Ενότητα 2: Έλεγχοι υποθέσεων για µέσες τιµες πληθυσµών (T-tests) µέσω SPSS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ενότητα 2: Έλεγχοι υποθέσεων για µέσες τιµες πληθυσµών (T-tests) µέσω SPSS"

Transcript

1 Ενότητα : Έλεγχοι υποθέσεων για µέσες τιµες πληθυσµών (T-tests) µέσω SPSS.. Έλεγχος υποθέσεων για το µέσο µ ενός πληθυσµού Έστω ότι θέλουµε να ελέγξουµε αν ο µέσος µ ενός κανονικού πληθυσµού (µε άγνωστή διασπορά σ ) είναι ίσος µε µ ή είναι διάφορος του µ, δηλαδή έχουµε την υπόθεση H : µ = µ έναντι της H : µ µ. Με βάση ένα τυχαίο δείγµα Χ,Χ,,Χ ~ Ν(µ,σ ) από τον πληθυσµό αυτό είναι γνωστό ότι χρησι- µοποιούµε την στατιστική συνάρτηση (από το κριτήριο του γενικ. λόγου πιθανοφανειών) X µ T X ) = S / ( ~ H t, X = X, S = ( X X ) = = η οποία, όταν ισχύει η H, ακολουθεί κατανοµή t -, δηλ. studet µε βαθµούς ελευθερίας, ενώ όταν ισχύει η Η λαµβάνει «µεγάλες» (αρνητικές ή θετικές) τιµές. Εναλλακτικά µπορούµε να χρησι- µοποιήσουµε τη στατιστική συνάρτηση Τ(Χ) η οποία, υπό την Η, λαµβάνει «µεγάλες» θετικές τι- µές. Απορρίπτουµε την Η (σε ε.σ. a) όταν T ( x ) > c = t ( a / ) : άνω a/-σηµείο της κατανοµής studet µε β.ε. Το p-value των τιµών ενός δείγµατος x είναι x µ x µ x µ p value = P( T ( X ) > T ( x) / H ) = P( T ( X) / H ) = Ft ( ) s / s / s / όπου F t είναι η σ.κ. της κατανοµής studet µε β.ε. Σχηµατικά: σ.π.π. της t - p-value (H : µ µ ) T(x) T(x) Ο παραπάνω έλεγχος µπορεί να γίνει ακόµη και όταν ο πληθυσµός δεν είναι κανονικός αλλά το δείγµα είναι αρκετά µεγάλο (συνήθως >3 ή καλύτερα >). Αυτό δικαιολογείται από το γεγονός ότι η Τ(Χ) ακολουθεί ασυµπτωτικά ( ) τυπική κανονική κατανοµή (από το Κ.Ο.Θ. και το γεγονός ότι S σ µε πιθ. ) ενώ ως γνωστό και η κατανοµή studet συγκλίνει στην N(,). Ιδιαίτερα, µπορούµε να χρησιµοποιήσουµε τα παραπάνω και για έλεγχο ποσοστών θεωρώντας ή τις τιµές του τυχαίου δείγµατος (ώστε ο µέσος του πληθυσµού να είναι το ποσοστό που µας ενδιαφέρει). Ο έλεγχος που προκύπτει είναι ισοδύναµος (για µεγάλο ) µε τον γνωστό έλεγχο για το ποσοστό ενός πληθυσµού. Εάν θέλαµε να κάνουµε µονόπλευρο έλεγχο µε εναλλακτική Η : µ > µ θα έπρεπε να πάρουµε x µ pvalue /, T ( x) p value = P( T ( X) > T ( x) / H ) = ( ) = > F t s / pvalue /, T ( x) < όπου p-value είναι το p-value του δίπλευρου ελέγχου. Ανάλογα εργαζόµαστε αν είχαµε Η : µ < µ : Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα» 7

2 x µ pvalue /, T ( x) < p value = P( T ( X) < T ( x) / H ) = Ft ( ) = s / pvalue /, T ( x) τα παραπάνω είναι εύκολο να επαληθευτούν και γραφικά, π.χ. για Η : µ > µ : < H : µ > µ και T(x) H : µ > µ και T(x) < p-value p-value > p-value p-value > T(x) T(x) Εφαρµογή. Στον παρακάτω πίνακα δίνονται τα ύψη 6 τυχαία επιλεγµένων ανδρών από µία περιοχή Α. 7, 73,9 75, 74,9 74,8 7,4 74,8 7,5 7,3 78, 76, 66,7 74, 79, 79,5 7,8 75, 77,3 73,9 7,3 74, 74, 76, 79, 69,4 73,6 74,9 7,6 75,3 78, 69,6 69,6 79, 74, 74, 76, 74, 7,4 74,3 7,5 77,4 7, 79,9 78, 74, 78,4 75, 73,6 74,4 77, 77, 79, 75, 8, 74, 76,7 7, 7,3 75,9 7,9 Επιθυµούµε να ελέγξουµε αν το µέσο ύψος µ του πληθυσµού από τον οποίο προέρχεται το παραπάνω δείγµα είναι ίσο µε µ =74. Λύση: Περνάµε τα παραπάνω δεδοµένα στο SPSS σε µία στήλη (µεταβλητή heght) 6 γραµµών (6 cases) - Από την διαδικασία Aalyze/Compare Meas/Oe-Sample T Test επιλέγουµε Test varable: heght, test value: 74 και λαµβάνουµε δύο πίνακες: Oe-Sample Statstcs N Mea Std. Devato Std. Error Mea HEIGHT 6 74,668 3,7,39 Σύµφωνα µε τον παραπάνω πίνακα = 6, x =74.668, s = 3.7, s / µε και τον πίνακα Oe-Sample Test Test Value = 74 t df Sg. (- taled) Mea Dfferece =.39. Επίσης λαµβάνου- 95% Cofdece Iterval of the Dfferece Lower Upper HEIGHT,76 59,9,668 -,,448 Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα» 8

3 x µ σύµφωνα µε τον οποίο, T ( x ) = =. 76, β.ε. = = 59, s / x p-value (sg. value) = ( ) = F (.76) 59 t.9 59 s / (µπορούµε να το επαληθεύσουµε από Trasform/compute: pvalue = *( CDF.T(.76,59))). Επίσης, x µ.668, και ένα δ.ε. 95% για τη διαφορά µ µ είναι το F t µ ( ) s s ( x µ t ( a / ), x µ + t ( a / )) (.,.448). Χονδρικά µπορούµε να πούµε ότι η πιθανότητα να εµφανιστεί το παραπάνω δείγµα ενώ µ = 74 είναι.9. Εποµένως, δεν µπορούµε να απορρίψουµε την Η : µ = µ = 74 σε ε.σ. 5% διότι το p-value είναι.9 >.5 (αν όµως πάρουµε ε.σ. % θα πρέπει να απορρίψουµε την Η ). Εάν είχαµε ως εναλλακτική υπόθεση την Η : µ > µ θα έπρεπε να πάρουµε p value > = pvalue / =.9/ =.455 (διότι T (x) >) ενώ αν Η : µ < µ τότε p value < = pvalue / =.9/ = Έλεγχος υποθέσεων για τη διαφορά µ µ των µέσων δυο ανεξάρτητων πληθυσµών Έστω τώρα ότι θέλουµε να ελέγξουµε αν ο µέσος µ ενός κανονικού πληθυσµού (µε άγνωστη διασπορά σ ) είναι ίσος µε τον µέσο µ ενός άλλου κανονικού πληθυσµού (µε άγνωστη διασπορά σ ), έχουµε δηλαδή την υπόθεση H : µ µ = έναντι της H : µ µ. Με βάση δυο ανεξάρτητα τυχαία δείγµατα Χ,Χ,, X ~ Ν(µ, τους δύο αυτούς πληθυσµούς διακρίνουµε δύο περιπτώσεις: σ ) και Υ,Υ,, Y ~ Ν(µ, σ ) από (a) Οι δυο πληθυσµοί είναι οµοσκεδαστικοί ( σ = σ ). Κάτω από αυτή την συνθήκη, χρησιµοποιού- µε τη στατιστική συνάρτηση T ( X, Y) = ~ H, σ= σ t + ( ) S + ( ) S + X Y + η οποία υπό την Η : µ = µ ακολουθεί κατανοµή t + δηλ. studet µε + βαθµούς ελευθερίας, ενώ όταν ισχύει η Η λαµβάνει «µεγάλες» (αρνητικές ή θετικές) τιµές. Και εδώ, µπορούµε ισοδύναµα να χρησιµοποιήσουµε τη στατιστική συνάρτηση Τ(Χ,Υ) η οποία, υπό την Η, λαµβάνει «µεγάλες» θετικές τιµές. Απορρίπτουµε την Η (σε ε.σ. a) όταν + T ( x, y) > c = t ( / ) : άνω a/-σηµείο της κατανοµής studet µε + β.ε. a Το p-value των τιµών ενός ζεύγους δειγµάτων x, y είναι p value = P( T ( X, Y) > T ( x, y) / H ) = t + ( F ( T ( x, ) ) ) y Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα» 9

4 όπου F είναι η σ.κ. της κατανοµής studet µε t + β.ε. + (a) Οι δυο πληθυσµοί δεν είναι (ή δεν γνωστό αν είναι) οµοσκεδαστικοί. Χωρίς την συνθήκη της οµοσκεδαστικότητας, χρησιµοποιούµε τη στατιστική συνάρτηση X Y T ( X, Y) = ~ t H v S S + η οποία υπό την Η : µ = µ αποδεικνύεται ότι προσεγγιστικά ακολουθεί κατανοµή t v ενώ όταν ισχύει η Η λαµβάνει «µεγάλες» (θετικές ή αρνητικές) τιµές. Οι βαθµοί ελευθερίας ν εξαρτώνται από τα σ, σ και εποµένως είναι και αυτοί άγνωστοι. Αποδεικνύεται όµως ότι µπορούν να εκτιµηθούν από την στατιστική συνάρτηση S S ( + ) v =. 4 4 S S + ( ) ( ) Και εδώ, µπορούµε να χρησιµοποιήσουµε τη στατιστική συνάρτηση Τ (Χ,Υ) η οποία, υπό την Η, λαµβάνει «µεγάλες» θετικές τιµές. Απορρίπτουµε την Η (σε ε.σ. προσεγγιστικά a) όταν T ( x, y) > c = t ( a / ) : άνω a/-σηµείο της κατανοµής studet µε v β.ε. v Το (προσεγγιστικό) p-value των τιµών ενός δείγµατος x, y εδώ είναι όπου p value = P( T ( X, Y) > T ( x, y) / H ) = ( Ft T ( x, y) ) v F t v είναι η σ.κ. της κατανοµής studet µε v β.ε. Όπως και σε προηγούµενη περίπτωση, οι παραπάνω έλεγχοι µπορεί να γίνουν ακόµη και ό- ταν οι δύο πληθυσµοί δεν είναι κανονικοί αλλά τα δείγµατα είναι αρκετά µεγάλα (συνήθως > 3 ή καλύτερα >). Ιδιαίτερα, µπορούµε να χρησιµοποιήσουµε τα παραπάνω και για έλεγχο ποσοστών p = p θεωρώντας ή τις τιµές του τυχαίου δείγµατος, Εάν θέλαµε να κάνουµε µονόπλευρο έλεγχο µε εναλλακτική Η : µ > µ ή Η : µ < µ εργαζό- µαστε όπως και στην Παράγραφο.. Εφαρµογή. Μαζί µε τα δεδοµένα της εφαρµογής παραπάνω (ύψη 6 τυχαία επιλεγµένων ανδρών από µία περιοχή Α), δίνονται και τα ύψη 4 τυχαία επιλεγµένων ανδρών από µία περιοχή Β. 76,6 77,7 8,7 78,7 8,3 78, 7, 74,9 77,5 78,5 75,7 77,6 75,7 7,4 78,4 7, 66,8 77,7 75, 79, 8,6 7,7 77,7 7,8 7, 78,6 76,4 77, 77,6 75,7 78,4 75,5 75, 78,9 76, 75,3 73,8 8,9 73, 77,4 Επιθυµούµε να ελέγξουµε αν το µέσο ύψος µ του πληθυσµού στην περιοχή Α είναι διαφορετικό από το µέσο ύψος µ του πληθυσµού στην περιοχή Β. Λύση: Προφανώς τα δύο δείγµατα είναι ανεξάρτητα και εφαρµόζουµε την µεθοδολογία που περιγράφηκε παραπάνω. Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα»

5 - Εισάγουµε τα παραπάνω δεδοµένα στο SPSS στην ίδια στήλη (µεταβλητή heght) που είχαµε εισάγει τις 6 πρώτες παρατηρήσεις και έτσι τώρα η µεταβλητή heght έχει παρατηρήσεις (γραµµές), οι 6 πρώτες αφορούν την περιοχή Α και οι 4 τελευταίες την περιοχή Β. Για να δηλώσουµε ποιες παρατηρήσεις αφορούν ποια περιοχή χρησιµοποιούµε και µια βοηθητική µεταβλητή area η οποία στην -γραµµή παίρνει την τιµή ή ανάλογα µε το αν η -παρατήρηση της heght προέρχεται από την περιοχή Α ή την Β. - Από την διαδικασία Aalyze/Compare Meas/Idepedet-Samples T Test επιλέγουµε Test varable: heght, groupg varable: area (Defe groups:, ) και λαµβάνουµε δύο πίνακες: Group Statstcs AREA N Mea Std. Devato Std. Error Mea HEIGHT, 6 74,668 3,7,39, 4 76,3 3,384,535 Σύµφωνα µε τον παραπάνω πίνακα = 6, x =74.668, s = 3.7, s / =.39, = 4, y =76.3, s = 3.384, s / =.535 Τα µέσα ύψη στα δείγµατα από τους δύο πληθυσµούς είναι και 76.3 αντίστοιχα και α- ποµένει να εξετάσουµε αν η διαφορά που έχουν είναι στατιστικά σηµαντική. Αυτό θα γίνει χρησιµοποιώντας τον επόµενο πίνακα: HEIGHT Equal varaces assumed Equal varaces ot assumed Levee's Test for Equalty of Varaces Idepedet Samples Test t-test for Equalty of Meas F Sg. t df Sg. (- taled) Mea Dfferece Std. Error Dfferece 95% Cofdece Iterval of the Dfferece Lower Upper,3,578 -,553 98, -,65,647 -,935 -,368 -,495 77,6,5 -,65,66 -,969 -,333 Ο πίνακας αυτός περιέχει και τις δύο περιπτώσεις που εξετάσαµε παραπάνω (οµοσκεδαστικότητα, µη οµοσκεδαστικότητα). Πριν προχωρήσουµε σε µια από τις δύο θα πρέπει να ελέγξουµε αν οι διασπορές στους δυο πληθυσµούς είναι ίσες. Αυτό γίνεται χρησιµοποιώντας το γνωστό ως Levee τεστ το οποίο θα περιγράψουµε λεπτοµερέστερα σε επόµενο µάθηµα (βασίζεται στη θεωρία ανάλυσης διασποράς, ANOVA). Αρκεί προς το παρόν να γνωρίζουµε ότι το τεστ αυτό χρησιµοποιεί µια στατιστική συνάρτηση των x, y η οποία όταν σ = σ ακολουθεί κατανοµή F, + (F-rato ή Sedecor µε και + β.ε.) ενώ όταν σ σ λαµβάνει «µεγάλες» (θετικές) τιµές. Στη συγκεκριµένη εφαρµογή η συνάρτηση αυτή λαµβάνει την τιµή.3 µε αντίστοιχο p-value =.578 (= (.3) ) και εποµένως δεχόµαστε (.578 >.5) ότι οι διασπορές είναι ίσες. F F, 98 Συνεχίζουµε λοιπόν µε την πρώτη γραµµή της ανάλυσης που αφορά equal varaces και έχουµε, x y T ( x, y) = =.553, β.ε. = 98, p-value (sg. value)., ( ) s + ( ) s + + x y =.65, η εκτιµηµένη τυπική απόκλιση της X Y είναι.647 ( =.65/.553: είναι ο παρονοµαστής του παραπάνω κλάσµατος που εκφράζει την T(x,y)) ενώ τέλος ένα δ.ε. για τη διαφορά µ µ (σ.ε. 95%) είναι το (.65 ±.647 t 98 (.5/)) = (.935,.368). Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα»

6 Με βάση λοιπόν το p-value απορρίπτουµε την Η : µ µ = σε ε.σ. a =.5 (. <.5). ηλαδή φαίνεται ότι υπάρχει διαφορά στα µέσα ύψη των δυο πληθυσµών (η διαφορά στα µέσα ύψη των δύο δειγµάτων κρίνεται στατιστικά σηµαντική). Η απόρριψη αυτή (σε ε.σ..5 και για τη δίπλευρη εναλλακτική υπόθεση) θα µπορούσε ισοδύναµα να γίνει χρησιµοποιώντας το δ.ε. συντελεστού a = 95% για το µ µ που περιλαµβάνεται στον παραπάνω πίνακα (διότι δεν περιέχει το ). Προφανώς, εάν στο τεστ οµοσκεδαστικότητας (Levee) βρίσκαµε p-value <.5 (ή. α- νάλογα µε το ε.σ. που έχουµε θέσει) τότε θα προχωρούσαµε µε βάση την δεύτερη γραµµή (equal varaces ot assumed) η οποία περιέχει αντίστοιχες (µε την πρώτη γραµµή) ποσότητες. Εάν είχαµε ως εναλλακτική υπόθεση την Η : µ µ < θα έπρεπε να πάρουµε p value < = pvalue / =./ =.6 (διότι T (x) < ) ενώ αν Η : µ µ > τότε p value > = pvalue / =./ = Έλεγχος υποθέσεων για τη διαφορά των µέσων για ζευγαρωτές παρατηρήσεις (σ άγνωστο) Έστω (Χ,Υ ), (Χ,Υ ),, (Χ,Υ ) ανεξάρτητα ζεύγη τυχαίων µεταβλητών (το ζεύγος (Χ,Υ ) είναι ανεξάρτητο από τα υπόλοιπα ζεύγη (Χ,Υ ),,(Χ,Υ ), το ζεύγος (Χ,Υ ) είναι ανεξ. από τα υπόλοιπα ζεύγη κ.ο.κ.). Επίσης, το (Χ,Υ ) ακολουθεί διδιάστατη κανονική µε Ε(Χ ) = µ, Ε(Y ) = µ +δ, V(X ) = σ, V(Υ ) = σ, Corr(X,Y ) = ρ, =,,,. Επιθυµούµε να ελέγξουµε αν η διαφορά δ = E(Y ) E(X ) µεταξύ των µέσων των X και των Υ είναι µηδενική (θεωρώντας άγνωστες τις παραµέτρους σ, σ, ρ). Η συγκεκριµένη περίπτωση είναι διαφορετική από αυτήν της προηγούµενης παραγράφου (ακόµη και αν µ = µ) διότι εδώ τα τυχαία δείγµατα Χ,Χ,,Χ και Υ,Υ,,Υ δεν είναι ανεξάρτητα (Corr(X,Y ) = ρ). Η περίπτωση αυτή εµφανίζεται π.χ. όταν µελετάται η επίδραση κάποιας «θεραπείας» σε άτοµα. Συνήθως τα Χ, Υ εκφράζουν την τιµή ενός µιας µεταβλητής που αφορά το -άτοµο «πριν» (Χ ) και «µετά» (Y ) την επίδραση της θεραπείας. Ένα άλλο παράδειγµα όπου εφαρµόζεται είναι στις λεγόµενες case-cotrol έρευνες στις οποίες εφαρµόζεται µια θεραπεία σε ασθενείς (cases). Για να ελεγχθεί η επίδραση της θεραπείας επιλέγονται και άλλα άτοµα (άτοµα ελέγχου - cotrols) τα ο- ποία δεν έχουν ακολουθήσει την συγκεκριµένη θεραπεία ή λαµβάνουν placebo (π.χ. λαµβάνουν ένα ανενεργό σκεύασµα ίδιο στη µορφή µε αυτό που έλαβαν οι ασθενείς ώστε να εξαλειφθεί η επίδραση ψυχολογικών παραγόντων). Η επιλογή γίνεται έτσι ώστε ο -ασθενής να έχει τα ίδια χαρακτηριστικά (π.χ. ηλικία, φύλο, περιβάλλον, κατάσταση υγείας κ.ο.κ.) µε το -άτοµο ελέγχου, =,,,. Σε αυτή την περίπτωση η Χ εκφράζει την τιµή της µεταβλητής που µας ενδιαφέρει στον -ασθενή (µετά την θεραπεία) ενώ η Y εκφράζει την τιµή της ίδιας µεταβλητής στο -άτοµο ελέγχου. Κάτω από τις παραπάνω υποθέσεις, οι διαφορές Ζ = Υ X είναι ανεξάρτητες και ακολουθούν την κανονική κατανοµή µε µέση τιµή δ και (άγνωστη) διασπορά σ ( = σ + σ + ρσσ ). Εποµένως, ισοδύναµα µπορούµε να ελέγξουµε αν η µέση τιµή δ των Z είναι ίση µε µ = (Η : δ =, Η : δ ). Αυτό γίνεται εύκολα χρησιµοποιώντας την µεθοδολογία που αναπτύχθηκε στην Παράγραφο.. (έλεγχος υποθέσεων για το µέσο µ ενός πληθυσµού). Συγκεκριµένα, χρησιµοποιούµε την στατιστική συνάρτηση T Z ) = S Z ( ~ H Z /, Z = Z, SZ = ( Z Z = ) = t η οποία, όταν ισχύει η H : δ =, ακολουθεί κατανοµή t -, δηλ. studet µε βαθµούς ελευθερίας, ενώ όταν ισχύει η Η : δ λαµβάνει «µεγάλες» (θετικές ή αρνητικές) τιµές. Απορρίπτουµε την Η όταν T ( z ) > c = t ( a / ) : άνω a/-σηµείο της κατανοµής studet µε β.ε. Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα»

7 ενώ το p-value των τιµών ενός δείγµατος z (όµοια µε παραπάνω) είναι z p value = Ft ( ) sz / όπου F t είναι η σ.κ. της κατανοµής studet µε β.ε. Όπως και παραπάνω, ο συγκεκριµένος έλεγχος µπορεί να γίνει ακόµη και όταν ο πληθυσµός δεν είναι κανονικός αλλά το δείγµα είναι αρκετά µεγάλο (συνήθως >3 ή καλύτερα >). Εάν θέλαµε να κάνουµε µονόπλευρο έλεγχο µε εναλλακτική Η : µ > µ ή Η : µ < µ εργαζό- µαστε όπως και στην Παράγραφο.. Εφαρµογή 3. Για τον έλεγχο της αποτελεσµατικότητας ενός σκευάσµατος που καταπολεµά την παχυσαρκία, χορηγήθηκε συγκεκριµένη ποσότητά του σε κατάλληλα πειραµατόζωα. Σε καθένα από αυτά καταγράφηκε το βάρος του αµέσως πριν και µια εβδοµάδα µετά την χορήγηση του σκευάσµατος. Καταγράφηκαν τα παρακάτω σωµατικά βάρη (σε kgr): Πριν 8,3 8,7 89,6 85, 83,3 8,5 8,6 8,9 69,5 8, 77,3 8,8 7,5 84,7 75,4 8,9 79,8 8 94,3 77 Μετά 8,8 8, 84, 8, 75,8 8,6 76, 79,9 7,9 8, 8 83,3 7 75,5 7,4 79,9 79 8,7 9,9 76,3 Υπάρχει θετική µέση επίδραση του συγκεκριµένου σκευάσµατος (σε ε.σ. 5%) στο βάρος των πειρα- µατόζωων; Λύση: Περνάµε τα παραπάνω δεδοµένα στο SPSS σε δύο στήλες (µεταβλητές weght_b, weght_a) γραµµών ( cases) - Ένας απλός τρόπος να κάνουµε τον παραπάνω έλεγχο είναι να δηµιουργήσουµε (µέσω Trasform / Compute) µια νέα µεταβλητή z = weght_b weght_a και να προχωρήσουµε στον έλεγχο του µέσου για την µεταβλητή αυτή (βλ. Παρ..: Aalyze/Compare Meas/Oe-Sample T Test, Test varable: z, test value: ). - Στο SPSS, η ίδια διαδικασία µπορεί να γίνει και µέσα από µια εξειδικευµένη για την περίπτωση αυτή επιλογή, από την Aalyze/Compare Meas/Pared-Samples T Test. Επιλέγουµε pared varables: weght_b--weght_a και λαµβάνουµε τρεις πίνακες: Πίνακας. Pared Samples Statstcs Mea N Std. Devato Std. Error Mea Par WEIGHT_B 8,97 5,56,3 WEIGHT_A 79,85 5,8, Στον πίνακα αυτόν απεικονίζονται οι δειγµατικοί µέσοι ( x, y ), οι δειγµατικές τυπικές αποκλίσεις (s X, s Y ) και οι δειγµατικές τυπικές αποκλίσεις των µέσων ( s /, s ). X Y / Πίνακας. Pared Samples Correlatos N Correlato Sg. Par WEIGHT_B & WEIGHT_A,84, Στον δεύτερο αυτό πίνακα εµφανίζεται ο δειγµατικός συντελεστής συσχέτισης (του Pearso s) R = R( X, Y) = Cov( X, Y ) V ( X ) V ( Y ) S XY = S S X Y = ( = = X ( X X ) X )( Y = Y ) ( Y Y ) ο οποίος ως γνωστό εκτιµά τον (πληθυσµιακό) συντελεστή συσχέτισης ρ(χ,υ ). Ο συντελεστής συσχέτισης είναι ένας δείκτης της γραµµικής εξάρτησης µεταξύ των Χ, Y ο οποίος λαµβάνει τιµές στο Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα» 3

8 διάστηµα [-,]. Όταν οι Χ, Υ είναι ασυσχέτιστες (ρ = ), αποδεικνύεται ότι η στατιστική συνάρτηση R T X, Y) = ~ t ( ρ = R ακολουθεί κατανοµή studet µε β.ε. Ενώ όταν ρ τότε η T (X,Y) λαµβάνει τιµές «µακριά» από το (θετικές ή αρνητικές). Εποµένως, απορρίπτουµε την H : ρ = έναντι της Η : ρ όταν T ( x, y) > t ( a / ) : άνω a/-σηµείο της t - µε αντίστοιχο p-value r p value = P( T ( X, Y) > T ( x, y) / H ) = ( Ft ( )). r Για τα συγκεκριµένα δεδοµένα φαίνεται ότι ο δειγµατικός συντελεστής συσχέτισης µεταξύ των X, Y είναι r =.84 (= R(x,y)) µε αντίστοιχο p-value σχεδόν (στον πίνακα του SPSS αναγράφεται. αλλά κάνοντας διπλό κλικ επάνω του εµφανίζεται ο αριθµός 7,9-6 ). Εποµένως στην εφαρ- µογή αυτή απορρίπτουµε ότι τα X, Y είναι ασυσχέτιστα. Ο έλεγχος αυτός περιλαµβάνεται στην συγκεκριµένη ανάλυση διότι αν δεχθούµε ότι τα X, Y είναι ασυσχέτιστα, και µ = µ, τότε θα µπορούσα- µε να ακολουθήσουµε τη διαδικασία που αφορά µέσους ανεξάρτητων δειγµάτων (βλ. Παρ..). Ο συγκεκριµένος έλεγχος για την συσχέτιση µεταξύ των X, Y θα µπορούσε να γίνει και µέσω της διαδικασίας Aalyze/Correlate/Bvarate (Pearso Correlato Coeffcet). Τέλος, επανερχόµενοι στον έλεγχο της υπόθεσης Η : δ =, Η : δ, λαµβάνεται και ο ο πιο σηµαντικός για τη συγκεκριµένη ανάλυση πίνακας: Πίνακας 3. Pared Samples Test Pared Dffereces t df Sg. (-taled) Mea Std. Devato Mea of the Dfferece Std. Error 95% Cofdece Iterval Lower Upper Par WEIGHT_B - WEIGHT_A,785 3,55,75,38 3,6,53 9, Ο τελευταίος αυτός πίνακας περιλαµβάνει τις τιµές sz sz z z =.785, sz = 3.55, =.75, ( z ± t ( a / )) = (.38,3.6), T ( z ) = =.53, sz / και p-value (sg. value) z = Ft ( ) = ( F t (.53)). 9 sz / Μπορούµε να πούµε ότι η πιθανότητα να εµφανιστεί το παραπάνω δείγµα ενώ ισχύει η Η : δ = Ε(Χ) Ε(Υ) = (µηδενική µέση επίδραση του σκευάσµατος) είναι. (για Η : δ ). Εποµένως, απορρίπτουµε την Η : δ = σε ε.σ. 5% (. <.5). Εάν είχαµε ως εναλλακτική υπόθεση την Η : δ > Ε(Χ) > Ε(Υ) θα έπρεπε να πάρουµε p value > = pvalue / =./ =. (διότι T(z) >). Boutskas M.V. (4), Σηµειώσεις µαθήµατος «Στατιστικά Προγράµµατα» 4

Ενότητα 4: Πίνακες συνάφειας (Contingency tables)

Ενότητα 4: Πίνακες συνάφειας (Contingency tables) Ενότητα 4: Πίνακες συνάφειας (Cotigecy tables Σε αρκετές εφαρµογές παρουσιάζεται η ανάγκη ελέγχου της σχέσης µεταξύ δυο κατηγορικών µεταβλητών (Ordial ή omial. Π.χ. θέλουµε να διερευνήσουµε τη σχέση µεταξύ

Διαβάστε περισσότερα

Ενότητα 3: Έλεγχοι καλής προσαρµογής (Goodness of fit tests)

Ενότητα 3: Έλεγχοι καλής προσαρµογής (Goodness of fit tests) Ενότητα 3: Έλεγχοι καλής προσαρµογής (Goodess of ft tests) Ένα σηµαντικό πρόβληµα στην στατιστική είναι η εξεύρεση πληροφορίας σχετικά µε την µορφή της κατανοµής από την οποία προέρχεται ένα τυχαίο δείγµα.

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5.1 5.8 ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ 5. 5.8 5. Ένας υγειονοµικός σταθµός θέλει να ελέγξει αν ο µέσος αριθµός βακτηριδίων ανά µονάδα όγκου θαλασσινού νερού σε µια παραλία υπερβαίνει το επίπεδο ασφαλείας των 9 µονάδων. ώδεκα

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ρ. Κουνετάς Η Κωνσταντίνος Ακαδηµαϊκό Έτος 01-013 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις περιόδου στο μάθημα ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ Ονοματεπώνυμο: Όνομα Πατρός:... Σ ΑΜ:. Ημερομηνία: Παρακαλώ μη γράφετε στα παρακάτω

Διαβάστε περισσότερα

1991 US Social Survey.sav

1991 US Social Survey.sav Παραδείγµατα στατιστικής συµπερασµατολογίας µε ένα δείγµα Στα παραδείγµατα χρησιµοποιείται απλό τυχαίο δείγµα µεγέθους 1 από το αρχείο δεδοµένων 1991 US Social Survey.sav Το δείγµα λαµβάνεται µε την διαδικασία

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

2. Στοιχεία Πολυδιάστατων Κατανοµών

2. Στοιχεία Πολυδιάστατων Κατανοµών Στοιχεία Πολυδιάστατων Κατανοµών Είναι φανερό ότι έως τώρα η µελέτη µας επικεντρώνεται κάθε φορά σε πιθανότητες που αφορούν µία τυχαία µεταβλητή Σε αρκετές όµως περιπτώσεις ενδιαφερόµαστε να εξετάσουµε

Διαβάστε περισσότερα

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις

α) t-test µε ίσες διακυµάνσεις β) ανάλυση διακύµανσης µε έναν παράγοντα Έλεγχος t δύο δειγμάτων με υποτιθέμενες ίσες διακυμάνσεις ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΙΕΘΝΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΑΝΑΠΤΥΞΗΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ IΙ ΕΙΣΗΓΗΤΡΙΑ: ΣΑΒΒΑΣ ΠΑΠΑ ΟΠΟΥΛΟΣ ΠΑΛΑΙΑ ΘΕΜΑΤΑ ********************************************************************

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011

ONE WAY ANOVA. .Π.Μ.Σ. Μαθηµατικά των Υπολογιστών & των αποφάσεων. Πάτρα, 11 Ιανουαρίου 2011 Πάτρα, 11 Ιανουαρίου 2011 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Πίνακας Περιεχοµένων 1 completely random design with fixed effects 2 3 Γενικά completely random design with

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο ανεξάρτητων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για ανεξάρτητα δείγματα) Όταν απαιτείται ο έλεγχος της ύπαρξης στατιστικά σημαντικών

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Να κατανοηθεί η έννοια της εκτίµησης σηµείου και της εκτίµησης διαστήµατος. Επίσης να κατανοηθεί η έννοια της δειγµατικής κατανοµής παραµέτρου και να υπολογισθούν µε χρήση της Κεντρικού

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής.

2.6 ΟΡΙΑ ΑΝΟΧΗΣ. πληθυσµού µε πιθανότητα τουλάχιστον ίση µε 100(1 α)%. Το. X ονοµάζεται κάτω όριο ανοχής ενώ το πάνω όριο ανοχής. 2.6 ΟΡΙΑ ΑΝΟΧΗΣ Το διάστηµα εµπιστοσύνης παρέχει µία εκτίµηση µιας άγνωστης παραµέτρου µε την µορφή διαστήµατος και ένα συγκεκριµένο βαθµό εµπιστοσύνης ότι το διάστηµα αυτό, µε τον τρόπο που κατασκευάσθηκε,

Διαβάστε περισσότερα

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς

Έλεγχος Υποθέσεων. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Η μηδενική υπόθεση είναι ένας ισχυρισμός σχετικά με την τιμή μιας πληθυσμιακής παραμέτρου. Είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 6-7 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4 Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.)

3. Οριακά θεωρήµατα. Κεντρικό Οριακό Θεώρηµα (Κ.Ο.Θ.) 3 Οριακά θεωρήµατα Κεντρικό Οριακό Θεώρηµα (ΚΟΘ) Ένα από τα πιο συνηθισµένα προβλήµατα που ανακύπτουν στη στατιστική είναι ο προσδιορισµός της κατανοµής ενός µεγάλου αθροίσµατος ανεξάρτητων τµ Έστω Χ Χ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΕΙΣΑΓΩΓΙΚΟ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 011-01

Διαβάστε περισσότερα

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ Θεόδωρος Χ. Κουτρουµ ανίδης Αναπληρωτής Καθηγητής ΠΘ ΕΦΑΡΜΟΣΜΕΝΗ ΟΙΚΟΝΟΜΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ορεστιάδα 7 ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Παράγωγες κατανοµές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)

Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance) ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32

Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 22 Μαΐου /32 Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 22 Μαΐου 2017 1/32 Εισαγωγή: Τυπικό παράδειγμα στατιστικού ελέγχου υποθέσεων. Ενας νέος τύπος

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 9: Κατανομή t-έλεγχος Υποθέσεων Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΕΙΣ 09-10 ΣΗΜΠΕΡΑΣΜΑΤΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Έλεγχοι υποθέσεων Βόλος, 2016-2017

Διαβάστε περισσότερα

Στατιστικό κριτήριο χ 2

Στατιστικό κριτήριο χ 2 18 Μεθοδολογία Επιστηµονικής Έρευνας & Στατιστική Στατιστικό κριτήριο χ 2 Ο υπολογισµός του κριτηρίου χ 2 γίνεται µέσω του µενού [Statistics => Summarize => Crosstabs...]. Κατά τη συγκεκριµένη διαδικασία

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Κεφάλαιο 3 ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Σε πολλά προβλήµατα της µηχανικής δεν ενδιαφερόµαστε να εκτιµήσουµε την τιµή της παραµέτρου αλλά να διαπιστώσουµε αν η παραµέτρος είναι µικρότερη ή µεγαλύτερη από

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι:

Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: Κατανοµές ειγµατοληψίας 1.Εισαγωγή Οι θεµελιώδεις έννοιες που απαιτούνται στη Επαγωγική Στατιστική (Εκτιµητική, ιαστήµατα Εµπιστοσύνης και Έλεγχοι Υποθέσεων) είναι: 1. Στατιστικής και 2. Κατανοµής ειγµατοληψίας

Διαβάστε περισσότερα

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα)

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που ακολουθούν την κανονική κατανομή (t-test για εξαρτημένα δείγματα) Όπως αναφέρθηκε στο προηγούμενο κεφάλαιο σε ορισμένες

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο )

Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) Στατιστικός έλεγχος υποθέσεων (Μέρος 1 ο ) 2 Η γενική ιδέα της διαδικασίας στατιστικού ελέγχου υποθέσεων Πρόκειται για μια διαδικασία απόφασης μεταξύ δύο υποθέσεων Η μια υπόθεση ονομάζεται μηδενική (Η

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ

ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στα πλαίσια της ΣΤΑΤΙΣΤΙΚΗΣ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑΣ προσπαθούµε να προσεγγίσουµε τα χαρακτηριστικά ενός συνόλου (πληθυσµός) δια της µελέτης των χαρακτηριστικών αυτών επί ενός µικρού

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού

ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού ΣΤΑΤΙΣΤΙΚΗ : Παράσταση Περιγραφή δεδομένων Σύγκριση δεδομένων Εξαγωγή συμπερασμάτων Σχέση αιτίου - αιτιατού Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των

Διαβάστε περισσότερα

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11

ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 2342 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: Οικονομετρικά. Εργαστήριο 15/05/11 ΤΣΑΛΤΑ ΜΑΡΙΑ Α.Μ: 1946 ΠΑΥΛΕΛΛΗ ΛΟΥΙΖΑ Α.Μ: 34 ΤΣΑΪΛΑΚΗ ΦΑΝΗ Α.Μ: 17 Οικονομετρικά Εργαστήριο 15/5/11 ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ 7 ΕΡΓΑΣΤΗΡΙΟ ΜΗ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ Σκοπός του παρόντος µαθήµατος είναι η

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ

Στόχος µαθήµατος: Παράδειγµα 1: µελέτη ασθενών-µαρτύρων ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 5 ΕΡΓΑΣΤΗΡΙΟ 1 ΜΕΤΡΑ ΚΙΝ ΥΝΟΥ & ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017

Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 Ανάλυση διακύμανσης (Μέρος 1 ο ) 17/3/2017 2 Γιατί ανάλυση διακύμανσης; (1) Ας θεωρήσουμε k πληθυσμούς με μέσες τιμές μ 1, μ 2,, μ k, αντίστοιχα Πως μπορούμε να συγκρίνουμε τις μέσες τιμές k πληθυσμών

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20,

ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ. Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=20, ΜΕΜ64: Εφαρμοσμένη Στατιστική 1 ΑΣΚΗΣΕΙΣ ΔΙΑΣΤΗΜΑΤΩΝ ΕΜΠΙΣΤΟΣΥΝΗΣ Άσκηση 1. Βρείτε δ/μα εμπιστοσύνης για τη μέση τιμή μ κανονικού πληθυσμού όταν n=0, X = 7.5, σ = 16, α = 5%. Πως αλλάζει το διάστημα αν

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή

) = a ο αριθµός των µηχανών n ο αριθµός των δειγµάτων που παίρνω από κάθε µηχανή Ανάλυση Συνδιακύµανσης Alsis of Covrice Η ανάλυση συνδιακύµανσης είναι µία άλλη τεχνική για να βελτιώσουµε την ακρίβεια της προσέγγισης του µοντέλου µας στο πείραµα. Ας υποθέσουµε ότι σ ένα πείραµα εκτός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8. Εισαγωγή στη Μέθοδο Bootstrap

ΚΕΦΑΛΑΙΟ 8. Εισαγωγή στη Μέθοδο Bootstrap ΚΕΦΑΛΑΙΟ 8 Εισαγωγή στη Μέθοδο Bootstrap Υπενθυμίζεται ότι έως τώρα ασχοληθήκαμε με το πρόβλημα της εκτίμησης μιας ποσότητας μέσω ενός (ψευδο)τυχαίου δείγματος που παρήχθη με την βοήθεια ενός H/Y. Στο

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall

3.4.2 Ο Συντελεστής Συσχέτισης τ Του Kendall 3..2 Ο Συντελεστής Συσχέτισης τ Του Kendall Ο συντελεστής συχέτισης τ του Kendall μοιάζει με τον συντελεστή ρ του Spearman ως προς το ότι υπολογίζεται με βάση την τάξη μεγέθους των παρατηρήσεων και όχι

Διαβάστε περισσότερα

Ενδεικτικές ασκήσεις ΔΙΠ 50

Ενδεικτικές ασκήσεις ΔΙΠ 50 Ενδεικτικές ασκήσεις ΔΙΠ 50 Άσκηση 1 (άσκηση 1 1 ης εργασίας 2009-10) Σε ένα ράφι μιας βιβλιοθήκης τοποθετούνται με τυχαία σειρά 11 διαφορετικά βιβλία τεσσάρων θεματικών ενοτήτων. Πιο συγκεκριμένα, υπάρχουν

Διαβάστε περισσότερα

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ

ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ ΑΠΟ ΤΟ ΔΕΙΓΜΑ ΣΤΟΝ ΠΛΗΘΥΣΜΟ Το ενδιαφέρον επικεντρώνεται πάντα στον πληθυσμό Το δείγμα χρησιμεύει για εξαγωγή συμπερασμάτων για τον πληθυσμό π.χ. το ετήσιο εισόδημα των κατοίκων μιας περιοχής Τα στατιστικά

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑ ΙΑΡΚΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 3 ΩΡΕΣ ΘΕΜΑ Ο Α ) Να αποδείξετε ότι για δυο ασυµβίβαστα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω ισχύει P( A B) = P( A) + P( B) ( µονάδες 8 ) Β ) Να δώσετε τον

Διαβάστε περισσότερα

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης

Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης 1 Έλεγχος υποθέσεων και διαστήματα εμπιστοσύνης Όπως γνωρίζουμε από προηγούμενα κεφάλαια, στόχος των περισσότερων στατιστικών αναλύσεων, είναι η έγκυρη γενίκευση των συμπερασμάτων, που προέρχονται από

Διαβάστε περισσότερα

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων

7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων 7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Smple Lear Regresso) Να κατανοηθεί η έννοια της παλινδρόµησης Ποιες οι προϋποθέσεις για να εφαρµοσθεί η γραµµική παλινδρόµηση; Τι είναι το γραµµικό µοντέλο και πως εκτιµούνται

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4A: Έλεγχοι Υποθέσεων και Διαστήματα Εμπιστοσύνης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )

Διαβάστε περισσότερα

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΜΗ ΠΑΡΑΜΕΤΡΙΚΩΝ ΕΛΕΓΧΩΝ ΣΤΟΧΟΙ ΤΗΣ ΕΝΟΤΗΤΑΣ Να δοθούν οι βασικές αρχές των µη παραµετρικών ελέγχων (non-parametric tests). Να παρουσιασθούν και να αναλυθούν οι γνωστότεροι µη παραµετρικοί έλεγχοι Να αναπτυχθεί η µεθοδολογία των

Διαβάστε περισσότερα

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο

Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση.

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση. Κεφάλαιο 16 Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 1 Προϋποθέσεις για τη χρήση του τεστ ιαφορές ή συσχέτιση Κλίµακα µέτρησης Σχεδιασµός Σηµείωση ιαφορές Κατηγορική Ανεξάρτητα δείγµατα

Διαβάστε περισσότερα

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn)

MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ Y= g( X1, X2,..., Xn) MEΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΗΣ ΜΟΡΦΗΣ g( Έστω τυχαίες µεταβλητές οι οποίες έχουν κάποια από κοινού κατανοµή Ας υποθέσουµε ότι επιθυµούµε να προσδιορίσουµε την κατανοµή της τυχαίας µεταβλητής g( Η θεωρία των ένα-προς-ένα

Διαβάστε περισσότερα

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.

Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία. . ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ .Φουσκάκης- Ασκήσεις στους Ελέγχους Υποθέσεων ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΕΛΕΓΧΟΥΣ ΥΠΟΘΕΣΕΩΝ ) Με µια νέα µέθοδο προσδιορισµού του σηµείου τήξης (σ.τ.) µετάλλων προέκυψαν οι παρακάτω µετρήσεις για το µαγγάνιο: 67,

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 5. Στατιστική συµπερασµατολογία για ποσοτικές µεταβλητές: Έλεγχοι υποθέσεων και διαστήµατα εµπιστοσύνης ιαστήµατα εµπιστοσύνης και έλεγχοι υποθέσεων για τη µέση τιµή Για µια ποσοτική µεταβλητή

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Στόχοι: (a) να δοθεί µια εισαγωγή στη θεωρία της στατιστικής συµπερασµατολογίας ελέγχων υποθέσεων, (b) να παρουσιάσει τις βασικές εφαρµογές αυτών των ελέγχων: µέσης τιµής, ποσοστού

Διαβάστε περισσότερα

Πολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια

Μη Παραµετρικά Κριτήρια. Παραµετρικά Κριτήρια Κεφάλαιο 7 Μη Παραµετρικά Κριτήρια Παραµετρικά Κριτήρια Τα παραµετρικά κριτήρια είναι στατιστικά κριτήρια που απαιτούν την ικανοποίηση συγκεκριµένων προϋποθέσεων είτε αναφορικά µε συγκεκριµένες παραµέτρους

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα