako se sudovi spoje tankom cevčicom, kada je temperatura konstantna. 12L 0,4MPa V1 P1 nrt ( V1 + V2 ) P nrt P 0, 32MPa 15L

12 Vežba 1.9. Izračunati pritisak 1,22 g ugljendioksida zatvorenog u balon zapremine od 500 ml na 37 o C. Rešenje: p nrt/v (m/m)rt/v p (1,22 g/44,01 g mol -1 ) x (8,3145 kpa L K -1 mol -1 ) x(310 K/0,500 L) 142,92 kpa

13 Vežba 1.10 Izračunati molsku frakciju N 2, O 2, i Ar u suvom vazduhu na nivou mora ako se 100 g vazduha sastoji od 75,5 g N 2, 23,2 g O 2 i 1,3 g Ar. Rešenje: 75,5 (g N 2 ) /28(g/mol) 2,70 mol N 2 ; 1,3(gAr)/40(g/mol)0,0325mol Ar 23,2 (g O 2 /32g/mol) 0,725 mol O 2 ; Ukupno 3,46 mol gas xn 2 0,781; xo 2 0,210; xar 0,009

14 Domaći! 1. Izračunati srednju molarnu masu vazduha.

15 Srednja molarna masa x N2 0,78 M N2 28g/mol x O2 0,21 M O2 32g/mol x Ar 0,01 M ar 40g/mol vazduha Izračunati srednju molarnu masu vazduha. M 0, , , ,9g / mol

16 Vežba 1.11 Vazduh približno sadrži 80% azota i 20% kiseonika (molarnih). Ako se 6 g vodonika doda u balon zapremine 22,4 L na 0oC i prvobitno napunjenog vazduhom pri pritisku od 1 atm, kolika će biti srednja molarna masa smeše vazduha i vodonika.

17 Rešenje Zapremina od 22,4 L pri STP sadrži 1 mol. 0, , M 8,7g / mol 1+ 3

18 Vežba 1.12 Izračunati parcijalne pritiske u smeši gasa (u kpa) koja se sastoji od 2,50 g kiseonika i 6,43 g ugljendioksida pri ukupnom pritisku od 88 kpa. Rešenje: 2,50 g/32 g/mol 0,0781 mol O 2 ; 6,43 g/44 g/mol 0,146 mol CO 2 ; Ukupno mol gasa x O2 0,348; x CO2 0,651 p O2 x O2 p 30,7 kpa; p CO2 x CO2 p 57,3 kpa

19 Vežba 1.13 Dva odvojena balona sadrže gasove A i. Gustina gasa A je dva puta veća od gustine gasa, a molarna masa gasa A je jednaka polovini molarne mase gasa. Ako su gasovi na istoj temperaturi i u idealnom gasnom stanju, odnos pritisaka gasova A i je: a) 1 b) 2 c) 3 d) 4 e) 5 f) 8

20 Rešenje P RT ρ M P P A ρ AM ρ M A 2ρ M M ρ 2 4

21 Vežba 14 Na datim dijagramima nacrtati izoterme koje prolaze kroz tačke 1, 2 i 3: P P V T V T

22 Vežba 15 Proces prikazan na dijagramu a) prikazati na dijagramu b): P 2 P 1 3 V T

23 Pitanja Koji zakoni važe za idealno gasno stanje? Nula idealno gasne skale temperatura iznosi u celzijusovim stepenima: Pri kojim uslovima se gas približava idealnom gasnom stanju? Vrednost molarne gasne konstante R u SI sistemu jedinica iznosi: Šta je Avogardova konstanta i koliko iznosi? Šta je parcijalni pritisak gasa i u kakvom odnosu je sa ukupnim pritiskom gasne smeše?

24 Vežba 16 Vodonik će disosovati u atome na dovoljno visokoj temperaturi. Kolika će biti gustina vodonika na 2000 o C ako 33% disosuje u atome a pritisak je 1 bar? a) 1 g/cm 3 b) 7, g/l c) 1,33g/mL d) 7,94 kg/m 3 e) kg/m 3 f) ne znam

25 Rešenje 0,67 0,66 3 M ,5 10 kg / 1,33 1,33 mol ρ PM RT ,5 8, , kg / m 3

26 Vežba 17 Sud je podeljen u dva dela. Deo A sadrži gas A na 400K i 5 atm. Deo sadrži gas na 400 K i 8 atm. Pregrada između delova je uklonjena. Molska frakcija gasa A u smeši je x A Krajnja zapremina je 29 l. Odrediti početnu zapreminu delova A i.

27 Rešenje: l 0l 9, 20,0 ) ( , , A A A A A A A A A A V V V atm V atm P V P V n n x x RT n P V RT n P V

Idealno gasno stanje-čisti gasovi

Idealno gasno stanje-čisti gasovi Idealo gaso staje-čisti gasovi Parametri P, V, T i isu ezavisi. Odos između jih eksperimetalo je utvrđei izražava se kroz gase zakoe. Gasi zakoi: 1. Bojl-Maritov: PVcost. pri kostatim T i. Gej-Lisakov:

Διαβάστε περισσότερα

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K

C 273,15, T 273,15, 1 1 C 1 50 C 273,15 K 50K 323,15K 50K 373,15K C 40 C 40 K 1 Zadatak temperatura K- C Telo A se nalazi na temperaturi 50 C i zagreje se za 50 K. Telo B se nalazi na temperaturi 313 K.i zagreje se za 40 C. Koje je telo toplije posle zagravanja i kolika je razlika

Διαβάστε περισσότερα

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem.

TOPLOTA. Primjeri. * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. 1.OSNOVNI POJMOVI TOPLOTA Primjeri * KALORIKA Nauka o toploti * TERMODINAMIKA Razmatra prenos energije i efekte tog prenosa na sistem. * TD SISTEM To je bilo koje makroskopsko tijelo ili grupa tijela,

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

GASNO STANJE.

GASNO STANJE. GASNO STANJE http://www.ffh.bg.ac.rs/geografi_fh_procesi.html AGREGATNA STANJA MATERIJE Četiri agregatna stanja materije na osnovu stepena uređenosti, tj. odnosa termalne energije čestica i energije međumolekulskih

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

BIOFIZIKA TERMO-FIZIKA

BIOFIZIKA TERMO-FIZIKA BIOFIZIKA TERMO-FIZIKA Akademik, prof. dr Jovan P. Šetrajčić jovan.setrajcic@df.uns.ac.rs Univerzitet u Novom Sadu Departman za fiziku PMF Powered byl A T E X 2ε! p. / p. 2/ Termika FENOMENOLOŠKA TEORIJA

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

C P,m C V,m = R C P C V = nr

C P,m C V,m = R C P C V = nr I zakon termodinamike du dq+ dw+ dw e dh du+ pd du U U d+ d d+ u d,m,m R nr dh Izotermski procesi: p d + H H d wnr ln R ln Izotermski reverzibilni zapreminski rad gasa u I.G.. w p Izotermski revetzibilni

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika

Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika. Molekularna fizika i termodinamika Molekularna fizika proučava strukturu i svojstva supstanci polazeći od molekularno -kinetičke teorije: supstance su sastavljene od vrlo malih čestica (molekula, atoma i jona) koji se nalaze u stalnom haotičnom

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

НАФТНО-ГАСНИ КОМПЛЕКСИ

НАФТНО-ГАСНИ КОМПЛЕКСИ Индустријско инжеnjерство у експлоатацији нафте и гаса Технички факултет Михајло Пупин Зрењанин НАФТНО-ГАСНИ КОМПЛЕКСИ (Решени задаци за писмени) Вер.1 Др. Радослав Д. Мићић, доц SADRŽAJ: 1. KONVERZIJA

Διαβάστε περισσότερα

Masa i gustina. zadaci

Masa i gustina. zadaci Masa i gustina zadaci 1.)Vaga je u ravnote i dok je na jednom njenom tasu telo, a na drugom su tegovi od: 10 g, 2 g, 500 mg i 200 mg.kolika je masa ovog tela? 2.)Na jednom tasu vage se nal azi telo i teg

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

Pneumatski sistemi. Pneumatski sistem je tehnički sistem za pretvaranje i prenos energije, kao i za

Pneumatski sistemi. Pneumatski sistem je tehnički sistem za pretvaranje i prenos energije, kao i za 1 Pneumatsi sistemi Pneumatsi sistem je tehniči sistem za pretvaranje i prenos energije, ao i za upravljanje energijom. Ovo poglavlje obuhvata sledeće teme: osnovne funcije pneumatsog sistema osnovna svojstva

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

NULTI I PRVI ZAKON TERMODINAMIKE

NULTI I PRVI ZAKON TERMODINAMIKE NULTI I PRVI ZAKON TERMODINAMIKE NULTI ZAKON (princip)termodinamike ako su dva sistema A i B u međusobnom termičkom kontaktu, i u ravnoteži sa trećim sistemom C onda su u ravnoteži i jedan sa drugim Ako

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA

U unutrašnja energija H entalpija S entropija G 298. G Gibsova energija TERMOHEMIJA I TERMODINAMIKA HEMIJSKA TERMODINAMIKA HEMIJSKA TERMODINAMIKA Bavi se energetskim promenama pri odigravanju hemijskih reakcija. TERMODINAMIČKE FUNKCIJE STANJA U unutrašnja energija H entalpija S entropija Ako su određene na standardnom pritisku

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje

za reverzibilan kružni proces količina toplote koju je sistem na svojoj nižoj temperaturi T 1 predao okolini i ponovo prešao u početno stanje ENROPIJA Spontani procesi u prirodi se uvek odvijaju u određenom smeru (npr. prelazak toplote sa toplijeg na hladnije telo) što nije moguće opisati termodinamičkim funkcijama do sad obrađenim. Nulti zakon

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων

ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Η καταστατική εξίσωση των ιδανικών αερίων Ελένη ανίλη, Χηµικός, Msc., Ph.D Η καταστατική εξίσωση των ιδανικών αερίων 2 Έχεις ποτέ χρησιµοποιήσει τρόµπα για να φουσκώσεις το λάστιχο του

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

3. ATMOSFERSKI PRITISAK

3. ATMOSFERSKI PRITISAK 3. ATMOSFERSKI PRITISAK NASTAVNA PITANJA: 1. Pojam atmosferskog pritiska 2. Vertikalna raspodjela vazdušnog pritiska 3. Horizontalna raspodjela vazdušnog pritiska 4. Barometarski gradijent LITERATURA:

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O

Slično važi i za bilo koje druge kombinacije nekondenzujućih ( O 8. Vlažni gasovi 8.1 Uvod - smeše realnog i idealnog gasa - smeše kondenzujućeg i nekondenzujućeg gasa - arno gasne smeše - najoznatiji redstavnik ažan vazduh - smeša (suvog) vazduha idealnog gasa i age

Διαβάστε περισσότερα

Termodinamika. Termodinamika

Termodinamika. Termodinamika ermodinamika Postoje brojne definicije termodinamike kao nauke o toploti. ako na primjer, prema Enriku Fermiju: Glavni sadržaj termodinamike je opisivanje transformacije toplote u mehnaički rad i obratno

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

II RASTVORI. Borko Matijević

II RASTVORI. Borko Matijević Borko Matijević II RASTVORI Rastvori predstavljaju složene disperzne sisteme u kojima su fino usitnjene čestice jedne supstance ravnomerno raspoređene između čestica druge supstance. Supstanca koja se

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

P 1 V 1 = σταθ. P 2 V 2 = σταθ.

P 1 V 1 = σταθ. P 2 V 2 = σταθ. ΝΟΜΟΙ ΤΩΝ ΑΕΡΙΩΝ 83 Την κατάσταση ενός αερίου μέσα σε ένα δοχείο μπορούμε να την κατανοήσουμε, άρα και να την περιγράψουμε πλήρως, αν γνωρίζουμε τις τιμές των παραμέτρων εκείνων που επηρεάζουν την συμπεριφορά

Διαβάστε περισσότερα

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ 29. 2 o Ιδιότητες υγρών Αέρια - Νόµος µερικών πιέσεων Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ιδιότητες υγρών α. Ιξώδες: Ιξώδες ενός υγρού είναι η αντίσταση του υγρού στη ροή. Το ιξώδες εξαρτάται: 1. από τη θερµοκρασία:

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema.

TERMODINAMIČKI PARAMETRI su veličine kojima opisujemo stanje sistema. TERMODINAMIKA U svakodnevnom govoru, često dolazi greškom do koriščenja termina temperatura i toplota u istom značenju. U fizici, ova dva termina imaju potpuno različito značenje. Razmatračemo kako se

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Φυσικές και χημικές ιδιότητες

Φυσικές και χημικές ιδιότητες Φυσικές και χημικές ιδιότητες Φυσικές ιδιότητες Οι ιδιότητες που προσδιορίζονται χωρίς αλλοίωση της χημικής σύστασης της ουσίας (π.χ. σ. τήξεως, σ. ζέσεως, πυκνότητα, χρώμα, γεύση, σκληρότητα). Χημικές

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

kvazistatičke (ravnotežne) promene stanja idealnih gasova

kvazistatičke (ravnotežne) promene stanja idealnih gasova zbirka zadataka iz termodinamike strana 1/71 kvazistatičke (ravnotežne) promene stanja idealnih gasova 1.1. Vazduh (idealan gas), (p 1 =2 bar, t 1 =27 o C) kvazistatički menja stanje pri stalnoj zapremini

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

Ε. Κ. Παλούρα, ΦΥΣΙΚΗ ΦΑΡΜΑΚΕΥΤΙΚΟΥ 2013

Ε. Κ. Παλούρα, ΦΥΣΙΚΗ ΦΑΡΜΑΚΕΥΤΙΚΟΥ 2013 1 Εισαγωγικές έννοιες στα ρευστά 1 Ρευστάά είναι τα υγρά και τα αέρια που έχουν την ικανότητα να ρέουν. Στα ρευστά τα μόρια κατανέμονται στον χώρο με τυχαίο τρόπο και συνδέονται μεταξύ τους με ασθενείς

Διαβάστε περισσότερα

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina

Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Zadatci za vježbanje - termičko širenje / plinski zakoni / tlak idealnog plina Pun spremnik benzina sadrži 60 litara. Ako je napunjen pri temperaturi 5 C i ostavljen na suncu tako da se temperatura povisi

Διαβάστε περισσότερα

TOPLOTA I RAD, PRVI ZAKON TERMODINAMIKE

TOPLOTA I RAD, PRVI ZAKON TERMODINAMIKE TOPLOTA I RAD, PRI ZAKON TERMODINAMIKE Mehanički rad u termodinamici uvek predstavlja razmenu energije izmedju sistema i okoline. Mehanički rad se javlja kao rezultat delovanja sile duž puta: W Fdl W Fdl

Διαβάστε περισσότερα

10. Αέρια. Όταν θα έχετε μελετήσει αυτό το κεφάλαιο, θα μπορείτε να:

10. Αέρια. Όταν θα έχετε μελετήσει αυτό το κεφάλαιο, θα μπορείτε να: 10. Αέρια ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε τους εμπειρικούς νόμους των αερίων, τον συνδυασμό αυτών που αποτελεί τον νόμο των ιδανικών αερίων, τον νόμο των μερικών πιέσεων για μίγματα

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 9.

Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa. Presentation 9. Radoslav D. Mićić, doc. PhD, Hemija nafte i gasa Presentation 9. Destilacione krive S obzirom da su nafta i njene frakcije složene smese ugljovodonika, njihovo temeljno svojstvo isparljivosti je područje

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

TEHNOLOŠKE OPERACIJE. Predavanje 2

TEHNOLOŠKE OPERACIJE. Predavanje 2 TEHNOLOŠKE OPERACIJE Predavanje Agregatna stanja - faze http://hr.wikipedia.org/wiki/datoteka:water-elpot-transparent-3d-balls.png Vazduh, voda, mleko, voćni sok, krv... - gasovi i tečnosti Voda: 73,16

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu Toplina / Molekularno-kinetička teorija / Termodinamika 1. Temperatura apsolutne nule iznosi C. Temperatura od 37 C iznosi K. Ako se temperatura tijela povisi od 37 C na 39 C

Διαβάστε περισσότερα

Zadatci za vježbanje Termodinamika

Zadatci za vježbanje Termodinamika Zadatci za vježbanje Termodinamika 1. Električnim bojlerom treba zagrijati 22 litre vode 15 ⁰C do 93 ⁰C. Koliku snagu mora imati grijač da bi se to postiglo za 2 sata zagrijavanja? Specifični toplinski

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Για να παρασκευάσετε ένα διάλυμα ορισμένου p στο Εργαστήριο χρησιμοποιήσατε το ρυθμιστικό ζεύγος C 3 COOΗ / C 3 COONa 3 2 O. Έστω τώρα ότι θέλετε να παρασκευάσετε,

Διαβάστε περισσότερα

Επιμέλεια: Φροντιστήρια «ΟΜΟΚΕΝΤΡΟ ΦΛΩΡΟΠΟΥΛΟΥ»

Επιμέλεια: Φροντιστήρια «ΟΜΟΚΕΝΤΡΟ ΦΛΩΡΟΠΟΥΛΟΥ» Τρίτη 27 Μαΐου 2014 Α ΛΥΚΕΙΟΥ ΝΕΟ ΕΞΕΤΑΣΤΙΚΟ ΣΥΣΤΗΜΑ ΧΗΜΕΙΑ Επιμέλεια: Φροντιστήρια «ΟΜΟΚΕΝΤΡΟ ΦΛΩΡΟΠΟΥΛΟΥ» ΧΗΜΕΙΑ ΘΕΜΑ Α Για τις ερωτήσεις Α1-Α3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και

Διαβάστε περισσότερα

Fizička mehanika i termofizika, junski rok

Fizička mehanika i termofizika, junski rok Fizička mehanika i termofizika, junski rok 5.7.2001. 1. Po strmoj ravni, nagibnog ugla α, kotrlja se bez klizanja masivni šuplji cilindar, mase M i poluprečnika R. Po unutrašnjosti cilindra se kreće pas.

Διαβάστε περισσότερα

RAD, SNAGA I ENERGIJA

RAD, SNAGA I ENERGIJA RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA

Διαβάστε περισσότερα

PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA

PREGLED OSNOVNIH VELIČINA ZA DEFINISANJE SASTAVA RASTVORA I RAČUNSKE EŽBE PREGLED OSNONIH ELIČINA ZA DEFINISANJE SASTAA RASTORA Za izražavanje kvantitativnog sastava rastvora u heiji koriste se različite fizičke veličine i odnosi. Koriste se i različite jedinice.

Διαβάστε περισσότερα

Ερωηήζεις Πολλαπλής Επιλογής

Ερωηήζεις Πολλαπλής Επιλογής Ερωηήζεις Θεωρίας 1. Ππθλφηεηα: α) δηαηχπσζε νξηζκνχ, β) ηχπνο, γ) είλαη ζεκειηψδεο ή παξάγσγν κέγεζνο;, δ) πνηα ε κνλάδα κέηξεζήο ηεο ζην Γηεζλέο Σχζηεκα (S.I.); ε) πνηα ε ρξεζηκφηεηά ηεο; 2. Γηαιπηφηεηα:

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

OSNOVNA ŠKOLA HEMIJA

OSNOVNA ŠKOLA HEMIJA OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti

Διαβάστε περισσότερα

I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI

I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI dr Ljiljana Vojinović-Ješić I HEMIJSKI ZAKONI I STRUKTURA SUPSTANCI ZAKON STALNIH MASENIH ODNOSA (I stehiometrijski zakon, Prust, 1799) Maseni odnos elemenata u datom jedinjenju je stalan, bez obzira na

Διαβάστε περισσότερα

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών

Φυσική- Κεφάλαιο Μηχανικής των Ρευστών Φυσική- Κεφάλαιο Μηχανικής των Ρευστών 1 Νοεµβρίου 2013 Το κεφάλαιο αυτό είναι επηρεασµένο από τους [3], [4], [2], [1]. Στερεά Υγρά Αέρια Καταστάσεις Υλης Βασική δοµική µονάδα: το Μόριο. καθορίζει χηµικές

Διαβάστε περισσότερα

Termofizika. Glava Temperatura

Termofizika. Glava Temperatura Glava 7 Termofizika Toplota je jedan od oblika energije sa čijim transferom sa tela na telo se svakodnevno srećemo. Tako nas na primer, leti Sunce zagreva tokom dana dok su vedre letnje noći često prilično

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ

Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ. Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ Καθηγητής : ΓΕΩΡΓΙΟΣ ΔΑΝΙΗΛ ΠΛΑΪΝΑΚΗΣ Χημεία ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΑΣΠΡΟΠΥΡΓΟΣ 2 Ογκομέτρηση προχοϊδα διάλυμα HCl ΕΔΩ ακριβώς μετράμε τον όγκο ( στην εφαπτομένη της καμπύλης

Διαβάστε περισσότερα

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1

TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1 OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro

Γραµµοµοριακός όγκος. Ο Νόµος του Avogadro ΤΟ MOL ΣΤΑ ΑΕΡΙΑ Γραµµοµοριακός όγκος Ο Νόµος του Avogadro Ελένη ανίλη, Χηµικός, Msc., Ph.D 2 Η ΧΡΗΣΙΜΟΤΗΤΑ ΤΟΥ MOL ΣΤΑ ΑΕΡΙΑ Όπως ήδη ξέρεις τα αέρια είναι πολύ ελαφρά. Είναι δύσκολο να τα ζυγίσουµε όµως

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila)

PRETHODNI PRORACUN VRATILA (dimenzionisanje vratila) Predet: Mašinski eleenti Proračun vratila strana Dienzionisati vratilo elektrootora sledecih karakteristika: oinalna snaga P = 3kW roj obrtaja n = 400 in Shea opterecenja: Faktor neravnoernosti K =. F

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΔΙΑΜΟΡΙΑΚΕΣ ΔΥΝΑΜΕΙΣ ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 1 ΧΗΜΕΙΑ ΚΑΤΕΥΘΥΝΣΗΣ B ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ΔΙΑΜΟΡΙΑΚΕΣ ΔΥΝΑΜΕΙΣ ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 ΔΙΑΜΟΡΙΑΚΕΣ ΔΥΝΑΜΕΙΣ ΕΙΣΑΓΩΓΗ Στην πρώτη ενότητα του κεφαλαίου αυτού, θα μάθεις για τα είδη και τα χαρακτηριστικά των διαμοριακών δυνάμεων (ελκτικές δυνάμεις μεταξύ των μορίων) καθώς και για

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα