Post Graduate Diploma in Applied Statistics (PGDAST)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Post Graduate Diploma in Applied Statistics (PGDAST)"

Transcript

1

2 FORMULAE AD STATISTICAL TABLES BOOKLET for Post Graduate Dploma Appled Statstcs (PGDAST) IMPORTAT The Formulae ad Statstcal Tables Boolet cotas the ma formulae of the courses of the PGDAST programme ad Statstcal Tables. The Formulae ad Statstcal Tables Boolet wll be avalable at the eamato cetres the Term-Ed Eamatos for the courses of the PGDAST programme. School of Sceces Idra Gadh atoal Ope Uversty ew Delh 008 Copyrght, Idra Gadh atoal Ope Uversty

3 COTETS FORMULAE AD STATISTICAL TABLES Page o. MST-00 : Foudato Mathematcs ad Statstcs - MST-00 : Descrptve Statstcs -9 MST-00 : Probablty Theory 0- MST-00 : Statstcal Iferece -8 MST-00 : Statstcal Techques 9- MSTE-00 : Idustral Statstcs-I - MSTE-00 : Idustral Statstcs-II 8-9 Table : Logarthms - Table : Atlogarthms - Table : Values of e Table : Commoaly Used Values of Stadard ormal Varate Z Table : Stadard ormal Dstrbuto (Z table) 7 Table : Studet s t Dstrbuto (t table) 8 Table 7 : Ch square Dstrbuto ( table) 9 Table 8 : F Dstrbuto (F table) 0- Table 9 : Crtcal Values of Wlcoo Test Table 0 : Crtcal Values of Rus Test Table : Crtcal Values of Kolmogorov-Smrov Test for Oe Sample 7 Table : Crtcal Values of Kolmogorov-Smrov Test for Two Samples of Equal Sze 8 Table : Crtcal Values of Kolmogorov-Smrov Test for Two Samples of Uequal Szes 9 Table : Crtcal Values of Ma-Whtey U Test 0- Table : Crtcal Values of Krusal-Walls Test Table : Crtcal Values of Fredma Test Table 7 : Posso Probablty -9 Table 8 : Costats/Factors for Varable Cotrol Charts 0 Table 9 : Cumulatve Bomal Probablty Dstrbuto -7 Table 0 : Cumulatve Posso Probablty Dstrbuto 7-79 Table : Radom umber Table 80-8 Copyrght, Idra Gadh atoal Ope Uversty

4 MST-00 FOUDATIO I MATHEMATICS AD STATISTICS S. o. FORMULAE Dstrbutve Laws De-Morga s Laws A (BC) A B A C A (BC) A B A C (A B)' A' B' (A B)' A' B' Importat Relatos Betwee Dfferet Sets Laws of Logarthm (A B) = (A) + (B) (A B) (A B) = (A B) + (A B) + (B A) (A B) = (A) (A B) (B A) = (B) (A B) (A BC) (A) (B) (C) (A B) (A C) (BC) (A BC) loga m loga m loga m loga loga m loga log m a log m log b loga b log a a a loga m m loga a loga b log a Arthmetc Progresso (A.P.) Geometrc Progresso (G.P.) Sum of Specal Sequeces For a A.P. havg frst term a ad commo dfferece d th term = a T a ( )d Sum of frst terms = S [a ( )d] or S (a l), l last term ( )! = (whe at-cloc wse ad cloc wse order of arragemets does ot gve dstct permutatos) For a G.P. havg frst term a ad commo rato r th term = a T ar a( r ) Sumof frst terms S, r r a Sum of fte G.P. = S, r r b ( ) ; ( )( ) ( ) Permutato of thgs ot all dstct Combato The total umber of combatos of thgs tae r ( r ) at a, where p p... p p p p... p! tme Cr ad p, ( r)! r! where p are the th d of thg out of thgs. Result I: Total umber of permutatos of dstct thgs tae r at Permutato whe repetto s allowed a tme such that Total umber of permutatos of thgs tae r ) s (0 < s < r) partcular thgs are always cluded = s P r rs Ps at a tme aythg ca repeat ay umber of tmes ) s (0 < s < r) partcular thgs are always ecluded = s P r r =. Crcular permutato Result II: Total umber of combato of dstct thgs tae r at umber of permutatos of dstct thgs a tme such that = ( )! (whe at-cloc wse ad cloc wse ) s (0 < s < r) partcular thgs are always cluded = s Cr s order of arragemets maes dfferet permutatos) ) s (0 < s < r) partcular thgs are always ecluded = s Cr umber of permutatos of dstct thgs Bomal theorem for postve tegral de (a b) C a C a b C a b C a b... + C ab C b 0 Bomal theorem for ay de ( ) ( )( ) ( )!! ( )( )...( (r )) r! r Copyrght, Idra Gadh atoal Ope Uversty

5 Some Stadard Results o Lmt a lm a a a s lm lm 0 0s ta lm lm 0 0 ta lm cos 0 lm 0 a loge a, lm e / lm( ) e 0 e lm log ee 0 log( ) lm 0 lm 0, where 0 7 Dervatves of Some Fuctos d () 0, s costat d d ( ) d d (a b) a(a b) d d d (cu) c (u) d d where c s costat ad u s a fucto of If y = f(u), u = g(w), w = h() the dy dy du dw (Cha Rule) d du dw d 8 Itegrato of Some Fuctos d c, ; d log c; (a b) (a b) d c, a( ) 9 Itegrato by Parts Epoetal fucto d (a b ) ba b loga d d (e b ) be b d Logarthmc fucto d (loga ) logae d d (log e ) d Parametrc fuctos = f(t), y = g(t) dy dy d d dt dt d log a b c; a b a m m a a d c; mlog a m m a d c; e a mlog a d u() v() d u() v() d u() v() d d d 0 Elemetary Propertes of Defte Itegral b f ()d f ()d a b a a a b b f ()d f (a b )d a a f ()d f (a )d 0 0 Matrces ad Determats b c c c a a c c c Copyrght, Idra Gadh atoal Ope Uversty b d du dv (u v) d d d d dv du (uv) u v (Product Rule) d d d du dv v u d u d d (Quotet Rule) d v v where u, v are fuctos of e a a a e d c; e a ab a b e d c f ()d f ()d f ()d... f ()d f ()d, where a < c < c <...< c < b a a a 0 a f ()d, f f ()s a eve fucto f ()d f ()d 0 A I, where I s the detty matr of the same order as A 0 0, f f ()s a odd fucto a f ()d, f f (a ) f () 0 0, f f (a ) f () (A ) A (A) A, (A B) A B tr (A + B) = tr (A) + tr (B) tr (A) = tr (A)

6 (A B) A AB BA B (A B) A AB B f ad oly f AB = BA (A B) A B (AB) BA tr (AB) = tr (BA) tr (AB) tr (A) tr (B) A A A... A A A A... A A A A... A A A A... A A A A... A A A A... A AdjA A A A... A A A A... A th wherea j represetscofactor of (, j) elemet of thematr A A A, If A 0 the (A ) (A ) ; (AB) A (adja) A B A Graphcal Presetato Hstogram umber of classes K = +. Log, where K = the appromate umber of classes, = total umber of observatos Log = commo logarthm (logarthm to the base 0) Frequeces of the uequal class-tervals Gve frequecy The least wdth Wdth of tsclass-terval Stem-ad-leaf dsplay j m ths quatle Qj/ m where s that value of the varable below whch j m ths j observato le ad m. Bo Plot Lower hg = frst quartle, Upper hg = thrd quartle H-spread = Upper hg Lower hg, Step (H-Spread). Lower er fece = Lower hg Oe step Upper er fece = Upper hg + Oe step Lower outer fece = Lower hg Two steps Upper outer fece = Upper hg + Two steps Lower adjacet = Smallest observato Upper adjacet = Largest observato Copyrght, Idra Gadh atoal Ope Uversty

7 MST-00 DESCRIPTIVE STATISTICS S. o. Measures of Cetral Tedecy X Mea for Ugrouped Data XA d Whe s odd X FORMULAE Mea for Grouped Data Weghted Mea Combed Mea f f fd X A, Meda for Ugrouped/Dscrete Data Meda (M d ) Whe s eve M d th th observato observato observato ; th f X W w w X X X I Geeral X X Meda for Cotuous Data C Meda L h f Mode for Ugrouped/Dscrete Data Meda for Cotuous Data Emprcal Formula Mode = value of the varable correspodg to the mamum frequecy Geometrc Mea for Ugrouped Data GM... (... ) f f0 M0 L h Mode = Meda Mea f f f f 0 GM... Geometrc Mea for Grouped Data f f f f HM Harmoc Mea for Ugrouped Data Harmoc Mea for Grouped Data HM Quartles Decles Percetles f C Q L h f for,, C 0 D L h f for,,...,9 C 00 P L h f for,,...,99 Measures of Dsperso Rage Quartle Devato Mea Devato About ay Arbtrary Pot A R X X Ma M Coffcet of rage X X Ma Ma X X M M QD Q Q Q Q Coffcet of QD Q Q M D A Copyrght, Idra Gadh atoal Ope Uversty

8 σ = Varace σ = f Stadard devato SD Varace MD 7 Copyrght, Idra Gadh atoal Ope Uversty f f A Combed Varace for Several Groups d d... d... where d ad Root mea square devato (RMSD) for a arbtrary pot A RMSD A ad RMSD f A f Coeffcet of varato CV = 00 Raw Momets (Momets about Arbtrary Pot A) Cetral Momets (Momets about Mea) r r ( A) r ; f ( A) Recurrece relato r for r =,, ; r =,, r r r r r r r r r C r C r C r... ( ) r f ( ) ; for r = 0,,, r ; for r = 0,, Coeffcets of Sewess Coeffcets of Kurtoss ; Q Q Q S = Q Q S D D D 9 D Curve Fttg D 9 ; S P P P P P 90 0 ormal least square equatos for straght le Y = a + bx : y a b y a b = ormal least square equatos for epoetal curve Y = ab X : u A B u A B

9 ormal least square equatos for secod degree parabola Y = a + bx + cx : y a b c y a b c y a b c ormal least square equatos for power curve Y = ax b : u A b v uv A v b v where u = log y, v = log ad A = log a Smple, Multple ad Partal Correlato Aalyss Correlato coeffcet betwee X ad Y ( )(y y) r ( ) (y y) Correlato coeffcet betwee X ad Y by short cut method r ddy ddy y y d d d d Correlato Coeffcet betwee X ad Y for bvarate data r fd fydy fyddy fd fydy f d fd y y Ra correlato coeffcet rs ( ) d where log y = u, log a = A ad log b = B ormal least square equatos for epoetal curve Y = ae bx : u A B u A B where log y = u, log a = A ad blog e = B log - logarthm to the base 0. Correlato rato for cotuous data m f (y y) m T T y or m y f (y y) j j m where T f y ad T f y j j j j j j y Itra-class correlato coeffcet r c ( ) (j ) j ( )( j ) j m rc Multple correlato coeffcet R R r r r r r. r r r r r r. r Ra correlato coeffcet for ted ras m(m ) d... rs ( ) r T ( ) d T T s c c y T Ty p q (m m ) ad Ty y (m m ) Coeffcet of cocurret devato (c ) rc Correlato rato for dscrete data y r r r r r. r 8 Copyrght, Idra Gadh atoal Ope Uversty R Multple correlato coeffcet terms of partal correlato coeffcet.. R ( r )( r ).. R ( r )( r ).. R ( r )( r ) Partal correlato coeffcet r r r r. ( r )( r )

10 m y m j (y y) j (y y) r r.. r r r ( r )( r ) r r r ( r )( r ) 7 Regresso Aalyss Regresso le of Y o X (y y) b y ( ) ry where b y = Regresso le of X o Y ( ) b y (y y) where r b y = y Agle betwee two les of regresso ( r ) y ta r y 8 Assocato of Attrbutes Yule s coeffcet of assocato (AB)( ) (A )( B) Q (AB)( ) (A )( B) Coeffcet of collgato (A )( B) (AB)( ) (A )( B) (AB)( ) ad Q Partal Regresso Coeffcets b b. r r r r. r r r r r rr b. r Varace of resdual. r ( r r r r r r ) Ch-square statstc r s j O j Ej E Coeffcet of cotgecy C j 9 Copyrght, Idra Gadh atoal Ope Uversty

11 MST-00 PROBABILITY THEORY S. o. Probablty Laws of probablty P(A B) = P(A) P(A B) P(A B) = P(B) P(A B) P(A B) P(A) P(B) P(A B) P(A BC) P(A) P(B) P(C) P(A B) P(A C) P(BC) P(A BC) If A, B, C are mutually eclusve evets, the P(A BC) P(A) P(B) P(C) FORMULAE Codtoal probablty P(A B) = P(A) P(B A), P(A) > 0 = P(B) P(A B), P(B) > 0 Happeg of at least oe of the evets A,A,A,...,A s P(A A... A ) P(A )P(A )... P(A ) Uvarate radom varable X Dstrbuto fucto or cumulatve dstrbuto fucto F( ) = P[X ] P[X ], the case of dscrete radom varable 0 F() P[X ] f ()d, the case of cotuous radom varable Bvarate Radom Varable (X, Y) Law of total probablty P(A) = P(E ) P(A E ) + P(E ) P(A E ) + + P(E ) P(A E ) P E Bayes theorem PA E P(E )P(A E ) P(E A),,,..., P(A) where P(A) P(E )P(A E ) For Dscrete Radom Varable (X, Y) For Cotuous Radom Varable (X, Y) Jot probablty mass fucto p(, y j) PX,Y y j or p(, y j) P X Y y j where p(, y ) 0 ad p(, y ) j j j Margal probablty mass fucto of X p p(, y ) j j Margal probablty mass fucto of Y py j p(, y j) Codtoal probablty mass fucto of X gve Y = y P X Y y = PY y p( y) P[X Y y] provded P[Y = y] 0 Codtoal probablty mass fucto of Y gve X = P Y y X = PX p(y ) P[Y y X ] provded P[X = ] 0 Jot probablty desty fucto F, y y f (, y)dyd where f (, y) 0 ad f (, y)dyd Margal dstrbuto fucto of X F() P X f (, y)dyd Margal dstrbuto fucto of Y F(y) P[Y y] y f (, y)ddy Margal probablty desty fucto of X d f () f (, y)dy or f () F() d Margal probablty desty fucto of Y d f (y) f (, y)d or f (y) F(y) dy Codtoal probablty desty fucto of X gve Y = y f (, y) f ( y), where f(y) > 0 s the margal desty of Y f (y) 0 Copyrght, Idra Gadh atoal Ope Uversty

12 Margal dstrbuto fucto of X F() P X P X, Y yj Margal dstrbuto fucto of Y j PX,Y y F(y) P Y y Codto for depedece P[X Y y j] P[X ]P[Y y j] Epectato Propertes of mathematcal epectato E() = E(X) = E(X) E(aX + b) = ae(x) + b where, a ad b are costat r th order momet about ay pot A r E(X A) r r r r p ( A), f X s a dscrete r.v. ( A) f ()d, f X s a cotous r.v r th order momet about mea () r r E(X ) E XE(X) r r r p ( ), f Xsa dscrete r.v. ( ) f ()d, f Xsa cotous r.v. r Codtoal probablty desty fucto of Y gve X = f (, y) f (y ), where f() > 0 s the margal desty of X f () Codtoal dstrbuto fucto of X gve Y = y F( y) P X Y y f ( y)d, for all y such that f (y) 0 Codtoal dstrbuto fucto of Y gve X = F(y ) P Y y X y f (y )dy, for all such that f () 0 Codto for depedece f (y ) f (y) ad f ( y) f () or f(, y) = f() f(y) Addto theorem of epectato E(X Y) E(X) E(Y) Multplcato theorem of epectato E(XY)= E(X) E(Y) where X ad Y are depedet radom varable (r.v.) Propertes of varace V(aX b) a V(X) V(aX by) a V(X) b V(Y) abcov(x, Y) Cov(X, Y) = p j( )(y y), f (X, Y) s dscrete r.v. ( )(y y)f (, y)dyd, f (X, Y)s cotuous r.v. = E(X )(Y y) M.D. = E X Mea = E X E(X) p Mea for dscrete r.v. Mea f ()d for cotuous r.v. Dscrete ad Cotuous Probablty Dstrbutos Probablty Dstrbuto Dscrete Probablty Dstrbutos Beroull (wth parameter p) Bomal (wth parameters ad p) Probablty Fucto p p ; 0, PX 0; elsewhere Cp q ; 0,,,..., P[X ] 0; elsewhere Recurrece relato p p..p q The epected frequeces, = 0,,,, Mea ad Varace Mea p ad Varace p( p) Mea p ad Varace pq Other Propertes p(p )(p ) p p p p pq q p pq pq q p pq pq pq Copyrght, Idra Gadh atoal Ope Uversty

13 f () P X. C p q ; 0,,,..., p, pq ad pq pq Posso (wth parameter 0 ) e ; 0,,,,... P[X ] 0; elsewhere Recurrece relato p( ).p(), 0,,,,... Mea ad Varace =,,,, Dscrete Uform (Rectagular) (wth parameter ) Epected frequeces e f ().P X. ; 0,,,... for,,..., P[X ] 0, otherwse Epected frequecy Mea ad Varace f ().P[X ]. ;,,,...,. Hypergeometrc (wth parameters, M ad ) M M C. C for 0,,,...,m{,M} P[X ] C 0, otherwse where, M, are postve tegers such that, M M Mea ad Varace = M M Geometrc (wth parameter p) egatve Bomal (wth parameters r ad p) P X q p for 0,,,... 0, otherwse r r Crp q for 0,,,,... P[X ] 0, otherwse where r s a postve teger ad 0 < p < q Mea ad p q Varace p rq Mea ad p Varace rq p Cotuous Probablty Dstrbutos ormal (wth parameters ad ) f () e, where ad > 0 P[ X ] P[ Z ] 8.7% P[ X ] P[ Z ] 9.% P[ X ] P[ Z ] 99.7% Sum of depedet ormal varables s also a ormal varable. Stadard ormal dstrbuto z f (z) e, z Mea ad Varace 0, 0, β = 0,, Q.D., M.D. 0, 0 Copyrght, Idra Gadh atoal Ope Uversty

14 Cotuous Uform (Rectagular) (wth parameters a ad b) for a b f () b a 0, otherwse Cumulatve dstrbuto fucto 0 for a a F() for a b b a for b a b Mea ad Varace b a Epoetal (wth parameter ) e for 0 f () 0, elsewhere where > 0 Cumulatve dstrbuto fucto Mea ad Varace Memory less (Lac of memory) Property P[X + a X a] = P[X ] e for 0 F() 0, elsewhere Gamma (wth parameters r ad ) Gamma fucto wth parameter r Mea ad e d r 0 Varace Gamma probablty dstrbuto wth parameters r > 0 ad > 0 r r e, 0 f () r Mea r ad 0, elsewhere Varace r Gamma dstrbuto wth sgle parameter r > 0 r e f (), 0,r 0 r I the case of sgle parameter r > 0 If >, ( ) ( ) If s a postve teger, the Addtve property of Gamma Dstrbuto If X are depedet ad X G(,r ) the X G(, r ) If X are depedet ad X G(r )the X G( r ) Beta Dstrbuto of frst d (wth parameters m ad ) Beta fucto β(m, ) = m ( ) d 0 where m > 0, > 0 Beta dstrbuto of frst d m Mea ad m Varace = m (m ) (m ) Beta fucto s symmetrc fucto,.e., β(m, ) = β(, m) (p, q ) (p, q) q p (p,q) (p q,q) (p,q ) m ( ),0 f () (m,) 0, otherwse where m > 0, > 0 (m, ) 0 ( ) m m d Relatoshp betwee beta ad gamma fuctos If m > 0, > 0, the (m,) m m Copyrght, Idra Gadh atoal Ope Uversty

15 m Beta Dstrbuto, 0 m f () (m,)( ) of secod d 0, elsewhere (wth parameters m where m > 0, > 0. ad ) m Mea, ad Varace = m(m ), ( ) ( ) MST-00 STATISTICAL IFERECE S. o. Samplg Dstrbuto Sample mea (X) ad sample varace (S ) X X ad S X X E X Var X Samplg Dstrbuto of Sample Mea SDX SE X Samplg Dstrbuto of Dfferece of two Sample Meas (Idepedet Populatos) Y E X Var X Y SE X Y FORMULAE Samplg Dstrbuto of Sample Meda E X Var X SE X πσ Samplg Dstrbuto of Dfferece of two Sample Proportos E(p p ) = P P P Q PQ Var(p p ) p SE p P Q P Q E(p) P, Samplg Dstrbuto of Sample Proporto For fte populato E(p) P, SE(p) PQ Var(p) ad SE(p) Var p PQ PQ ad Cetral Lmt Theorem ad Law of Large umbers PQ If X,X,..., X s a radom sample of sze tae from a populato wth mea µ ad varace σ the X ~, for 0. Law of large umbers PX where 0 ad 0. Ch-Square Dstrbuto t-dstrbuto F-Dstrbuto Copyrght, Idra Gadh atoal Ope Uversty

16 Ch-square statstc S X ~ t-statstc ~t S/ t-dstrbuto wth df / ( / ) f ( ) e ( ) / ft / ;0 t B, r ; t r r / r 0; for all r 0,,,... r r r r ; r Relato betwee t, F ad ch-square dstrbuto t ~F(, ν); F whe S/σ F-statstc ~F, S/σ F / / ~ F, ν /ν F ν / ν / f (F) ν ν ν / ν B, ν F ν ;0 F r r r ; for r r where ad. F,, F,, Copyrght, Idra Gadh atoal Ope Uversty

17 Pot Estmato f,,...,, P X,X,...,X Ubasedess E(T) for all values of Cosstecy p T as for every where 0 lmp T P T ; m, 0 ad 0 Suffcet codtos for cosstecy E T as ad Var T 0 as Effcecy T s sad to be more effcet tha T f Var T Var T Mamum lelhood estmato L f,,...,, For dscrete case L P X.P X... P X For cotuous case L f,.f,... f, For mamum lelhood estmato log L 0 provded log L 0; for all,,..., provded, the matr of dervatves log L 0 ˆ Absolute effcecy of estmator T * Var(T ) e Var(T) Mmum varace ubased estmator (T) ) E(T) for all values of ) Var T Suffcecy Var T for all values of f,,..., / T t g,,..., Factorzato theorem of suffcecy f,,...,, g t(),.h,,..., For momet estmato M, r r M; r,,..., r th r sample momet about org = Mr X r th sample momet about mea = Mr X X r th populato momet about org = EX r r th populato momet about mea = EX r r r r j ˆ ˆ & j j log L 0; for all j,,..., Cofdece Iterval Legth of cofdece terval ( L) = T T where T lower cofdece lmt, ad T upper cofdece lmt. Cofdece terval for populato mea Whe populato varace s ow X z /, X z/ Whe populato varace s uow S S X t, X t, /, / S S X z /, X z / ; 0 For o-ormal populato X EX P z z / Var X / Cofdece terval for populato proporto p p p p p z /, p z/ Cofdece terval for populato varace Whe populato mea s ow X X,, /, / Whe populato mea s uow X X X X, or, /, / S S,, /, / Copyrght, Idra Gadh atoal Ope Uversty

18 Cofdece terval for dfferece of two populato meas (depedet populatos) X Y z /, X Y z/ X Y t S +, / p, X Y t + S, / p where Sp X X Y Y or S p S S ad ( ), S Y Y S X X Short-cut approach X a d, Y b d ( ) ad d d p S d d where d = (X a ) ad d = (Y b), a ad b are assumed arbtrary values. Sample Sze / z E where E samplg error or marg of error / z P( P) E Parametrc Tests Type of error = P [reject H 0 whe H 0 s true] = P[do ot reject H 0 whe H 0 s false] Power of a test - = P[Reject H 0 whe H s true] p-values p-value = P[Test Statstc (T) observed value of the test statstc] (for rght-taled test) p-value = P[Test Statstc (T) observed value of the test statstc] (for left-taled test) p-value = P T observed value of the test statstc (for two-taled test) Whe, > 0 S S S S X Y z /, X Y z/ Cofdece terval for dfferece of two populato meas (depedet populatos) S D t, D t D, /, / where D X Y ; D SD D ad D SD D D D Cofdece terval for dfferece of two populato proportos (depedet populatos) pq pq pq pq p p z /, p p z/ Cofdece terval for two populato varaces (depedet populatos) F S /S, F,., /, S, / For fte populato of sze z/ / E z / / z P( P) E z P( P) Test statstc for populato mea X μ Z 0 ~ 0, ; σ / X 0 X t ~ t ; Z 0 ~ 0, ; > 0 S/ S/ Test statstc for populato proporto Z p P0 PQ 0 0 ~ 0, S Test statstc for populato varace S σ0 Z ~ 0, ; 0 σ0 χ X X ( )S ~ χ σ0 σ0 7 Copyrght, Idra Gadh atoal Ope Uversty

19 Test statstc for dfferece of two populato meas (depedet populatos) X Y Z ~ 0, σ X Y Z ~ (0, ) σ σ t S p X Y ~ t ( ) where Sp X X Y Y or S p S S X Y Z ~ (0, ) ;, 0 S S Test statstc for dfferece of two populato meas (depedet populatos) D t S / D ~ t D D ad S D D D Test statstc for populato correlato coeffcet () r t r ~ t o-parametrc Tests Sg test/pared sg test S for rght tal test Test statstc(s) S for left tal test m{s,s } for two tals test where S umber of mus sgs ad S umber of plus sgs. p-value = PS test statstc S Test statstc (for > 0) Z ~ 0, Ru test Test statstc = R = umber of rus Test statstc (for > 0) R Z 0, Test statstc for dfferece of two populato proportos (depedet populatos) p p Z (whe P s ow) PQ where Q = -P. p p Z ˆ ˆPQ where p p X X ˆ (whe P s uow) Pˆ ad Q Pˆ Test statstc for two populato varaces (depedet populatos) S S Z ~ 0, ; ad 0 σ S S Z ~ 0, ; ad 0 S S S F S F ~ F,, (, ) F,, Wlcoo sged-ra test/wlcoo matched-par sged-ra test T for rght tal test Test statstc(t) T for left tal test m{t,t } for two tal test where T sum of ras of mus sgs ad T sum of ras of plus sgs. Test statstc (for > ) T Z ~ 0, Kolmogorov-Smrov goodess of ft test Test statstc(d ) sup S() F () 0 umber of sample observatos less tha or equal to S() Total umber of observatos 8 Copyrght, Idra Gadh atoal Ope Uversty

20 Ma-Whtey U test S ; f s small Test statstc(u) S ; f s small where S sum of the ras assged to the sample observatos of smaller szed sample. For large or > 0 Test statstc Krusal-Walls test U Z ~ 0, Test statstc(h) R where R sum of ras of th sample. If te occurs, the adjustmet factor s r C t t where r umber of groups of dfferet ted ras, ad t umber of ted values wth th group that are ted at a partcular value. Test statstc(h ) H/ C C Ch-square test for goodess of ft O E E Test statstc ( ) ~ E p where O observed frequecy of th class, ad E epected frequecy of th class. Kolmogorov-Smrov two-sample test Test statstc(d) sup S () S () S S Fredma test umber of frst sample observatos less tha or equal to umber of secod sample observatos less tha or equal to Test statstc(f) R j ( ) ( ) j where R sum of all ras for th treatmet. If te occurs, the adjustmet factor s C t t where t umber of ted observatos th bloc (sample). Test statstc(f ) F/ C C Ch-square test for depedece of attrbutes r c O E Test statstc ( ) ~ RCj Ej where R sum of th row, ad C sum of j th colum. j j r c j Ej 9 Copyrght, Idra Gadh atoal Ope Uversty

21 MST-00 STATISTICAL TECHIQUES S. o. Smple Radom Samplg Sample FORMULAE Populato Mea Mea Square Mea Mea Square Varace s X X S X X X X Smple Radom Samplg wthout Replacemet (SRSWOR) umber of possble samples = C E Var X S Smple Radom Samplg for Attrbutes Sample Smple Radom Samplg wth Replacemet (SRSWR) umber of possble samples = E Var X S Populato Proporto Mea Square Varace Proporto Mea Square a pq p s Sample Sze Smple Radom Samplg S z d S z (for large populato) Stratfed Radom Samplg Sample Var (p) = ( ). S t d S t A S (for small populato) Populato ( ) Mea Mea Square/Varace Proporto Mea Mea Square j j st W s ( ) j j Var st S W S p W p st E(p st ) Var p st X Xj X X j j X j X S (Xj X ) j Allocato of Sample Sze Equal Proporto eyma/optmum WS Var st PROP S ; 0 Copyrght, Idra Gadh atoal Ope Uversty Var st S S c S c W S W S EY

22 WS Systematc Radom Samplg Sample Mea Varace Populato Mea Populato Mea Square j j sys Cluster Samplg Var sys S S sys X X X j.. j j X j X S Xj X ( ) j S sys ( ) X j X Cluster Mea Sample Mea Populato Mea Populato Mea Square M j M j Varace X M X M j j M X X X M f f Var Sb S b M where Two Stage Samplg j j S S M w S M X j X j j (wth cluster) S (X X) b j M j M S X X M M X j XX X j j M M S Sample Mea Populato Mea Populato Mea Square m j m j Varace Var X X M X M j S M m S b M m j M X j M j Oe Way AOVA / Completely Radomsed Desg (CRD) SST T CF. SSE TSS SST TSS RSS CF w S (X X) b M w j M j (betwee samples) S X X (wth sample) (betwee clusters) Sum of Squares (SS) Mea Sum of Squares (MSS) Varace Rato SST MSST = SSE MSSE = MSST F = MSSE G where CF, RSS j y, G grad total or sum of all observatos, ad j Copyrght, Idra Gadh atoal Ope Uversty

23 T. j T j sum of the observatos of th sample or th level. Crtcal Dfferece CRD/ Oe Way AOVA For Equal Sze of Samples For Uequal Szes of Samples CD = t (for error df) MSSE CD = t α/ (for error df) MSSE j / 7 Two Way AOVA / Radomsed Bloc Desg (RBD) p SSA y CF q p j. q SSB y CF.j SSE TSS SSA SSB TSS RSS CF Sum of Squares Mea Sum of Squares Varace Rato MSSA SSA p MSSB SSB q SSE MSSE p q MSSA F A = MSSE MSSB F B = MSSE where G CF, p q RSS y, = pq j j Crtcal Dfferece RBD/ Two Way AOVA CD = t (for error df) MSSE q 8 Two Way AOVA wth m Observatos per Cell Sum of Squares Mea Sum of Squares Varace Rato p SSA y.. CF qm MSSA SSA p q SSB y.j. CF pm MSSB SSB q j p q SSAB y CF SSA SSB m j j. SSE TSS SSA SSB SSAB TSS RSS CF SSAB MSSAB p q MSSE SSE pq m F MSSA MSSE F MSSB MSSE MSSAB F MSSE where G CF, RSS p q m j y j, = pqm 9 Lat Square Desg (LSD) Sum of Squares Mea Sum of Squares Varace Rato m SSR y CF m m j.. m SSC y CF.j. SST y CF m.. m SSE TSS SSR SSC SST TSS RSS CF MSSR SSR MSSR F m R MSSE MSSC SSC MSSC m FC MSSE MSST SST MSST m FT MSSE SSE MSSE m m Copyrght, Idra Gadh atoal Ope Uversty

24 G where CF, m m m RSS y, = m, j j y.. m m j y j sum of the observatos of th row y.j. m m y j sum of the observatos of j th colum, Relatve Effcecy LSD over RBD Whe rows are tae as blocs MSSC (m )MSSE Relatve effcecy = m MSSE Whe colums are tae as blocs MSSR (m )MSSE Relatve effcecy = m MSSE Mssg Value RBD pt qbj G Ŷ (p )(q ) y.. m m j y j sum of the observatos of th treatmet Relatve Effcecy LSD over CRD MSSR Relatve effcecy = MSSC (m )MSSE (m )MSSE Mssg Value LSD m(r Cj T ) G Ŷ (m )(m ) 0 Factoral Epermets Ma ad teracto effects for [A] = [ab] + [a] [b ] [] [B] = [ab] +[ b] [a] [] [AB] = [ab] + [] [a] [ b] Sum of squares due to A A / r B B / r AB AB / r Ma ad teracto effects for [A] [abc] [bc] [ac] [c] [ab] [b] [a] [] [B] [abc] [bc] [ac] [c] [ab] [b] [a] [] [AB] [abc] [bc] [ac] [c] [ab] [b] [a] [] [C] [abc] [bc] [ac] [c] [ab] [b] [a] [] [AC] [abc] [bc] [ac] [c] [ab] [b] [a] [] [BC] [abc] [bc] [ac] [c] [ab] [b] [a] [] [ABC] [abc] [bc] [ac] [c] [ab] [b] [a] [] Sum of squares due to Stadard errors for testg the dfferece betwee meas at dfferet levels MSSE SE of dfferece betwee ma effect meas = r. SE of dfferece betwee A meas at same level of B = SE of dfferece betwee B meas at same level of A = A A / 8r ; B B / 8r ; AB AB / 8r ; AC AC / 8r ; BC BC /8r ; MSSE r. SE for testg the dfferece betwee meas case of r-factor teracto = r MSSE r. C C / 8r ABC ABC / 8r Copyrght, Idra Gadh atoal Ope Uversty

25 MSTE-00 IDUSTRIAL STATISTICS-I S. o. Process Cotrol Cotrol Chart FORMULAE Cotrol Le (CL) Lower Cotrol Le (LCL) Upper Cotrol Le (UCL) X A A X X AR X A R X ew Xew AR ew Xew AR ew X X AS X X ew Xew ASew Xew ASew A S R S p p-chart for varable sample sze where where X X ; X d j X X ew ; R d j ew R d j d R j ; S d D D R DR DR R ew DR ew DR ew c B B S BS BS S ew B S ew B S ew P p P p P( P) p( p) p ( p ) ew P p S d j d P( P) p( p) p ew ew ew ew ew pew pew d p ; p p or P p p ew P p p d ; p P p p ew P p P( P) p p ew p p ew P( P) p( p) ew p d j p ( p ) d p j or p ew P p ew d S p ( p ) d j p P p d P( P) p( p) ew d p ( p ) P( P) p( p) p ew ew ew ew ew pew pew j j ew p ( p ) Copyrght, Idra Gadh atoal Ope Uversty

26 where d d d p ; p ; ; p d d j ew d j d j j p P P P( P) P P( P) p p p( p) p p( p) p ew ew ew ew p p ( p ) pew p ew ( p ew ) c c c c c c c ew cew cew cew cew where c c ; c ew c d j d c j u u u u u u u ew u ew u ew u ew u ew u u u u u u ew ew uew u u ew u ew where c d c u ; u ; u u ; ; u c d j ew d j c j j Product Cotrol Lot qualty or proporto defectve umber of defectve uts a lot p lot sze Probablty of acceptg a lot a P p P P X c P X or or,..., or c a Sgle Samplg Plas Probablty of acceptg a lot Pa p PX c c 0 Bomal appromato a p C p C C c whe 0 0 P p C p p Posso appromato Producer s rs p P p P P rejectg a lot of acceptace qualty level Cosumer s rs c p P p P acceptg a lot of qualty = LTPD Acceptace outgog qualty (AOQ) umber of defectve uts the lot after specto AOQ Total umber of uts the lot Cosumer s rs c c p p C C Pc Pa p PX 0 0 C Bomal appromato c c 0 P C p p p P Acceptace outgog qualty (AOQ) ; a Copyrght, Idra Gadh atoal Ope Uversty

27 P a p c e whe p s fte 0 Producer s rs C c p p p a 0 C P P p Bomal appromato c p 0 P C p p Double Samplg Plas C AOQ p Pa pp a whe 0 Average sample umber (AS) = P Average total specto (ATI) Desg of sgle samplg plas p p (where p = AQL); (where p = LTPD) p p p p R ; p p ad p p ; p p ad p p a Probablty of acceptg a lot c p p a a a 0 C P (p) P P C c p p p p c C C Cy C y c y0 C C Bomal appromato c P a(p) C p p 0 c c y y C p p Cy p p c y0 Producer s rs P p C C c p p 0 C. c p p p p c C C Cy C y c y0 C C Bomal appromato c p 0 P C p p Game Theory C. c c y y Cp p Cyp p c y0 Algebrac Method Every two-perso zero-sum game wthout a saddle pot: Payoff matr for player A Player A Player B B B A a b A c d Cosumer s rs P c C C c p p 0 C c p p p p c C C Cy C y c y0 C C Bomal appromato c c 0 P C p p. c c y y C p p Cy p p c y0 AOQ p P P P a a a l AOQ ppa Pa whe 0ad 0 AS P I ( )( P I) P I = P[lot s accepted o the frst sample] + P[lot s rejected o the frst sample] ATI P P P a a a Desg of double samplg plas p (where p = AQL, = or = ); p p (where p = LTPD, = or = ) p p R p Med strateges (p,p ) for player A d c a b p, p (a b) (d c) (a b) (d c) Med strateges (q,q ) for player B d b a c q, q (a b) (d c) (a b) (d c) The value (v) of the game Copyrght, Idra Gadh atoal Ope Uversty

28 ad bc v (a b) (d c) Relablty Theory Relatos Betwee R(t), F(t), f(t) ad (t) s(t) f (t) R(t), F(t), F(t) = R( t) 0 0 where s(t) umber of compoets that are operatg at tme t, ad f (t) umber of compoets that have faled at tme t. t R(t) F(t) f (t) dt ep (t) dt t 0 t t F(t) R(t) f (t) dt ep (t) dt 0 0 t d d f (t) R(t) F(t) (t) ep (t) dt dt dt 0 d F(t) d (t) lr(t) dt dt F(t) 7 Mea Tme To Falure (MTTF) Relablty of Seres ad Parallel Systems MTTF E(T) t f (t)dt MTTF R(t)dt 0 0 If hazard rate follows epoetal dstrbuto the MTTF or MTTF 8 Stadby system wth perfect swtchg Let Q deote the urelablty of the compoet, gve that compoets to( ) have faled. Further, f R ad Q deote the relablty ad urelablty of the stadby system, the Q Q Q Q...Q ad R = Q Stadby system wth mperfect swtchg Q Ps QAQB Ps Q A, where, P s probablty of successful chageover, P P probablty of usuccessful chageover, s Q A s urelablty of compoet A, ad Q B urelablty of compoet B gve that compoet A has faled. t 0 f (t) f (t)dt Relablty (R) of a seres system = R R Relablty (R) of a parallel system = R R R R... R R where R the relablty of the th compoet. Decomposto method or codtoal probablty approach Relablty of the system (R s) P systemsuccess compoet K sgood P(compoet K sgood) P(systemsuccess compoet K s bad) P(compoet K s bad) Cut set method Urelablty of the system(q ) P C C C... C where C,C,...,C are mmal cut sets Te set method s Relablty of the system (R ) P T T T... T where T,T,...,T are mmal te sets s 7 Copyrght, Idra Gadh atoal Ope Uversty

29 MSTE-00 IDUSTRIAL STATISTICS-II S. o. Operatg Characterstcs for M/M/ Queueg Model P (t) = P[(t) = ] P, 0 P L s q P c FORMULAE L c P L s = λw s ; L s L s L q L q = λw q Ws Wq Ls Ws Lq Wq Wq Ws EOQ Models for Ivetory Cotrol Ecoomc order quatty (EOQ) model wth uform demad D Orderg cost = C O Q Ecoomc order quatty Q* DC Mmum total yearly vetory cost TC EOQ Model whe shortages are allowed M Carryg cost per cycle Ch t M t Carryg cost C h Q M Carryg cost per ut tme Ch Q S t Shortage cost C S Q S Shortage cost per ut tme CS Q Mamum vetory level M C DC C Q C C C C C * S * O S h S h h S C h O * DC C Ecoomc order quatty * DC O C S C Q ( h ) Ch Cs Total cycle tme * * Q CO CS Ch t D DCh CS Mmum total yearly vetory cost C TC* S DCOCh C h C S O h EOQ model wth dfferet rates of demad dfferet cycles QChT The carryg cost for tme T Ecoomc order quatty Q* D C CT Mmum total yearly vetory cost TC DCOChT EOQ Model wth uform repleshmet Q r d Average vetory r p Q r d Carryg cost = C h r p Q* DC Legth of each lot sze producto ru t O rp Chrp rp rd Optmum umber of producto rus per year D DCh rp rd * Q* Co rp DC p Ecoomc order quatty O r Q* Ch r p rd Mmum total yearly vetory cost * r d TC DCOCh r p EOQ model wth prce (or quatty) dscouts Ecoomc order quatty * C O D Q p Ecoomc order quatty * C O D Q p Mmum total yearly vetory cost h O * 8 Copyrght, Idra Gadh atoal Ope Uversty

30 Smple Lear Regresso Modellg Estmates of parameters ˆ â Y bx Y bˆ X SSXY ˆb SS X Sum of squares X SSX X Y X Y X SSXY r th resdual = r Y ˆ Y ;,,..., th r stadard resdual = d ;,,..., SS (SS ) ˆ SS SS XY Res Y SSX or ˆ r r r Varace of estmates ˆ Var a ˆ Var b X SS SS Var(Y) X Res Multple Lear Regresso Modellg j th ormal equato Y X B X X B X X j j 0 j j j j For matr method ˆB XX XY... B X X Yˆ X Bˆ X X X XY Test statstcs ˆB j t j ; j 0,,...p S.E.(B ˆ ) j p pj j Probabltes for ormal probablty plot Probablty for th ordered resdual Res O C D TC Qj Dp j ChQj Qj Test statstc t (aˆ a 0) X SSRes SS t (bˆ b) SSRes t() SS () 9 Copyrght, Idra Gadh atoal Ope Uversty X X t Lower ad upper cofdece lmts for b b bˆ t L / b bˆ t U / SS SS SS SS Res X Res X Lower ad upper lmts ˆ ˆ ˆ ˆ (X0 X) YL Y t/ V(Y) Y t/ SSRes SSX ˆ ˆ ˆ ˆ (X0 X) YU Y t/ V(Y) Y t/ SSRes SSX Lower ad upper lmts for ew value of Y=Y 0 ˆ ˆ ˆ ˆ 0 YL Y0 t/ V(Y 0) Y0 t / SSRes SS X ˆ ˆ ˆ ˆ (X X) 0 YU Y0 t/ V(Y 0) Y0 t/ SSRes SS X Coeffcet of determato R SS SS XY X SS R ( R ) Sum of squares SS r r YY YXBˆ Res Y XY X SS SS SS /SS For matr method T SS Y Y Y YY SS Bˆ Y 'X Y Reg j j SSRes SST SSReg Adjusted R Y Varace of estmates 0 ˆ (X X) V Y ˆ SSX ˆ 0 V Y0 SS X SS ˆ Res ( p ) V(B ˆ ) j jj ˆ j jj ˆ ˆ SE B (X X) j (X X) V B X X ( ); j, 0,,...p Cov(B ˆ,B ˆ ) ; j j j

31 p,,..., Percetage probablty for th ordered resdual P 00;,,..., Coeffcet of determato R p j0 ˆB Y'X j Y'Y Y j Y Tme Seres Modellg Tme seres values SS SS Weghted movg average y Reg T q w t t q Estmated tme seres values y w y w y t t t Estmated tme seres values lear form y t p b jt j 0 j Estmated tme seres values o lear form t yt 0 Auto-covarace ad autocorrelato coeffcet Auto-covarace coeffcet at lag c y y y y t t t Auto-covarace coeffcet at lag 0 0 t t Y t c y y y y, for all Auto-correlato coeffcet r Autoregressve processes Varace of X t AR() a Varace of X t AR() a c c Autocorrelato fucto of AR () process Partal auto-covarace fucto of AR() pacf () Partal auto-covarace fucto of AR() 0 R Adj ( )( R ) ( p ) Etra sum of squares SSB B0 SS Res (B 0) SS Res (B 0,B ) SS(B 0,B ) SS(B 0) SS B B SS (B ) SS (B,B ) SS(B,B ) SS(B ) 0 Res 0 Res SS B B,B SS (B,B ) SS (B,B,B ) 0 Res 0 Res 0 SS(B,B,B ) SS(B,B ) 0 0 SS B B,B SS (B,B ) SS (B,B,B ) 0 Res 0 Res 0 SS(B 0,B ) SS(B 0,B,B ) SS B,B B SS (B ) SS (B,B,B ) 0 Res 0 Res 0 SS(B,B,B ) SS(B ) 0 0 Seasoal dces ad seasoal relatves Seasoal de y 00, for,,...,. y 00 Seasoal de Meda Totalof Idces for,,,..., Deseasoalsed tme seres value y Z T C I t t t t t St Seasoal relatve = S I 00 = (y t /MA() ) 00 Movg average processes Varace of X t MA(q) : VX Autocorrelato fucto for MA(q)... q q q q t a Varace of X t MA() : VX t a Varace of X t MA() : VX t a Autoregressve movg average processes Auto-covarace fucto for ARMA at lag 0 a 0 Auto-covarace fucto for ARMA at lag 0 a Auto-covarace fucto for ARMA at lag, Auto-correlato fucto for ARMA at lag 0 Auto-correlato fucto for ARMA at lag, 0 Copyrght, Idra Gadh atoal Ope Uversty

32 pacf () Lmts = Statstcal Tables Copyrght, Idra Gadh atoal Ope Uversty

33 TABLE LOGARITHMS Mea Dfferece Copyrght, Idra Gadh atoal Ope Uversty

34 Mea Dfferece Copyrght, Idra Gadh atoal Ope Uversty

35 TABLE ATILOGARITHMS Mea Dfferece Copyrght, Idra Gadh atoal Ope Uversty

36 Mea Dfferece Copyrght, Idra Gadh atoal Ope Uversty

37 TABLE VALUES OF e (FOR COMPUTIG POISSO PROBABILITIES) (0 < < ) (=,,,...,0) e ote: To obta values of e for other values of, use the laws of epoets,.e., ab a b. 0. e e.e e.g. e e.e (0.)(0.7788) 0.0 Copyrght, Idra Gadh atoal Ope Uversty

38 TABLE COMMOLY USED VALUES OF STADARD ORMAL VARIATE Z Cofdece Iterval 99% 98% 9% 90% Level of Sgfcace (α) 0.0 (%) 0.0 (%) 0.0 (%) 0.0 (0%) Two-Taled ± z α/ = ±.7 ± z α/ = ±. ± z α/ = ±.90 ± z α/ = ±. Oe (rght)-taled z α =. z α =.0 z α =. z α =.8 Oe ( left)-taled z α =. z α =.0 z α =. z α =.8 7 Copyrght, Idra Gadh atoal Ope Uversty

39 TABLE STADARD ORMAL DISTRIBUTIO (Z TABLE) The frst colum ad frst row of the table dcate the values of stadard ormal varate Z at frst ad secod place of decmal. The etry represets the upper tal area uder the curve or probablty,.e., P[0 Z z] for dfferet values of Z. Z ote: The area for egatve values of Z s tae as the same as that for postve values, sce the curve s symmetrcal. 8 Copyrght, Idra Gadh atoal Ope Uversty

40 TABLE STUDET S t DISTRIBUTIO (t TABLE) The frst colum of ths table dcates the degrees of freedom ad frst row dcates a specfed upper tal area (α). The etry represets the value of the t-statstc such that area uder the curve of the t-dstrbuto to ts upper tal s equal to α. Oe-Taled Test α = Two-Taled Test α = ν = ote: The area for egatve values of Z s tae as the same as that for postve values, sce the curve s symmetrcal. 9 Copyrght, Idra Gadh atoal Ope Uversty

41 TABLE 7 CHI SQUARE DISTRIBUTIO ( TABLE) The frst colum of ths table dcates the degrees of freedom ad frst dcates row a specfed upper tal area (α). The etry represets the value of ch-square statstc such that the area uder the curve of the ch square dstrbuto to ts upper tal s equal to α. α = ν = Copyrght, Idra Gadh atoal Ope Uversty

42 0 TABLE 8 F DISTRIBUTIO (F TABLE) F-table cotas the values of the F-statstc for dfferet set of degrees of freedom (, ) of umerator ad deomator such that the area uder the curve of the F-dstrbuto to ts rght (upper tal) s equal to α. F values for α = 0. Degrees of Freedom for Deomator (ν ) Degrees of Freedom for umerator(ν ) Copyrght, Idra Gadh atoal Ope Uversty

43 F values for α = 0.0 Degrees of Freedom for Deomator (ν ) Degrees of Freedom for umerator(ν ) Copyrght, Idra Gadh atoal Ope Uversty

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ. Μονοπαραμετρικά Μοντέλα Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν : Ω Θ Εκτίμηση πιθανότητας από boal data Έστω δεδομένα που δίδονται με την

Διαβάστε περισσότερα

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ. Μονοπαραμετρικά Μοντέλα Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν : Ω Θ Εκτίμηση πιθανότητας από boal data Έστω δεδομένα που δίδονται με την

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004

Political Science 552. Qualitative Variables. Dichotomous Predictor. Dummy Variables-Gender. Qualitative Variables March 3, 2004 Qualtatve Varables Marh, Poltal See 55 Qualtatve Varables Dhotomous Predtor Y PID Geder ( male, female) Y ( ) Y Y Y Y Dummy Varables-Geder. FT-BUSH PID GENDER. ge geder(v9). regress v6 v5 geder v6 Coef.

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Υπολογισμός των σταθερών L o και k της εξίσωσης BOD από πειραματικά δεδομένα

Υπολογισμός των σταθερών L o και k της εξίσωσης BOD από πειραματικά δεδομένα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουργών Τομέας Μεταλλουργίας και Τεχνολογίας Υλικών Εργαστήριο Επιστήμης και Τεχνολογίας Προστασίας του Περιβάλλοντος στη Μεταλλουργία και Τεχνολογία

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

FORMULAE SHEET for STATISTICS II

FORMULAE SHEET for STATISTICS II Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η " ι ιηη, ι!" ι ηιι. 1 SPSS ι η η ι ιηη ι η

α + α+ α! (=+9 [1] ι «Analyze-Regression-Linear». «Dependent» ι η η η!ηη ι «Independent(s)» η!ηη. # ι ι ι!η  ι ιηη, ι! ι ηιι. 1 SPSS ι η η ι ιηη ι η # η &, ε ε 007, ιη Pearson r "η η ι ι ι η ι!ι ι ι η ι η!ηη ι ι!ηη. η ι ιηη ι" η ι!"ι 0 ι η ( α ι ι α η 9 ( ι ι / + -predctor varable). * ι ι ι ι η ι ι ι!ηη η "ι ι ι ι!ηη η ι ι η η ι 'ι ι ι (η ) ι η ( "

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y)

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y) Statstcs et Y ~ p( ; ( ; ( ; ( ( ; ( p Y t p g t h Y suffcet statstc (for the parametrc faml p( ; s depedet of t Nema-Fsher factorzato: where g ad h are o-egatve fucto p( ; Smple bar hpotheses: {, } :

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω

Διαβάστε περισσότερα

Minimum density power divergence estimator for diffusion processes

Minimum density power divergence estimator for diffusion processes A Ist Stat Math 3) 65:3 36 DOI.7/s463--366-9 Mmum desty power dvergece estmator for dffuso processes Sagyeol Lee Jumo Sog Receved: 3 March 7 / Revsed: Aprl / ublshed ole: July The Isttute of Statstcal

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution Iteratoal Joural of Computer Applcatos (975 8887) Volume 5 No. September 5 Studes o Propertes ad Estmato Problems for odfed Exteso of Expoetal Dstrbuto.A. El-Damcese athematcs Departmet Faculty of Scece

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( ) Ορίζουμε την πληροφορία κατά Fsher ( σαν το ποσό της πληροφορίας που περιέχει η παρατήρηση για την παράμετρο Συμβολίζοντας με S( την λογαριθμική παράγωγο της πιθανοφάνειας ως προς την παράμετρο (score

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA, Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng

Διαβάστε περισσότερα

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer: HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Political Science 552

Political Science 552 emedal easres egresso Aprl, 4 Poltcal Scece 55 emedal easres Otlers Dscardg Otlers Trcatg Otlers obst estmato o A/AD east Absolte esdals/east Absolte Devatos (qreg Stata) o S east eda east Sqares o IS

Διαβάστε περισσότερα

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120 t-ditribution t X x μ = where x = ν FD ν FD t a (ν) 0 t-ditribution normal ditribution for ν>0 a/ a/ -ta ta ΒΑΘΜΟΙ ΕΛΕΥΘΕΡΙΑΣ (freedom degree) Βαθμοί ελευθερίας (ν): ο αριθμός των ανεξάρτητων μετρήσεων

Διαβάστε περισσότερα

Three-Dimensional Experimental Kinematics

Three-Dimensional Experimental Kinematics Notes_5_3 o 8 Three-Dmesoal Epermetal Kematcs Dgte locatos o ladmarks { r } o bod or pots to at gve tme t All pots must be o same bod Use ladmark weghtg actor = pot k s avalable at tme t. Use = pot k ot

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231) List MF9 List of fomulae ad statistical tables Cambidge Iteatioal AS & A Level Mathematics (9709) ad Futhe Mathematics (93) Fo use fom 00 i all papes fo the above syllabuses. CST39 *50870970* PURE MATHEMATICS

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET b DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET For use by teachers ad studets, durig the course ad i the examiatios First examiatios 006 Iteratioal Baccalaureate Orgaizatio Bueos Aires Cardiff

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes

Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes Internatonal Journal of Industral Engneerng & Producton Management (22) March 22, Volume 22, Number 4 pp. 39-33 http://ijiepm.ust.ac.r/ Estmatng Tme of a Smple Step Change n Nonconformng Items n Hgh-Yeld

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.7-80 ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ Αγγελική Αραπάκη,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Ενότητα 3: Έλεγχοι καλής προσαρµογής (Goodness of fit tests)

Ενότητα 3: Έλεγχοι καλής προσαρµογής (Goodness of fit tests) Ενότητα 3: Έλεγχοι καλής προσαρµογής (Goodess of ft tests) Ένα σηµαντικό πρόβληµα στην στατιστική είναι η εξεύρεση πληροφορίας σχετικά µε την µορφή της κατανοµής από την οποία προέρχεται ένα τυχαίο δείγµα.

Διαβάστε περισσότερα

Ενότητα 2: Έλεγχοι υποθέσεων για µέσες τιµες πληθυσµών (T-tests) µέσω SPSS

Ενότητα 2: Έλεγχοι υποθέσεων για µέσες τιµες πληθυσµών (T-tests) µέσω SPSS Ενότητα : Έλεγχοι υποθέσεων για µέσες τιµες πληθυσµών (T-tests) µέσω SPSS.. Έλεγχος υποθέσεων για το µέσο µ ενός πληθυσµού Έστω ότι θέλουµε να ελέγξουµε αν ο µέσος µ ενός κανονικού πληθυσµού (µε άγνωστή

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

Ιδιότητες της ευθείας παλινδρόµησης

Ιδιότητες της ευθείας παλινδρόµησης Ιδιότητες της ευθείας παλινδρόµησης Ηευθεία παλινδρόµησης περνάει από το σηµείο αφού a b, a b ( b ) b b ( + + + ) ( ) + b u u a b a b Αυτό όµως προϋποθέτει την ύπαρξη του a. Αν δηλαδή υποχρεώσουµε την

Διαβάστε περισσότερα