ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ"

Transcript

1 Ερασιτεχνικής Αστρονομίας ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ ΝΙΚΟΣ ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ (Εκπαιδευτικός ΠΕ19-Μεταπτυχιακός φοιτητής ΕΑΠ- Μέλος Αστρονομικής Εταιρείας Πάτρας «Ωρίων») ΠΕΡΙΛΗΨΗ Η εργασία αυτή αποτελεί μία εφαρμογή του «Συστήματος Αλγοριθμικού Ηλιακού Σκοπευτή» (Ο.Β.Ι. 2002) και πρόκειται ουσιαστικά για την κατασκευή ενός ρομποτικού Suntracker, ο οποίος έχει τη δυνατότητα με δεδομένα την ημερομηνία και το γεωγραφικό πλάτος να σχεδιάζει την Ηλιακή τροχιά πάνω στον ουράνιο θόλο. Το σύστημα (το οποίο είναι πρωτότυπο και δεν κυκλοφορεί στο εμπόριο) περιλαμβάνει ειδικό λογισμικό και κατασκευή, η οποία είναι ένας ρομποτικός ουράνιος θόλος πλανητάριο σε μορφή σφαίρας πάνω στην επιφάνεια του οποίου προσομοιώνεται ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ η κίνηση του Ήλιου στον ουράνιο θόλο του παρατηρητή. Η προσομοίωση της ηλιακής τροχιάς γίνεται με τη βοήθεια μίας ακτίνας Laser που εκπέμπεται από ένα Laser light το οποίο είναι τοποθετημένο στο κέντρο της σφαίρας πάνω σε ένα ρομποτικό βραχίονα, ο οποίος έχει τη δυνατότητα να περιστρέφεται κατά το αζιμούθιο και κατά το ύψος του Ήλιου όπως ακριβώς ένα τηλεσκόπιο. Ο ρομποτικός βραχίονας συνδέεται μέσω της παράλληλης θύρας με τον Η/Υ από όπου καθοδηγείται με την εκτέλεση ειδικού προγράμματος (software: algorithmic solar shot system). Το λογισμικό αυτό αξιοποιώντας τους αστρονομικούς κανόνες που διέπουν τη φαινομενική κίνηση του Ήλιου υπολογίζει κάθε φορά τη θέση του στον ουρανό, ανάλογα με την ημερομηνία, την ώρα και το γεωγραφικό πλάτος του τόπου που δίνει ο χρήστης. Έτσι δίνεται η δυνατότητα στο σύστημα να σχεδιάζει την Ηλιακή τροχιά στην οθόνη του υπολογιστή και παράλληλα στο laser να την 31

2 5ο Πανελλήνιο Συνέδριο ιχνηλατεί πάνω στην επιφάνεια του προσομοιωτή του ουράνιου θόλου. Επιπρόσθετα, τοποθετώντας όλο το σύστημα σε αίθουσα μορφής πλανητάριου με θολωτή οροφή μπορούμε επιπλέον να έχουμε μία εξαιρετική προσομοίωση και εποπτεία της Ηλιακής τροχιάς και κίνησης πάνω στην επιφάνεια της οροφής ικανή να την παρακολουθήσουν περισσότεροι θεατές. Από πλευράς Αστρονομίας το σύστημα αποτελεί μία αντίστροφη λειτουργία ενός Ηλιακού ρολογιού. Ενώ ένα Ηλιακό ρολόι έχοντας σαν δεδομένο τη θέση του Ήλιου στον ουρανό μας δείχνει την ώρα, το παρόν σύστημα έχοντας σαν δεδομένο την ώρα, μας δείχνει τη θέση του Ήλιου στον ουρανό. Λέξεις κλειδιά: Πολικός χάρτης, αλγόριθμος, Suntracker. Θεωρητικό πλαίσιο H θέση του Ήλιου πάνω στον ουράνιο θόλο ενός παρατηρητή καθορίζεται από δύο γωνίες. Την αζιμούθια γωνία γς η οποία μετριέται πάνω στο επίπεδο του παρατηρητή και η μία της πλευρά είναι ο άξονας Βορρά νότου ΝS (εικόνα1). ΗΛΙΑΚΕΣ ΓΩΝΙΕΣ ΗΛΙΑΚΗ ΤΡΟΧΙΑ ΠΟΛΙΚΟΣ ΧΑΡΤΗΣ 32

3 Ερασιτεχνικής Αστρονομίας Το ύψος α που είναι η γωνία που δείχνει το ύψος του Ήλιου από τον ορίζοντα (εικόνα1) (Ζαφειρόπουλος 1989). Αν προβάλουμε το σύστημα θόλου Ήλιου πάνω στο επίπεδο του παρατηρητή (εικόνα 2), έχουμε την αντίστοιχη θέση του Ήλιου στον πολικό Χάρτη (Szokolay 1996, Στασινόπουλος 2001). Αν φανταστούμε αρκετές διαδοχικές θέσεις του Ήλιου πάνω στον ουράνιο θόλο από την ανατολή μέχρι τη δύση του παίρνουμε την Ηλιακή τροχιά (εικόνα 3). Και αντίστοιχα αν προβάλουμε όλες αυτές τις διαδοχικές θέσεις πάνω στο επίπεδο του παρατηρητή παίρνουμε την τροχιά του Ηλίου στον πολικό χάρτη (εικόνα 4). Αλγόριθμος Ο αλγόριθμος με δεδομένα την ημερομηνία και το γεωγραφικό πλάτος φ του τόπου υπολογίζει και σχεδιάζει την Ηλιακή τροχιά. Οι υπολογισμοί των Ηλιακών γωνιών γς και α καθώς και των ενδιάμεσων αποτελεσμάτων γίνονται με τη βοήθεια τύπων της Μαθηματικής αστρονομίας. Συγκεκριμένα μερικοί από τους σημαντικότερους για τον αλγόριθμο υπολογισμοί μεγεθών είναι οι παρακάτω : Η απόκλιση του Ηλίου δ η οποία είναι η γωνιακή θέση του Ηλίου κατά την Ηλιακή Μεσημβρία σε σχέση με το ισημερινό επίπεδο (εικόνα 5). Εικόνα 5 Ηλιακές γωνίες Το μήκος Ν της ημέρας σε ώρες το οποίο χρησιμεύει για εύρεση του χρόνου Ανατολής και του χρόνου Δύσης του Ηλίου. Ο αληθής Ηλιακός χρόνος Ανατολής Ηλίου (ΑΗΧΑ) και ο Αληθής Ηλιακός χρόνος Δύσης Ηλίου (ΑΗΧΔ). Αυτοί οι δύο χρόνοι μας βοηθούν για την σχεδίαση της 33

4 5ο Πανελλήνιο Συνέδριο Ηλιακής τροχιάς για το πότε θα αρχίζει και πότε θα τελειώνει. Η Ωριαία γωνία ω, η οποία λαμβάνεται αρνητική για τις προ-μεσημβρινές ώρες και θετική για τις μεταμεσημβρινές ώρες και αντιστοιχεί 15 ο ανά ώρα και δηλώνει τη γωνιακή μετατόπιση του Ηλίου Ανατολικά ή Δυτικά του Μεσημβρινού. Το Ύψους α του Ηλίου το οποίο είναι ένα από τα τελικά μας ζητούμενα και είναι η γωνία που σχηματίζεται από το οριζόντιο επίπεδο του τόπου και την νοητή ευθεία Ήλιος τόπος (εικόνα 5). Υπολογισμός της ζενιθίας γωνίας θ Ζ και το ύψος του Ηλίου α. Υπολογίζουμε το συνημίτονο της ζενιθίας γωνίας από τον τύπο cos coscoscossin sin Για την ζενιθία γωνία ισχύει ότι 0 Z 90 Z Αφού βρεθεί η θ Ζ βρίσκουμε το ύψος του Ηλίου α από τον τύπο a 90 Z Εικόνα 6 Το λάθος του υπολογιστή Η αζιμούθια γωνία γς είναι το δεύτερο τελικό ζητούμενο και υπολογίζεται από τον cos sin τύπο sin S sin (για την οποία ισχύει 0 s 360). Εδώ όμως υπάρχει Z το πρόβλημα της εύρεσης της σωστής γς αφού είναι υποψήφιες δύο παραπληρωματικές γωνίες η (γς )και η (180ο-γς) οι οποίες έχουν το ίδιο ημίτονο. 34 Στην εικόνα 6 φαίνεται το πρόβλημα εύρεσης της σωστής γωνίας από τον υπολογιστή. Αυτό γιατί οι τριγωνομετρικές συναρτήσεις των διαφόρων γλωσσών προγραμματισμού που αναγνωρίζουν γωνίες από κάποιο τριγωνομετρικό αριθμό (μιλάμε ουσιαστικά για την συνάρτηση τόξο εφαπτομένης χ) έχουν σαν αποτέλεσμα την μικρότερη πάντα γωνία μεταξύ δύο παραπληρωματικών.

5 Ερασιτεχνικής Αστρονομίας Το πρόβλημα λύνεται υπολογίζοντας ότι η αζιμούθια γωνία είναι: S min,180 S S max,180 S S tan,cos tan tan,cos tan Ο παραπάνω τύπος προκύπτει από αξιοποίηση των σχέσεων μεταξύ των Ηλιακών γωνιών του αζιμούθιου γς και της ωριαίας γωνίας ω και η απόδειξή του παραλείπεται λόγω μεγέθους της παρούσας εργασίας. Περιγραφή μηχανικού μέρους: Ο προσομοιωτής ουράνιου θόλου είναι μια τρισδιάστατη σφαιρική κατασκευή βάρους περίπου 2,5 kg και διαστάσεων 45cm x 45cm x 47cm (Μ x Π x Υ) Τα κυριότερα μέρη της κατασκευής δίνονται στον παρακάτω πίνακα και απεικονίζονται στην εικόνα που ακολουθεί αριθμημένα από 1 έως 16, ενώ ακολουθεί και λεπτομερέστερη περιγραφή : 1. Θόλος. 2. Επίπεδη επιφάνεια παρατήρησης του ορίζοντα. 3. Βάση πλανηταρίου. 4. Ρομποτικός βραχίονας. 5. Βάση στήριξης του ρομποτικού βραχίονα. 6. Laser light. 7. Ηλεκτρονική πλακέτα του προσομοιωτή. 8. Μοτέρ Χ. 9. Μοτέρ Υ. 10. Κάλυμμα. Κάτω μέρος της σφαίρας. 11. Γρανάζι και άξονας περιστροφής του μοτέρ Χ. 12. Διακόπτης laser light. 13. Βύσμα τροφοδοτικού. 14. Διακόπτες παροχής ρεύματος. 15. Γρανάζι και άξονας περιστροφής του μοτέρ Y. 16. Παράλληλη θύρα πλακέτας. Λεπτομερέστερα: 1. Θόλος. Προσαρμόζε-ται πάνω στην επίπεδη επιφάνεια παρατήρησης του ορίζοντα(2). Πάνω στο θόλο προσπίπτει και ανακλάται η ακτίνα laser του laser light(6) προσδιορίζοντας έτσι τη θέση του Ήλιου. 2. Επίπεδη επιφάνεια παρατήρησης του ορίζοντα όπου μετράμε το αζιμούθιο. Στο πάνω μέρος της προσαρμόζεται ο Θόλος(1) και στο κάτω μέρος 35

6 5ο Πανελλήνιο Συνέδριο 36 της προσαρμόζεται η βάση(5) στήριξης του ρομποτικού βραχίονα. Στο κέντρο της επιφάνειας υπάρχει κυκλική οπή μέσα από την οποία εξέρχεται το επάνω μέρος του ρομποτικού βραχίονα(4) κατά τρόπο ώστε το laser light(6) να περιστρέφεται ελεύθερα οριζόντια και κάθετα και να εντοπίζει και θέσεις του Ηλίου όπου το ύψος είναι 0ο μηδέν. Τέτοιες θέσεις έχουμε κατά την ανατολή και δύση του Ήλιου. 3. Βάση πλανητάριου που περιέχει την πλακέτα(7) τους διακόπτες(12),(14) και την τροφοδοσία με ρεύμα(13). 4. Ρομποτικός βραχίονας (περιλαμβάνει το laser(6), τα μοτέρ(8),(9) τα γρανάζια και τους άξονες περιστροφής(11),(15). Η περιστροφή του κατά αζιμουθιακό και υψομετρικό κύκλο παραπέμπει κατασκευαστικά στο αστρονομικό όργανο θεοδόλιχο που χρησιμοποιείται για υπολογισμό του ύψους και του αζιμούθιου (Ζαφειρόπουλος 1996). 5. Βάση στήριξης του ρομποτικού βραχίονα (εφαρμόζει πάνω στη βάση του πλανηταρίου(3) και στην επίπεδη επιφάνεια παρατήρησης. 6. Laser light. Ανάβει από τον διακόπτη(12) και ιχνηλατεί την Ηλιακή τροχιά καθώς περιστρέφεται οριζόντια και κάθετα με τη βοήθεια του ρομποτικού βραχίονα(4). 7. Ηλεκτρονική πλακέτα του προσομοιωτή (κάρτα οδήγησης των μοτέρ). Συνδέεται με καλώδιο με την παράλληλη θύρα του Υπολογιστή διαμέσου της παράλληλης θύρας (16). Περισσότερα για την πλακέτα και τον τρόπο οδήγησης των μοτέρ μπορεί να δει κανείς στο: (Ο.Β.Ι. 2002). Πρόκειται για την ευρεσιτεχνία με τίτλο «Σύστημα Αλγοριθμικού Ηλιακού Σκοπευτή» που προστατεύεται με δίπλωμα ευρεσιτεχνίας και έχει κατατεθεί στον Οργανισμό Βιομηχανικής Ιδιοκτησίας. 8. Μοτέρ Χ (υπεύθυνο για στροφή του βραχίονα σύμφωνα με το αζιμούθιο). Συνδέεται με την Ηλεκτρονική πλακέτα(7).

7 Ερασιτεχνικής Αστρονομίας 9. Μοτέρ Υ (υπεύθυνο για στροφή του laser σύμφωνα με το ύψος του Ηλίου. Συνδέεται με την Ηλεκτρονική πλακέτα(7). 10. Κάτω μέρος της σφαίρας. Χρησιμεύει σαν κάλυμμα της βάσης(5) του ρομποτικού βραχίονα(4). 11. Γρανάζι και άξονας περιστροφής του μοτέρ Χ. Τίθεται σε κίνηση από το μοτέρ Χ(8) και χρησιμεύει ώστε να κινεί τον ρομποτικό βραχίονα(4) σύμφωνα με το αζιμούθιο. 12. Διακόπτης για το laser light(6). 13. Βύσμα εισόδου εξωτερικού τροφοδοτικού. Τροφοδοτεί την πλακέτα(7) και τα μοτέρ (8),(9) με ρεύμα. 14. Διακόπτες παροχής ρεύματος (ένας για τροφοδοτικό και άλλος για μπαταρία. 15. Γρανάζι και άξονας περιστροφής του μοτέρ Y. Τίθεται σε κίνηση από το μοτέρ Y (9) και χρησιμεύει ώστε να κινεί το Laser light(6) σύμφωνα με το ύψος του Ηλίου. 16. Παράλληλη θύρα ηλεκτρονικής πλακέτας του προσομοιωτή. Συνδέεται με καλώδιο με την παράλληλη θύρα του H/Y. Συμπεράσματα εφαρμογές: Το σύστημα μπορεί να χρησιμοποιηθεί για εκπαιδευτικούς σκοπούς σαν εποπτικό μέσο για τη σχεδίαση της ηλιακής τροχιάς. Μπορεί να ενταχθεί στην κατηγορία αστρονομικών μοντέλων προσομοίωσης και ειδικότερα στις συσκευές τύπου «Suntracker» (βλ. πηγές Ίντερνετ). Η εφαρμογή και δοκιμή του έγινε με επιτυχία από μαθητές του 3ου Γενικού Λυκείου Πάτρας οι οποίοι συμμετείχαν στο σχετικό μαθητικό project (Frey 2002) που είχε αντικείμενο την εν λόγω κατασκευή. Βιβλιογραφία: Ζαφειρόπουλος Β. (1986), «Πρακτική Αστρονομία», Πανεπιστήμιο Πατρών, Οργανισμός Εκδόσεων Διδακτικών βιβλίων, ΑΘΗΝΑ Οργανισμός Βιομηχανικής Ιδιοκτησίας Ο.Β.Ι. (2002), Ειδικό δελτίο βιομηχανικής ιδιοκτησίας τεύχος A ευρεσιτεχνίες, Απρίλιος 2002, Αθήνα, ISBN Στασινόπουλος Θ. (2001), «Ηλιακή Γεωμετρία», Σημειώσεις για το μεταπτυχιακό μάθημα Βιοκλιματικός Σχεδιασμός, Τμήμα αρχιτεκτόνων ΕΜΠ ΑΘΗΝΑ ΔΕΚΕΜΒΡΙΟΣ Duffett-Smith P.(1988) Practical astronomy with your calculator Cambridge University Press, ISBN-10: , 3 edition (March 31, 1988). 37

8 5ο Πανελλήνιο Συνέδριο Karl Frey (2002), H «Μέθοδος Project». Μία μορφή συλλογικής εργασίας στο σχολείο ως θεωρία και πράξη, Μετάφραση: Κλεονίκη Μάλλιου, Παιδαγωγική και Εκπαίδευση 14, Διεύθυνση Σειράς: Π.Δ. Ξωχέλλης- Ν.Π. Τερζής- Α.Γ. Καψάλης, Εκδοτικός οίκος Αδερφών Κυριακίδη Α.Ε, Θεσσαλονίκη, ISBN Szokolay, S.V. (1996) Solar Geometry. Passive and Low Energy Architecture, Department of Architecture, The University of Queensland, Australia. Πηγές Ίντερνετ Suntracker: εμπορικά sites. Σελίδα του 3ου Γενικού Λυκείου Πάτρας με αναφορά στο «Σύστημα Αλγοριθμικού Ηλιακού Σκοπευτή». 38

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΑΚΤΙΝΟΒΟΛΙΑ ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ Μάθημα 2o Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΔΕΥΤΕΡΑ 6/3/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Περίληψη Ηλιακή

Διαβάστε περισσότερα

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Β.Π. Ουράνιος Ισηµερινός Ν.Π. Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

«ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ»

«ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ» ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΧΗΜΕΙΑΣ «ΣΥΣΤΗΜΑΤΑ ΣΤΗΡΙΞΗΣ» Φώτης

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονομία

Εισαγωγή στην Αστρονομία Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην

Διαβάστε περισσότερα

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle 21 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ Ως τώρα είδαμε πως ορίζονται διάφορα συστήματα αναφοράς και πως οι συντεταγμένες, σε κάθε σύστημα, αλλάζουν ανάλογα με την διεύθυνση παρατήρησης, τον τόπο και τον χρόνο. Για να γίνουν

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2 Ανατολή-δύση αστέρων Από την σχέση αυτή προκύπτουν δυο τιμές για την ωριαία γωνία Η Δ για την οποία ο αστέρας βρίσκεται στον

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Σύστημα γήινων συντεταγμένων Γήινος μεσημβρινός του τόπου Ο Μεσημβρινός του Greenwich (πρώτος κάθετος) Γεωγραφικό μήκος 0

Διαβάστε περισσότερα

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή Κεφάλαιο 5: 5.1. Εισαγωγή Η ηλιακή γεωμετρία περιγράφει τη σχετική κίνηση γης και ήλιου και αποτελεί ένα σημαντικό παράγοντα που υπεισέρχεται στον ενεργειακό ισολογισμό κτηρίων. Ανάλογα με τη γεωμετρία

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

Γεωδαιτική Αστρονομία

Γεωδαιτική Αστρονομία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Γεωδαιτική Αστρονομία Ρωμύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr ΑΝΑΚΕΦΑΛΑΙΩΣΗ Σφαιρικό σύστημα αναφοράς

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 2: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Ο Ήλιος ως πηγή ενέργειας Κατανομή ενέργειας στη γη Ηλιακό φάσμα και ηλιακή σταθερά

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε

Διαβάστε περισσότερα

Ειδικά κεφάλαια παραγωγής ενέργειας

Ειδικά κεφάλαια παραγωγής ενέργειας Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 3 (β): Μη Συμβατικές Πηγές Ενέργειας Αν. Καθηγητής Γεώργιος Μαρνέλλος (Γραφείο 208) Τηλ.: 24610 56690,

Διαβάστε περισσότερα

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέιο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής

Δρ. Απόστολος Ντάνης. Σχολικός Σύμβουλος Φυσικής Αγωγής Δρ. Απόστολος Ντάνης Σχολικός Σύμβουλος Φυσικής Αγωγής *Βασικές μορφές προσανατολισμού *Προσανατολισμός με τα ορατά σημεία προορισμού στη φύση *Προσανατολισμός με τον ήλιο *Προσανατολισμός από τη σελήνη

Διαβάστε περισσότερα

Σφαιρικό σύστημα αναφοράς

Σφαιρικό σύστημα αναφοράς Σφαιρικό σύστημα αναφοράς Ουρανογραφικό σύστημα αναφοράς Αστρονομικό σύστημα αναφοράς Οριζόντιο σύστημα αναφοράς Ισημερινό σύστημα αναφοράς Το τρίγωνο θέσης Αστρικός Χρόνος - 1 Ο αστρικός χρόνος είναι

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

Μάθηµα 4 ο : ορυφορικές τροχιές

Μάθηµα 4 ο : ορυφορικές τροχιές Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Α Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Ηλεκτρομαγνητική Ακτινοβολία ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής

ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ ΓΥΜΝΑΣΙΟΥ ΝΙΚΗΦΟΡΟΥ

ΗΛΙΑΚΟ ΡΟΛΟΙ ΓΥΜΝΑΣΙΟΥ ΝΙΚΗΦΟΡΟΥ ΗΛΙΑΚΟ ΡΟΛΟΙ ΓΥΜΝΑΣΙΟΥ ΝΙΚΗΦΟΡΟΥ Το ρολόι αυτό είναι κατασκευασµένο από λευκό µάρµαρο Θάσου. Βρίσκεται στην αυλή του Γυµνασίου Νικηφόρου ράµας σε 41 0 10' 12'' βόρειο πλάτος και 24 0 18' 49.83'' ανατολικό

Διαβάστε περισσότερα

Ο χώρος. 1.Μονοδιάστατη κίνηση

Ο χώρος. 1.Μονοδιάστατη κίνηση Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά

Διαβάστε περισσότερα

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ

7.1 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ 7.1 ΑΣΚΗΣΗ 7 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΩΝ ΘΕΩΡΙΑ Όταν φωτεινή παράλληλη δέσμη διαδιδόμενη από οπτικό μέσο α με δείκτη διάθλασης n 1 προσπίπτει σε άλλο οπτικό μέσο β με δείκτη διάθλασης n 2 και

Διαβάστε περισσότερα

ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006

ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006 ΦΥΕ14 - ΕΡΓΑΣΙΑ 6 Προθεσμία αποστολής: 4/7/2006 Άσκηση 1 Δύο σφαίρες με ίσες μάζες m είναι δεμένες με νήματα μήκους l από το ίδιο σημείο της οροφής Σ. Αν η κάθε σφαίρα φέρει φορτίο q να βρεθεί η γωνία

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 3 1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 1.1 Βασικές έννοιες Για τις εφαρμογές της Γεωδαιτικής Αστρονομίας είναι απαραίτητος ο ορισμός συστημάτων συντεταγμένων, στα οποία περιγράφονται οι θέσεις και

Διαβάστε περισσότερα

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις.

Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις. ΔΙΚΤΥΑ SCHMIDT Στερεογραφική προβολή Η στερεογραφική προβολή είναι μια μέθοδος που προσφέρει το πλεονέκτημα της ταχύτατης λύσης προβλημάτων που λύνονται πολύπλοκα με άλλες μεθόδους. Με την στερεογραφική

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα 1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός

Διαβάστε περισσότερα

Ερασιτεχνικής Αστρονομίας

Ερασιτεχνικής Αστρονομίας 5ο Πανελλήνιο Συνέδριο Ερασιτεχνικής Αστρονομίας Πρακτικά του Πανελληνίου Συνεδρίου Ερασιτεχνικής Αστρονομίας Συνεδριακό & Πολιτιστικό Κέντρο Πανεπιστημίου Πατρών www.astrosynedrio2007.gr 5-6-7 Οκτωβρίου

Διαβάστε περισσότερα

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης 1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει

Διαβάστε περισσότερα

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν

Διαβάστε περισσότερα

Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α

Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α Η Λ Ι Α Κ Α Ρ Ο Λ Ο Γ Ι Α Αναγνωστοπούλου Στρατηγούλα (5553), Σταυρίδη Δήμητρα (5861) 1 ΛΙΓΗ ΑΣΤΡΟΝΟΜΙΑ 1.1 Η κίνηση της Γης Η Γη κινείται με τρεις τρόπους: περιστρέφεται γύρω από τον άξονά της σε 24h,

Διαβάστε περισσότερα

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΑΥΣΙΠΛΟΪΑ 1 o ΔΙΑΓΩΝΙΣΜΑ α. Τι είναι έξαρμα του πόλου υπέρ τον ορίζοντα και γιατί ενδιαφέρει τον ναυτιλλόμενο. β. Να ορίσετε τα είδη των αστέρων (αειφανείς, αφανείς και Αμφιφανείς)και να γράψετε τις συνθήκες

Διαβάστε περισσότερα

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης

Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Το πείραμα του Ερατοσθένη και η μέτρηση της περιφέρειας της Γης Οδηγός για τον εκπαιδευτικό Περιεχόμενα Προετοιμασία δραστηριότητας Α. Υλικά και φύλλα εργασίας 3 Β. Εγκατάσταση του προγράμματος "Google

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

Ερωτήσεις Λυκείου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 ΠΡΟΣΟΧΗ: Αυτό το έγγραφο ΔΕΝ θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε και τις σημειώσετε σ αυτό το έντυπο,

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ

Εργαστήριο ΑΠΕ I. Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β. Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Εργαστήριο ΑΠΕ I Ενότητα 2: Ηλιακή Γεωμετρία και Ηλιακό Δυναμικό: Μέρος Β Πολυζάκης Απόστολος / Καλογήρου Ιωάννης / Σουλιώτης Εμμανουήλ Με δεδομένο ότι η Ένταση της Ηλιακής ακτινοβολίας εκτός της ατμόσφαιρας

Διαβάστε περισσότερα

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται ΚΕΦΑΛΑΙΟ 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΧΡΟΝΟΣ 2.1 Ουράνια σφαίρα-βασικοί ορισµοί Για να ορίσουµε τις θέσεις των αστέρων, τους θεωρούµε να προβάλλονται σαν σηµεία στην εσωτερική επιφάνεια µιας σφαίρας µε αυθαίρετη

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο.

Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. ΓΕΩΛΟΓΙΚΗ ΤΟΜΗ ΚΕΚΛΙΜΕΝΑ ΣΤΡΩΜΜΑΤΑ 6.1 ΚΛΙΣΗ ΣΤΡΩΜΑΤΟΣ Κλίση ενός στρώματος είναι η διεύθυνση κλίσης και η γωνία κλίσης με το οριζόντιο επίπεδο. Πραγματική κλίση στρώματος Η διεύθυνση μέγιστης κλίσης,

Διαβάστε περισσότερα

ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-04 ΜΑΘΗΜΑ /ΤΑΞΗ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΣΕΙΡΑ: ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση

2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση 2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,

Διαβάστε περισσότερα

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6

Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ. Σελίδα 1 από 6 Η ΤΡΟΧΙΑ ΤΟΥ ΗΛΙΟΥ Στόχος(οι): Η παρατήρηση της τροχιάς του ήλιου στον ουρανό και της διακύμανση της ανάλογα με την ώρα της ημέρας ή την εποχή. Εν τέλει, η δραστηριότητα αυτή θα βοηθήσει τους μαθητές να

Διαβάστε περισσότερα

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης

Σφαίρα σε ράγες: Η συνάρτηση Lagrange. Ν. Παναγιωτίδης Σφαίρα σε ράγες: Η συνάρτηση Lagrange Ν. Παναγιωτίδης Έστω σύστημα δυο συγκλινόντων ραγών σε σχήμα Χ που πάνω τους κυλίεται σφαίρα ακτίνας. Θεωρούμε σύστημα συντεταγμένων με οριζόντιους τους άξονες και.

Διαβάστε περισσότερα

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017 Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017 19) Ποια είναι η περιοχή τιμών των ουρανογραφικών συντεταγμένων των ουράνιων αντικειμένων που είναι (i) αειφανή και (ii) αφανή για το Αστεροσκοπείο του Χελμού.

Διαβάστε περισσότερα

Επιστημονικές πειραματικές διατάξεις και εικονικά πειράματα στην υπηρεσία της εκπαιδευτικής διαδικασίας

Επιστημονικές πειραματικές διατάξεις και εικονικά πειράματα στην υπηρεσία της εκπαιδευτικής διαδικασίας GoLab Global Online Science Labs for Inquiry Learning at School Επιστημονικές πειραματικές διατάξεις και εικονικά πειράματα στην υπηρεσία της εκπαιδευτικής διαδικασίας Δρ. Γεώργιος Μαυρομανωλάκης [gmavroma@ea.gr]

Διαβάστε περισσότερα

2. Ένα μπαλάκι το δένουμε στην άκρη ενός νήματος και το περιστρέφουμε. Αν το μπαλάκι

2. Ένα μπαλάκι το δένουμε στην άκρη ενός νήματος και το περιστρέφουμε. Αν το μπαλάκι 1. Α. Η κίνηση του εκκρεμούς είναι μια ( περιοδική/ ομαλή κυκλική κίνηση) Β. Ένα αυτοκίνητο που κινείται σε κυκλική πλατεία, σίγουρα εκτελεί (κυκλική / ομαλή κυκλική) κίνηση. Γ. Η κίνηση του άκρου ενός

Διαβάστε περισσότερα

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2.

ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ. Καθηγητής: Σ. ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ. ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 2011) 2 o2. ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Καθηγητής: Σ ΠΝΕΥΜΑΤΙΚΟΣ ΜΕΡΟΣ Α ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΘΕΜΑΤΑ Α ΠΡΟΟΔΟΥ (Νοέμβριος 011) 1 Από τους ακόλουθους μετασχηματισμούς του αριθμητικού χωρο-χρόνου εντοπίστε

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ

ΕΝΟΤΗΤΑ ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ ΕΝΟΤΗΤΑ 10 10.0 ΠΑΓΚΟΣΜΙΟ ΣΥΣΤΗΜΑ ΠΡΟΣΔΙΟΡΙΣΜΟΥ ΘΕΣΗΣ (GPS - Global Positioning System) ΕΙΣΑΓΩΓΗ Το σύστημα GPS επιτρέπει τον ακριβή προσδιορισμό των γεωγραφικών συντεταγμένων μιας οποιασδήποτε θέσης,

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Σχολείο Φλώρινας Πρόγραμμα Περιβαλλοντικής Αγωγής. «Ένας περίπατος στο ηλιακό μας σύστημα»

Πρότυπο Πειραματικό Σχολείο Φλώρινας Πρόγραμμα Περιβαλλοντικής Αγωγής. «Ένας περίπατος στο ηλιακό μας σύστημα» Πρότυπο Πειραματικό Σχολείο Φλώρινας Πρόγραμμα Περιβαλλοντικής Αγωγής «Ένας περίπατος στο ηλιακό μας σύστημα» Εκπαιδευτικός: Μπλούχου Στεφανία Τάξη: Β Σχολικό έτος: 2012-13 ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΠΡΟΓΡΑΜΜΑΤΟΣ

Διαβάστε περισσότερα

Ψηφιακά Αντικείμενα Μάθημα 1 Δραστηριότητα 2. Προγραμματισμός Φυσικών Συστημάτων. Συστήματα Πραγματικών Εφαρμογών. Νέα Ψηφιακά Αντικείμενα

Ψηφιακά Αντικείμενα Μάθημα 1 Δραστηριότητα 2. Προγραμματισμός Φυσικών Συστημάτων. Συστήματα Πραγματικών Εφαρμογών. Νέα Ψηφιακά Αντικείμενα Σκοπός Ψηφιακά Αντικείμενα Μάθημα 1 Δραστηριότητα 2 ΤΟ ΣΥΣΤΗΜΑ ΣΑΡΩΣΗΣ ΤΟΥ ΟΠΤΙΚΟΥ ΠΕΔΙΟΥ. Ψηφιακά Αντικείμενα Μικροελεγκτής Προγραμματισμός Φυσικών Συστημάτων Συστήματα Πραγματικών Εφαρμογών Νέα Ψηφιακά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού. Οριζόντια βολή Κυκλικές κινήσεις

Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού. Οριζόντια βολή Κυκλικές κινήσεις Διαγώνισμα Φυσικής Β Λυκείου Προσανατολισμού Οριζόντια βολή Κυκλικές κινήσεις ~~Διάρκεια 2 ώρες~~ Θέμα Α 1) Δύο μαθητές παρακολουθούν το μάθημα της Φυσικής από τα έδρανα του εργαστηρίου του σχολείου τους.

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Κεφάλαιο 1: Κινηματική των Ταλαντώσεων

Κεφάλαιο 1: Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων Κεφάλαιο : Κινηματική των Ταλαντώσεων. Φαινομενολογικός ορισμός ταλαντώσεων Μεταβολές σε φυσικά φαινόμενα που χαρακτηρίζονται από μια κανονική επανάληψη κατά ορισμένα

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2015 Πανεπιστήμιο Αθηνών, Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος Γ Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις.

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις. ΕΙΣΑΓΩΓΗ Στα πλαίσια του προγράμματος περιβαλλοντικής Αγωγής, τη σχολική χρονιά 2012-2013, αποφασίσαμε με τους μαθητές του τμήματος Β 3 να ασχοληθούμε με κάτι που θα τους κέντριζε το ενδιαφέρον. Έτσι καταλήξαμε

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 11/10/2015 ΚΙΝΗΣΗ-ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2 ΩΡΕΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 11/10/2015 ΚΙΝΗΣΗ-ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2 ΩΡΕΣ ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 11/10/2015 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ-ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ-ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ 2 ΩΡΕΣ ΘΕΜΑ Α Α1. Σημειώστε στην αντίστοιχη

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II

Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Σσναλλοίωτη παράγωγος και παράλληλη μεταφορά Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών 17 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1 ο B Λυκείου 12 Μαρτίου 2011 A. Στα δύο όμοια δοχεία του σχήματος υπάρχουν ίσες ποσότητες νερού με την ίδια αρχική θερμοκρασία θ 0 =40 ο C. Αν στο αριστερό δοχείο η θερμοκρασία του

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ /ΤΑΞΗ: ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 12/10/2014 ΦΥΣΙΚΗ ΟΜΑΔΑΣ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ-ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ- ΚΕΝΤΡΟΜΟΛΟΣ ΔΥΝΑΜΗ ΘΕΜΑ Α 1. Ποιες προτάσεις είναι σωστές και ποιες λάθος:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΑΛΜΠΟΥΜ ΜΕ ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΡΟΝΟΥ

ΑΛΜΠΟΥΜ ΜΕ ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΡΟΝΟΥ ΑΛΜΠΟΥΜ ΜΕ ΟΡΓΑΝΑ ΜΕΤΡΗΣΗΣ ΧΡΟΝΟΥ ΚΩΝ/ΝΟΣ ΛΙΑΤΟΣ Β 3 ΛΑΡΙΣΑ 2008 Τα Όργανα Μέτρησης Του Χρόνου Αστρολάβος Ο αστρολάβος είναι αρχαίο αστρονομικό όργανο που χρησιμοποιούνταν για να παρατηρηθούν τα αστέρια

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 3: Συστήματα Χρόνου Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ

ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ Ενότητα 9: Προβολικά Συστήματα (Μέρος 1 ο ) Νικολακόπουλος Κωνσταντίνος, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016

ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 28/2/2016 ΜΑΘΗΜΑ /ΤΑΞΗ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥMΟ: ΗΜΕΡΟΜΗΝΙΑ: 8//06 ΕΞΕΤΑΣΤΕΑ ΥΛΗ: ΣΤΕΡΕΟ ΚΑΙ Doppler ΘΕΜΑ Α Α Μικρότερη συχνότητα ακούει ένας παρατηρητής σε σχέση με την πραγματική συχνότητα

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Ασκήσεις στη Κυκλική Κίνηση

Ασκήσεις στη Κυκλική Κίνηση 1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών

Διαβάστε περισσότερα

«Ψηφιακές και Διαδικτυακές εφαρμογές στην Εκπαίδευση»

«Ψηφιακές και Διαδικτυακές εφαρμογές στην Εκπαίδευση» «Μελέτη μοντέλου ομαλής κυκλικής κίνησης σε φυσικά συστήματα με χρήση του λογισμικού SalsaJ. Το παράδειγμα της κόκκινης κηλίδας και η διάρκεια της ημέρας στον πλανήτη Δία» Γεώργιος Λίτσιος Φυσικός, 3 ο

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

Εναλλασσόμενο και μιγαδικοί

Εναλλασσόμενο και μιγαδικοί (olts) Εναλλασσόμενο και μιγαδικοί Γενικά Σε κυκλώματα DC, οι ηλεκτρικές μεγέθη εξαρτώνται αποκλειστικά από τις ωμικές αντιστάσεις, φυσικά μετά την ολοκλήρωση πιθανών μεταβατικών φαινομένων λόγω παρουσίας

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας.

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας. Μεγέθη Κίνησης 1. Μια ομαλή κυκλική κίνηση γίνεται έτσι ώστε το αντικείμενο να περιστρέφεται σε κυκλική τροχιά ακτίνας R = 20cm με ταχύτητα μέτρου υ = 0,5m/s. α. Πόση είναι η περιφέρεια της τροχιάς του

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΘΕΜΕΛΙΩΔΕΙΣ ΑΡΧΕΣ ΤΗΣ ΚΛΑΣΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Ακαδημαϊκό έτος 010-11 Μάθημα: ΜΗΧΑΝΙΚΗ Καθηγητές: Σ Πνευματικός Α Μπούντης ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Α ΚΕΦΑΛΑΙΟΥ Τα φροντιστήρια γίνονται κάθε Δευτέρα 1100-100 και κάθε

Διαβάστε περισσότερα

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής

ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής ΤΕΠΑΚ, Τμήμα Πολιτικών Μηχ. / Τοπογράφων Μηχ. και Μηχ. Γεωπληροφορικής Μάθημα 6ου Εξαμήνου: Δορυφορική Γεωδαισία (Ακαδ. Έτος 211-12) ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΕΞΑΜΗΝΟ... Ενδιάμεσο Διαγώνισμα Διάρκεια 11 Επιλέξτε

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας

ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας 81 ΠΑΡΑΡΤΗΜΑ Τυπολόγιο Σφαιρικής Τριγωνομετρίας Εισαγωγή Σε πολλά προβλήματα της Χαρτογραφίας, της Ανώτερης Γεωδαισίας, της Γεωδαιτικής Αστρονομίας και της Δορυφορικής Γεωδαισίας εμφανίζονται γεωμετρικά

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα