ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ"

Transcript

1 184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία πρωτοξεκίνησε κατά την αρχαιότητα σαν κλάδος που βοήθησε την αστρονομία με θεμελιωτές τους αρχαίους έλληνες. Η σύνταξη τριγωνομετρικών πινάκων αποτέλεσε πολύτιμο εργαλείο για τις μετρήσεις που απαιτούν «τριγωνομετρικούς αριθμούς». Όμως στα σύγχρονα σχολικά μαθηματικά η τριγωνομετρία από ξεχωριστό κλάδο μελέτης έχει συρρικνωθεί σε ένα κεφάλαιο του σχολικού βιβλίου αλλά και ως συνιστώσα στη μελέτη άλλων μαθηματικών αντικειμένων. Εντούτοις, οι τριγωνομετρικές γνώσεις είναι απαραίτητες γιατί διαπερνούν τα σχολικά μαθηματικά είτε στη μελέτη συναρτήσεων είτε στη μελέτη φαινομένων ή καταστάσεων με τη βοήθεια των τριγωνομετρικών αναπαραστάσεων. Στην Β Γυμνασίου επιχειρείται μια εισαγωγή στη τριγωνομετρία με τον ορισμό της εφαπτομένης. Αυτό γίνεται με την βοήθεια του λόγου δύο μεγεθών και στοιχεία από τη θεωρία των ποσοστών. Η διδασκαλία, με τη βοήθεια του σχολικού βιβλίου, διαπραγματεύεται τη κίνηση ενός αυτοκινήτου σε ένα ανηφορικό δρόμο. Εκείνο που ενδιαφέρει σε κάθε σημείο της διαδρομής είναι ο λόγος του ύψους που ανεβαίνει προς την οριζόντια απομάκρυνση. Το παράδειγμα του βιβλίου αναγκαστικά αποδίδεται με

2 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 185 ένα στατικό σχήμα. Αυτό οφείλεται στο περιορισμό του έντυπου μέσου. Το πρόγραμμα που προτείνεται φιλοδοξεί να προσθέσει κίνηση και αλληλεπίδραση στο στατικό παράδειγμα με τη χρήση των μέσων που διαθέτει ένα αλληλεπιδραστικό περιβάλλον. Χρησιμοποιεί τη δυνατότητα του μέσου για πειραματισμό και ενεργητική μάθηση. Οι λόγοι που σχηματίζονται σε συγκεκριμένα σημεία της διαδρομής αντικαθίστανται με τυχαία σημεία. Στο πλαίσιο αυτό είναι σημαντικό να ασχοληθεί ο μαθητής με καταστάσεις από την καθημερινή ζωή που μπορεί να προσομοιωθούν με τη βοήθεια ενός προγράμματος. Ο μαθητής έχει τη δυνατότητα του άμεσου χειρισμού της προσομοίωσης όσον αφορά το τελικό ύψος που ανέβει το κινητό ή τη τελική οριζόντια απομάκρυνση. Με την ενεργητική συμμετοχή του ο μαθητής μπορεί να εκτιμήσει ποσοτικά και ποιοτικά τις μεταβολές που συντελούνται και τους λόγους που παραμένουν σταθεροί. Το πρόγραμμα υπολογίζει το ύψος που ανεβαίνει, την οριζόντια απόσταση του ίχνους του ύψους από την αρχή. Σκοπός είναι η κατανόηση του ορισμού της εφαπτομένης δεδομένης γωνίας και της κλίσης ευθείας με πειραματισμό. Παρακολουθεί το κινητό και τα αποτελέσματα των μετρήσεων ο μαθητής μπορεί να ασκηθεί στην κατανόηση των σταθερών και μεταβλητών μεγεθών. Έννοιες Μεταβλητή Έννοιες μεγέθη Εφαπτομένη γωνίας, Κλίση ευθείας Αναπαραστάσεις Προσομοίωση κεκλιμένου επιπέδου Διδακτικοί στόχοι 1. Να μπορούν οι μαθητές να αναγνωρίζουν τα δεδομένα και τα ζητούμενα ενός προβλήματος. 2. Να ασκηθούν στην αναγνώριση των σταθερών και τα μεταβλητών μεγεθών ενός προβλήματος ή μιας διαδικασίας. 3. Να μπορούν να σχηματίζουν το λόγο δύο αριθμών 4. Να αντιληφθούν την εξάρτηση της κλίσης ευθείας από το λόγο y/χ ( y αντιστοιχεί στο ύψος και χ στην οριζόντια απομάκρυνση) όταν η γωνία με το οριζόντιο θετικό ημιάξονα παραμένει σταθερή. 5. Να κατανοήσουν ότι ο σταθερός λόγος y/χ ( δηλαδή η κλίση της ευθείας) ονομάζεται εφαπτομένη της δεδομένης γωνίας. Επισημάνσεις Η προτεινόμενη δραστηριότητα αναφέρεται στο δεύτερο κεφάλαιο «Τριγωνομετρία» του σχολικού βιβλίου των μαθηματικών της Β Γυμνασίου. Κύριος στόχος είναι η εμπέδωση της έννοιας «εφαπτομένη γωνίας» όπως την αντιλαμβάνονται και τη χρησιμοποιούν οι μαθητές της αντίστοιχης τάξης. Στο βιβλίο το παράδειγμα χρησιμοποιείται για τη διδασκαλία του ορισμού. Στην προτεινόμενη δραστηριότητα αποτελεί το περιβάλλον για εμπέδωση της αντίστοιχης γνώσης μέσω πειραματισμού. Η έννοια της εφαπτομένης συνδέεται με τη κλίση ευθείας. Φύλλο εργασίας για τους μαθητές ΔΡΑΣΤΗΡΙΟΤΗΤΑ : Η έννοια της εφαπτομένης και η κλίση μιας ευθείας Εκπαιδευτικό Λογισμικό: MODELLUS Ονοματεπώνυμο: Τάξη:

3 186 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Ημερομηνία: Ανοίξτε το αρχείο tan.mdl. ΕΡΓΑΣΙΕΣ Στο πρόγραμμα μπορείτε να παρακολουθήσετε τη κίνηση ενός κινητού, με τη μορφή μιας σφαίρας, κατά μήκος ενός κεκλιμένου επιπέδου. Υπάρχει η δυνατότητα να επιλέξουμε γωνία και οριζόντια απόσταση. Επίσης μπορούμε να σταματήσουμε το κινητό σε όποιο σημείο επιθυμούμε. Αν πατήστε με το ποντίκι στο κουμπί εκκίνησης πρόγραμμα. Αμέσως όμως θα ενεργοποιηθεί η παύση τότε θα τρέξει το. Αυτό δίνει τη δυνατότητα αλλαγών. Αν δεν αλλάξετε κάτι, πατήστε ξανά στο και παρατηρείστε τη διαδρομή του κινητού καθώς και τα αποτελέσματα των τιμών Εργασία 1 Θα μελετήσετε τα σταθερά και μεταβλητά μεγέθη. Τρέξτε το πρόγραμμα και σημειώστε τι αλλάζει και τι μένει σταθερό στη διάρκεια μιας συγκεκριμένης κίνησης. Μεγέθη Σταθερό Μεταβλητό Τελική οριζόντια απόσταση Τελικό ύψος Ύψος που ανεβαίνει Οριζόντια απομάκρυνση Γωνία κλίσης ΑΟΒ Άλλο; Εργασία 2 Ας πειραματιστούμε!! Με την προϋπόθεση ότι η γωνία ΒΟΑ του κεκλιμένου επιπέδου παραμένει σταθερή και ότι η σφαίρα βρίσκεται σε οριζόντια απόσταση x και ύψος h να διατυπώσετε μια εικασία για τα παρακάτω: Για διπλάσια οριζόντια απόσταση (2x) πόσο θα είναι το ύψος; Για τη μισή οριζόντια απόσταση (χ/2) πόσο θα είναι το ύψος; Επιβεβαιώστε τις απαντήσεις σας χρησιμοποιώντας το ιστορικό της κίνησης από το παράθυρο του ελέγχου. Εργασία 3 Ας πειραματιστούμε ξανά! Ξανατρέξτε το πρόγραμμα από την αρχή πατώντας στην εκκίνηση στο παράθυρο του ελέγχου. Τότε θα ενεργοποιηθεί η παύση.

4 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 187 Με το ποντίκι επιλέξτε από τον μεταβολέα μήκους, νέα οριζόντια απόσταση χ = 200 και όταν είστε έτοιμοι πατήστε τη παύση για να τρέξει το πρόγραμμα. Να επαναλάβετε το ίδιο για τις τιμές 250, 300, 400 και κάθε φορά να συμπληρώνετε τον παρακάτω πίνακα. Οριζόντια απόσταση χ από την αρχή Ύψος h που ανεβαίνει Λόγος του ύψους προς την οριζόντια απόσταση Πόσο % ανέβηκε η σφαίρα σε σχέση με το οριζόντιο επίπεδο; Εργασία 4 Με τη βοήθεια του πίνακα 3 σχολιάστε τις παρακάτω ερωτήσεις: 1) Για κάθε διαφορετική τιμή του χ, τι παρατηρείτε για τον λόγο του ύψους προς την οριζόντια απόσταση όταν η γωνία παραμένει σταθερή; 2) Πως ονομάζεται ο λόγος του ύψους προς την οριζόντια απόσταση σε σχέση με τη γωνία ΑΟΒ; 3) Πως ονομάζεται ο λόγος του ύψους προς την οριζόντια απόσταση σε σχέση με την ευθεία ΟΑ; Από τι εξαρτάται το ύψος που ανεβαίνει η σφαίρα κάθε φορά; Αν ονομάσουμε την γωνία ΑΟΒ=ω, τότε για το ορθογώνιο τρίγωνο ΑΟΒ να συμπληρώσετε την ισότητα: εφω = Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΣΕ ΜΑΘΗΜΑΤΙΚΕΣ ΕΚΦΡΑΣΕΙΣ ΣΤΗΝ Α' ΓΥΜΝΑΣΙΟΥ Παιδαγωγική Αναζήτηση Η έννοια της μεταβλητής διαπερνάει τα σχολικά μαθηματικά ως μια σημαντική συνιστώσα για την κατανόηση της φορμαλιστικής διάστασή τους. Το ζήτημα για την

5 188 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ κατανόησή της αρχίζει να προκύπτει από την ανάγκη διατύπωσης σε μαθηματική γλώσσα εκφράσεων με μεταβλητά μεγέθη. Όπως καταγράφεται στη βιβλιογραφία αλλά και όπως προκύπτει από την διδακτική πρακτική παρουσιάζονται δυσκολίες, γνωστικής αλλά και επιστημολογικής φύσης, στις μαθηματικές εκφράσεις με τη βοήθεια μεταβλητών. Οι δυσκολίες αυτές εντοπίζονται κυρίως στις μικρές τάξεις του γυμνασίου. Αυτό έχει ως συνέπεια να παρουσιάζονται αργότερα δυσκολίες στη μελέτη των συναρτήσεων αλλά και γενικά κάθε συναρτησιακής σχέσης με μεταβλητά και σταθερά μεγέθη. Στο πλαίσιο αυτό είναι σημαντικό να ασχοληθεί ο μαθητής με καταστάσεις από την καθημερινή ζωή που μπορεί να περιγραφούν με τη βοήθεια μιας μεταβλητής. To πρόγραμμα που προτείνεται σε αυτή τη δραστηριότητα προσομοιώνει τη κίνηση ενός ταξί ανάμεσα στους δρόμους μιας πόλης. Τρέχοντας το πρόγραμμα ο μαθητής μπορεί να παρακολουθήσει τη κίνηση σε μια δεδομένη διαδρομή ή να επιλέξει μια δική του και να δει τις ενδείξεις του μετρητή της απόστασης που διανύει το όχημα όπως και το κόστος που πρέπει να πληρώσει κάποιος για αυτή τη διαδρομή. Επομένως μπορεί να πειραματιστεί με διάφορες διαδρομές και να ανακαλύψει κάθε φορά τα σταθερά και τα μεταβλητά μεγέθη που επηρεάζουν το τελικό κόστος της κάθε μιας από αυτές. Ο μαθητής καλείται να ανακαλύψει το κρυμμένο μαθηματικό μοντέλο και να το περιγράψει με μια μαθηματική έκφραση. Ο μαθητής έχει τη δυνατότητα του άμεσου χειρισμού της προσομοίωσης όσον αφορά το συνολικό μήκος της διαδρομής και τον ρυθμό παρακολούθησης της κίνησης. Με την ενεργητική συμμετοχή του ο μαθητής μπορεί να εκτιμήσει ποσοτικά και ποιοτικά τις μεταβολές που συντελούνται

6 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 189 και να ασκηθεί στον προσδιορισμό των σταθερών και μεταβλητών μεγεθών που επηρεάζουν ένα αποτέλεσμα. Έννοιες Μεταβλητή Έννοιες μεγέθη Κόστος, Μήκος ανοιχτής πολυγωνικής γραμμής Αναπαραστάσεις Διάγραμμα Τεχνική Άθροισμα μεγέθους τμημάτων Διδακτικοί Στόχοι 1. Να μπορούν να αναγνωρίζουν τα δεδομένα και τα ζητούμενα ενός προβλήματος. 2. Να ασκηθούν στην αναγνώριση των σταθερών και τα μεταβλητών μεγεθών ενός προβλήματος. 3. Να ασκηθούν στη σύγκριση δεδομένων από διάφορες πηγές 4. Να παρατηρούν μια προσομοίωση έτσι ώστε να μπορούν να την περιγράφουν με φυσική γλώσσα και να εκφράζουν με μαθηματικό τρόπο με τη βοήθεια μιας μεταβλητής. 5. Να μπορούν να περιγράφουν την έννοια της μεταβλητής και να αντιλαμβάνονται τη χρησιμότητά της. Επισημάνσεις 1) Η προτεινόμενη δραστηριότητα αναφέρεται στο πρώτο κεφάλαιο «Φυσικοί και Δεκαδικοί αριθμοί» του σχολικού βιβλίου των μαθηματικών της Α Γυμνασίου. Κύριος στόχος είναι η εμπέδωση της έννοιας «μεταβλητή» όπως την αντιλαμβάνονται και τη χρησιμοποιούν οι μαθητές της αντίστοιχης τάξης. Για το λόγο αυτό, η δραστηριότητα δεν περιλαμβάνει πολλαπλές αναπαραστάσεις με πίνακα τιμών και γραφήματα. Η χρήση της μεταβλητής περιορίζεται στη διατύπωση εκφράσεων με μαθηματική γλώσσα. Έτσι ενισχύεται η συνειδητοποίηση της χρησιμότητας να χρησιμοποιούνται γράμματα για την παράσταση αριθμών και ο μετασχηματισμός από τη φυσική σε μαθηματική γλώσσα. 2) Η εργασία 6 μπορεί να παραληφθεί αν δεν υπάρχει χρόνος. Φύλλο εργασίας για τους μαθητές ΔΡΑΣΤΗΡΙΟΤΗΤΑ : Η έννοια της μεταβλητής Εκπαιδευτικό Λογισμικό: MODELLUS Ονοματεπώνυμο: Τάξη: Ημερομηνία: ΕΡΓΑΣΙΕΣ Ανοίξτε το αρχείοvar1.mdl. Στην οθόνη εμφανίζεται το διάγραμμα των δρόμων μιας πόλης και η διαδρομή που κάνει ένα εικονικό ταξί. Μπορείτε να δείτε τη διαδρομή που ακολουθεί το ταξί και ταυτόχρονα να δείτε τις ενδείξεις ενός εικονικού μετρητή απόστασης και ενός ταξίμετρου. Υπάρχει η δυνατότητα της επιλογής μιας διαφορετικής διαδρομής ανάμεσα στους δρόμους της πόλης και του καθορισμού της συνολικής διαδρομής. Μπορείτε να σταματήσετε το κινητό σε όποιο σημείο επιθυμείτε ή να επαναλάβετε την κίνηση όσες φορές θέλετε.

7 190 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Το πρόγραμμα «τρέχει» πατώντας με το ποντίκι στο στο παράθυρο του ελέγχου. Αμέσως θα ενεργοποιηθεί η παύση. Ξαναπατήστε στη παύση και παρατηρείστε τη διαδρομή της μπάλας και τις τιμές στους μετρητές. Εργασία 1 Θα παρακολουθήσετε τις διαδρομές που κάνει ένα ταξί στους δρόμους μιας πόλης και θα μελετήσουμε τα σταθερά και μεταβλητά μεγέθη. Συμπληρώστε τον παρακάτω πίνακα εκτιμώντας αν τα διάφορα μεγέθη ή καταστάσεις είναι μεταβλητές ή σταθερές. Κατάσταση Σταθερό Μεταβλητό Ταχύτητα σε κάθε τμήμα της διαδρομής Χρονική διάρκεια σε κάθε τμήμα της διαδρομής Συνολική απόσταση σε μια διαδρομή Απόσταση που διανύει σε διαφορετικές διαδρομές Χρέωση «σημαίας» μιας διαδρομής Χρέωση για κάθε m μιας διαδρομής Αριθμός επιβατών μιας διαδρομής Ελάχιστη χρέωση μιας διαδρομής Διάρκεια μιας διαδρομής Συνολικό κόστος μιας διαδρομής Κόστος σε σχέση με την μεταβολή της απόστασης Κόστος για διαφορετικές διαδρομές Επιβεβαιώστε για ορισμένα από τα παραπάνω ξανατρέχοντας το πρόγραμμα Εργασία 2 Παρατηρείστε και σημειώστε, από τι εξαρτάται η χρέωση της συνολικής διαδρομής: Κατάσταση ΝΑΙ ΟΧΙ Ταχύτητα του ταξί Απόσταση που διανύει Χρώμα του ταξί Χρέωση «σημαίας» Χρέωση για κάθε m Μέγεθος του ταξί Αριθμός επιβατών Ώρα της διαδρομής(π.χ. πρωί απόγευμα) Είδος της διαδρομής (π.χ. πολλές στροφές)

8 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 191 Εργασία 3 Γυρίστε το πρόγραμμα στην αρχή (εκτός και αν είναι). Ξανατρέξτε το πρόγραμμα πατώντας το στο παράθυρο του ελέγχου. Αμέσως θα ενεργοποιηθεί το πάγωμα. Με το ποντίκι μετακινήστε τα ενδιάμεσα σημεία της διαδρομής ΑΖ και χαράξτε μια νέα διαδρομή ανάμεσα στους δρόμους της πόλης. Προσέξτε το όχημα να πηγαίνει από τους δρόμους και όχι από τα κτίρια. Όταν είστε έτοιμοι πατήστε το να ξανατρέξει το πρόγραμμα. Μπορείτε να σταματήσετε το κινητό σε όποιο σημείο θέλετε. Να το επαναλάβετε τρεις φορές με διαφορετική διαδρομή κάθε φορά. Στο τέλος κάθε διαδρομής να συμπληρώνετε την αντίστοιχη γραμμή στον παρακάτω πίνακα 3. Σημαία Απόσταση Συνολικό Χρέωση ανά m (Δρ) (m) κόστος Διαδρομή 1 Διαδρομή 2 Διαδρομή 3 Εργασία 4 Με την βοήθεια του πίνακα 3, περιγράψτε τον τρόπο με τον οποίο υπολογίζεται το κόστος μιας διαδρομής και αναγράφεται στο ταξίμετρο. Εργασία 5 Ας υποθέσουμε ότι το κόστος μιας διαδρομής παριστάνεται με την μεταβλητή y και η αντίστοιχη απόσταση με την μεταβλητή χ. Να εκφράσετε με μαθηματική γλώσσα τη σχέση ανάμεσα στο κόστος και την απόσταση συμπληρώνοντας την ισότητα: y= Εργασία 6. Γνωρίζοντας ότι ένα ΕΥΡΩ αντιστοιχεί σε 340,75 δρχ., ξανατρέξτε το πρόγραμμα για μια τυχαία διαδρομή και συμπληρώστε τον πίνακα: Μήκος διαδρομής Κόστος ανά μέτρο Συνολικό κόστος y σε δρχ Ισότητα που περιγράφει το κόστος y ως συνάρτηση της απόστασης χ Συνολικό κόστος σε ΕΥΡΩ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας

Διαβάστε περισσότερα

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ

ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ 176 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΑΠΟ ΤΙΣ ΜΕΤΑΒΛΗΤΕΣ ΣΤΑ ΜΕΓΕΘΗ Ή ΤΟ ΑΝΤΙΣΤΡΟΦΟ; ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕΛΕΤΗΣ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ y=ax+b ΜΕ ΕΚΠΑΙΔΕΥΤΙΚΟ ΛΟΓΙΣΜΙΚΟ Σωτηρόπουλος Παναγιώτης 1 -

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου

ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να

Διαβάστε περισσότερα

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ

ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ 268 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ MODELUS ΚΑΙ ΟΙ ΔΥΝΑΤΟΤΗΤΕΣ ΤΟΥ Σ. Τσοβόλας Φυσικός, Επιμορφωτής ΤΠΕ Θ. Μαστρογιάννης Επιμορφωτής ΤΠΕ Στον πυρήνα του προγράμματος υπάρχει μια περιοχή εργασίας

Διαβάστε περισσότερα

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx

Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία

1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία 1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES

ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 167 ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΓΙΑ ΤΗΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΣΕ ΜΟΡΦΗ ΔΙΑΔΡΑΣΤΙΚΩΝ ΣΕΛΙΔΩΝ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ DESCARTES Καστανιώτης Δημήτρης Μαθηματικός-επιμορφωτής

Διαβάστε περισσότερα

Η λογαριθµική συνάρτηση και οι ιδιότητές της

Η λογαριθµική συνάρτηση και οι ιδιότητές της ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται

Διαβάστε περισσότερα

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ

Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.

Διαβάστε περισσότερα

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:

Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο: Τι είναι το GeoGebra; Γρήγορη Εκκίνηση Λογισμικό Δυναμικών Μαθηματικών σε ένα - απλό στη χρήση - πακέτο Για την εκμάθηση και τη διδασκαλία σε όλα τα επίπεδα της εκπαίδευσης Συνδυάζει διαδραστικά γεωμετρία,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ

Διαβάστε περισσότερα

ΟΡΜΗ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ: ΜΕΛΕΤΗ ΜΕ ΤΕΣΣΕΡΑ ΕΙΚΟΝΙΚΑ ΕΡΓΑΣΤΗΡΙΑ

ΟΡΜΗ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ: ΜΕΛΕΤΗ ΜΕ ΤΕΣΣΕΡΑ ΕΙΚΟΝΙΚΑ ΕΡΓΑΣΤΗΡΙΑ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 459 ΟΡΜΗ ΚΑΙ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ: ΜΕΛΕΤΗ ΜΕ ΤΕΣΣΕΡΑ ΕΙΚΟΝΙΚΑ ΕΡΓΑΣΤΗΡΙΑ Κακοδήμος Λάμπρος Φυσικός Γυμνάσιο-Λύκειο Παλαίρου Τσοβόλας Σπύρος Φυσικός, Επιμορφωτής

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ

ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ 386 ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ Λαμπρινίδης Κωνσταντίνος Καθηγητής Δευτεροβάθμιας Εκπαίδευσης. mail@14gm-perist.att.sch.gr ΠΕΡΙΛΗΨΗ Α) Αναλυτική χάραξη

Διαβάστε περισσότερα

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου

Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου ΣΕΝΑΡΙΟ «Προσπάθησε να κάνεις ένα τρίγωνο» Άθροισµα γωνιών τριγώνου, γωνίες ισοπλεύρου, ισοσκελούς τριγώνου και εξωτερική γωνία τριγώνου στην Α Γυµνασίου Ηµεροµηνία: Φλώρινα, 6-5-2014 Γνωστική περιοχή:

Διαβάστε περισσότερα

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης

Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια

Διαβάστε περισσότερα

ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ

ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ 490 ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ: ΜΕΛΕΤΗ ΜΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ Θεόδωρος Πολίτης Φυσικός, Εκπαιδευτικός Δευτεροβάθμιας Εκπ/σης politis@mail.gr ΠΕΡΙΛΗΨΗ Αφετηρία για την κατασκευή της δραστηριότητας ήταν η δυσκολία

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=..

Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = -1,5 : ψ =..=.. Συναρτήσεις. 5.1 Η έννοια της συνάρτησης. 1. Να συμπληρώσετε τις τιμές των παρακάτω συναρτήσεων : α) ψ = 2χ + 6 o Για χ = 1 : ψ =..=.. = o Για χ = -1 : ψ =..=.. = o Για χ = 0 : ψ =..=.. = o Για χ = 2 :

Διαβάστε περισσότερα

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ

Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών

Διαβάστε περισσότερα

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui Qwertyuiopasdfghjklzxcvbnmq 3.3 Η συνάρτηση y=αχ wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty 3.3 Η συνάρτηση y=αχ ΣΥΝΑΡΤΗΣΕΙΣ uiopasdfghjklzxcvbnmqwertyui Β ΓΥΜΝΑΣΙΟΥ

Διαβάστε περισσότερα

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου

Το διαστημόπλοιο. Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Το διαστημόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δυναμική σε μία διάσταση - Δυναμική στο επίπεδο) Τάξη: Α Λυκείου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΞΑΝΘΗ 2013, 2 ο ΣΕΚ ΞΑΝΘΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr ΑΠΡΙΛΙΟΣ ΝΟΕΜΒΡΙΟΣ 2013 Εκπαιδευτικό

Διαβάστε περισσότερα

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

Το ελικόπτερο. Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Το ελικόπτερο Γνωστικό Αντικείμενο: Φυσική (Κίνηση - Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι

Διαβάστε περισσότερα

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου

O πύραυλος. Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου O πύραυλος Γνωστικό Αντικείμενο: Φυσική (Δύναμη Μορφές Ενέργειας) - Τεχνολογία Τάξη: Β Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Ο πύραυλος Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

ΛΕΞΕΙΣ ΚΛΕΙ ΙΑ: Σχεδίαση µικρών εξειδικευµένων προγραµµάτων, νόµοι κίνησης, Φύλλα εργασίας.

ΛΕΞΕΙΣ ΚΛΕΙ ΙΑ: Σχεδίαση µικρών εξειδικευµένων προγραµµάτων, νόµοι κίνησης, Φύλλα εργασίας. Το «εικονικό εργαστήριο» για τη µελέτη των νόµων του Νεύτωνα σε τρία διαφορετικά περιβάλλοντα: Modellus, Interactive Physics, Microworlds Pro Ρόδος, 26 29 Σεπτεµβρίου 2002 Νίκος απόντες, Θανάσης Γεράγγελος,

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA ΒΑΣΙΚΑ ΕΡΓΑΛΕΙΑ Για να κάνουμε Γεωμετρία χρειαζόμαστε εργαλεία κατασκευής, εργαλεία μετρήσεων και εργαλεία μετασχηματισμών.

Διαβάστε περισσότερα

Ν. Ξάνθης,gbakalid@ee.duth.gr

Ν. Ξάνθης,gbakalid@ee.duth.gr 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 261 "Η ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΚΙΝΗΣΗΣ ΑΠΟ ΤΟ ΓΑΛΙΛΑΙΟ" ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΕΝΟΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΤΩΝ ΠΕΙΡΑΜΑΤΩΝ ΤΟΥ ΓΑΛΙΛΑΙΟΥ ΜΕ ΤΑ ΚΕΚΛΙΜΕΝΑ ΕΠΙΠΕΔΑ ΚΑΙ

Διαβάστε περισσότερα

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά»

Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά» «Αξιοποίηση των Τ.Π.Ε. στη Διδακτική Πράξη» «Διδασκαλία μαθήματος μαθηματικών Άλγεβρας Α Λυκείου, με εφαρμογή του λογισμικού GeoGebra και χρήση φύλλων εργασίας, «Εξίσωση-Ανίσωση 2ου βαθμού, Μορφές - Πρόσημο

Διαβάστε περισσότερα

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ

ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ ΔΥΝΑΜΕΙΣ ΣΤΟ ΕΠΙΠΕΔΟ ΕΙΔΗ ΔΥΝΑΜΕΩΝ 1 Οι δυνάμεις μπορούν να χωριστούν σε δυο κατηγορίες: Σε δυνάμεις επαφής, που ασκούνται μόνο ανάμεσα σε σώματα που βρίσκονται σε επαφή, και σε δυνάμεις

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Εισαγωγή των εννοιών μέσης και στιγμιαίας ταχύτητας σε περιβάλλον όπου αξιοποιούνται οι

Εισαγωγή των εννοιών μέσης και στιγμιαίας ταχύτητας σε περιβάλλον όπου αξιοποιούνται οι 3ο ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ 1. Τίτλος διδακτικού σεναρίου: Η ΜΕΣΗ ΚΑΙ Η ΣΤΙΓΜΙΑΙΑ ΤΑΧΥΤΗΤΑ 2. Γνωστικό αντικείμενο: ΦΥΣΙΚΗ 3. Τάξη: Β 4. Μάθημα: 2.2 Η ΕΝΝΟΙΑ ΤΗΣ ΤΑΧΥΤΗΤΑΣ 5. Γενική ενότητα: ΚΕΦΑΛΑΙΟ 2ο ΚΙΝΗΣΕΙΣ

Διαβάστε περισσότερα

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας

Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου. Εφαπτομένη Οξείας Γωνίας Εφαπτομένη Οξείας Γωνίας - Φύλλο Εργασίας Απέναντι και προσκείμενη πλευρά σε γωνία ορθογωνίου τριγώνου 1. Στο ορθογώνιο τρίγωνο ΑΒΓ του διπλανού σχήματος η πλευρά ΒΓ που βρίσκεται απέναντι από την ορθή

Διαβάστε περισσότερα

Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό. Περιεχόμενα

Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό. Περιεχόμενα Χρήσιμες Οδηγίες για την Πλοήγηση στο Υποστηρικτικό Υλικό Περιεχόμενα Βασικές απαιτήσεις... 2 Εγκατάσταση και Εκκίνηση... 2 Παράθυρο Πλοήγησης... 8 Πλήκτρα Ενεργειών του Πίνακα Πλοήγησης... 13 Πλήκτρα

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών).

Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα. Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Σενάριο 1. Σκιτσάροντας µε Παραλληλόγραµµα Γνωστική περιοχή: Γεωµετρία (και σχέσεις µεταξύ γενικευµένων αριθµών). Θέµα: Η διερεύνηση µερικών βασικών ιδιοτήτων των παραλληλογράµµων από τους µαθητές µε χρήση

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Να γνωρίσουν οι µαθητές όσο το δυνατό περισσότερες έννοιες

Να γνωρίσουν οι µαθητές όσο το δυνατό περισσότερες έννοιες Α/Α Τύπος Εκφώνηση Απαντήσεις 5 Απλή Απλή Όταν διδάσκουµε Φυσικές Επιστήµες µε ΤΠΕ πρέπει κυρίως να αποσκοπούµε στο: Όταν υπάρχει καλά εξοπλισµένο εργαστήριο µε πραγµατικά πειράµατα δεν υπάρχει λόγος ένταξης

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΝΟΜΟΙ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΣΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΜΕ ΛΟΓΙΣΜΙΚΟ ΣΕΠ

ΝΟΜΟΙ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΣΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΜΕ ΛΟΓΙΣΜΙΚΟ ΣΕΠ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ Εργαστηριακή άσκηση 1: ΝΟΜΟΙ ΤΩΝ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΣΕ ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ ΜΕ ΛΟΓΙΣΜΙΚΟ ΣΕΠ (Βαγγέλης Δημητριάδης, 4 ο ΓΕΛ Ζωγράφου) Γενικός Σκοπός: Οικοδόμηση των νόμων των ιδανικών

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

ΤΟ ΜΟΙΡΑΣΜΑ ΤΗΣ ΣΟΚΟΛΑΤΑΣ

ΤΟ ΜΟΙΡΑΣΜΑ ΤΗΣ ΣΟΚΟΛΑΤΑΣ 164 ΤΟ ΜΟΙΡΑΣΜΑ ΤΗΣ ΣΟΚΟΛΑΤΑΣ Ηλίας Ανδρέου Επιμορφωτής ΤΠΕ Σ ε ν ά ρ ι ο Δ ι δ α σ κ α λ ί α ς Γνωστικό Αντικείμενο : Μαθηματικά Διδακτική Ενότητα : Ποσά Ανάλογα Τάξη : Β & Γ Γυμνασίου Λογισμικό : Αβάκιο

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Scratch Δημοτικό 4: Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch (οι μεταβλητές σαν απαριθμητές)

Scratch Δημοτικό 4: Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch (οι μεταβλητές σαν απαριθμητές) Scratch Δημοτικό 4: Οι μεταβλητές στη γλώσσα προγραμματισμού Scratch (οι μεταβλητές σαν απαριθμητές) Εκτιμώμενη διάρκεια: Μία διδακτική ώρα Ένταξη στο πρόγραμμα σπουδών Στο Πρόγραμμα Σπουδών του Ολοήμερου

Διαβάστε περισσότερα

Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης

Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Τα δομικά στοιχεία ενός σεναρίου και η βαθμολόγηση τους κατά τις εξετάσεις πιστοποίησης Α. Αξιολόγηση επιμέρους παιδαγωγικών και διδακτικών πτυχών του σεναρίου (40) 1 Τίτλος γνωστική περιοχή και θέμα (5)

Διαβάστε περισσότερα

4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης

4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης 4.5 Δραστηριότητα: Ορισμοί και θεώρημα Μονοτονίας συνάρτησης Θέμα της δραστηριότητας Η δραστηριότητα αυτή πραγματεύεται την έννοια της μονοτονίας συνάρτησης και ακολούθως εισάγει το θεώρημα της μονοτονίας

Διαβάστε περισσότερα

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.

To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe. Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι

21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι 21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα

Διαβάστε περισσότερα

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού

4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού 4.4 Δραστηριότητα: Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το θεώρημα Μέσης Τιμής του διαφορικού λογισμού χωρίς την απόδειξή του. Στόχοι της δραστηριότητας

Διαβάστε περισσότερα

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»

Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:

Διαβάστε περισσότερα

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0

Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

Η εργασία που επέλεξες θα σου δώσει τη δυνατότητα να συνεργαστείς με συμμαθητές σου και να σχεδιάσετε μια εικονική εκδρομή με το Google Earth.

Η εργασία που επέλεξες θα σου δώσει τη δυνατότητα να συνεργαστείς με συμμαθητές σου και να σχεδιάσετε μια εικονική εκδρομή με το Google Earth. Μια εικονική εκδρομή με το Google Earth Αγαπητέ μαθητή, Η εργασία που επέλεξες θα σου δώσει τη δυνατότητα να συνεργαστείς με συμμαθητές σου και να σχεδιάσετε μια εικονική εκδρομή με το Google Earth. Εσύ

Διαβάστε περισσότερα

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»

Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ

Διαβάστε περισσότερα

Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες

Το αερόπλοιο. Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Το αερόπλοιο Γνωστικό Αντικείμενο: Φυσική (Δύναμη) - Τεχνολογία Τάξη: Γυμνασίου Χρονική Διάρκεια Προτεινόμενη χρονική διάρκεια σχεδίου εργασίας: 5 διδακτικές ώρες Διδακτικοί Στόχοι Οι μαθητές: - Να εξηγούν

Διαβάστε περισσότερα

Λίγα λόγια για την προσομοίωση

Λίγα λόγια για την προσομοίωση Λίγα λόγια για την προσομοίωση Η συγκεκριμένη προσομοίωση με εικονικό εργαστήριο είναι μια ενδιαφέρουσα και αρκετά ελκυστική προσομοίωση για τους μαθητές. Γίνεται αναπαράσταση της κίνησης των φορτίων σε

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο

2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο 2.1 Δραστηριότητα: Εισαγωγή στο όριο συνάρτησης σε σημείο Θέμα της δραστηριότητας Η δραστηριότητα αυτή, με αφορμή τον υπολογισμό της στιγμιαίας ταχύτητας, εισάγει στο όριο συνάρτησης σε σημείο. Στόχοι

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία

Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Έρευνα 1: Μέσα παράλληλων χορδών

Έρευνα 1: Μέσα παράλληλων χορδών Μέσα χορδών Έρευνα 1: Μέσα παράλληλων χορδών Σχεδιάστε με το Sketchpad το ίχνος των μέσων των χορδών κατά την παράλληλη μεταφορά μιας ευθείας. Για το σκοπό αυτό, πρέπει πρώτα να κατασκευάσετε τα μέσα.

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το φτερό του αεροπλάνου Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται

Διαβάστε περισσότερα

Κίνηση με σταθερή ταχύτητα Φυσική Β Γυμνασίου

Κίνηση με σταθερή ταχύτητα Φυσική Β Γυμνασίου 1 η θεματική ενότητα: Εφαρμογές του εκπαιδευτικού λογισμικού IP 2005 ΦΥΛΛΟ ΑΠΑΝΤΗΣΗΣ 3 ης ΕΡΓΑΣΙΑΣ Θέμα δραστηριότητας: Μάθημα και Τάξη στην οποία απευθύνεται: Εκπαιδευτικός: Σύντομη περιγραφή της δραστηριότητας:

Διαβάστε περισσότερα

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους.

Να υπολογίζουν αποστάσεις με τη βοήθεια ημ. και συν. Να είναι σε θέση να χρησιμοποιούν τους τριγωνομετρικούς πίνακες στους υπολογισμούς τους. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Νίκος Γ. Τόμπρος Ενότητα : ΤΡΙΓΩΝΟΜΕΤΡΙΑ Περιεχόμενα ενότητας Τριγωνομετρικοί οξείας γωνίας αριθμοί Διδακτικοί στόχοι Διδακτικές οδηγίες - επισημάνσεις Πρέπει οι μαθητές να γνωρίζουν:

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το αεροσκάφος κάθετης απογείωσης Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται

Διαβάστε περισσότερα

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου)

Ζάντζος Ιωάννης. Περιληπτικά το σενάριο διδασκαλίας (Β Γυμνασίου) Ζάντζος Ιωάννης Οι έννοιες του 'μήκους κύκλου' και της 'καμπυλότητας του κύκλου' μέσα από τη διαδικασία προσέγγισης του κύκλου με περιγεγραμμένα κανονικά πολύγωνα. Περιληπτικά το σενάριο διδασκαλίας (Β

Διαβάστε περισσότερα

Εκπαιδευτικό Λογισμικό Ανοικτού Κώδικα

Εκπαιδευτικό Λογισμικό Ανοικτού Κώδικα Εκπαιδευτικό Λογισμικό Ανοικτού Κώδικα Οι τίτλοι εκπαιδευτικού λογισμικού ανοικτού κώδικα που περιλαμβάνονται στον παρακάτω πίνακα εξελληνίστηκαν ή/και προσαρμόστηκαν στο ελληνικό εκπαιδευτικό σύστημα

Διαβάστε περισσότερα

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ ΕΡΓΟ Το έργο, εκφράζει την ενέργεια που μεταφέρεται από ένα σώμα σ ένα άλλο ή που μετατρέπεται από μια μορφή σε μία άλλη. Για σταθερή δύναμη δίνεται από τη σχέση W F Δx Είναι μονόμετρο μέγεθος και η μονάδα

Διαβάστε περισσότερα

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης

Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Άσκηση 3 Υπολογισμός του μέτρου της ταχύτητας και της επιτάχυνσης Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός του μέτρου της στιγμιαίας ταχύτητας και της επιτάχυνσης ενός υλικού σημείου

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ

ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

SMART Notebook Math Tools

SMART Notebook Math Tools SMART Notebook Math Tools Windows λειτ ουργικά συστ ήματ α Εγχειρίδιο Χρήστ η Σημείωση για το εμπορικό σήμα Τα SMART Board, SMART Notebook, smarttech, το λογότυπο SMART και όλα τα σλόγκαν SMART είναι εμπορικά

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού

Διαβάστε περισσότερα

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή

Ιπτάμενες Μηχανές. Οδηγός για το Μαθητή Ιπτάμενες Μηχανές Οδηγός για το Μαθητή Το αερόπλοιο Αφού βεβαιωθείτε ότι βρίσκεστε στο περιβάλλον του εκπαιδευτικού προγράμματος, επιλέξτε «Έναυσμα». Ακολουθώντας τις οδηγίες που παρουσιάζονται στην οθόνη

Διαβάστε περισσότερα

Νόµος του HOOK- Μέτρηση δύναµης.

Νόµος του HOOK- Μέτρηση δύναµης. Σενάριο στη Φυσική Β Γυµνασίου. ΝΟΜΟΣ ΤΟΥ ΗΟΟΚ 1. Τίτλος Νόµος του HOOK- Μέτρηση δύναµης. 2. Εµπλεκόµενες γνωστικές περιοχές Φυσική Β Γυµνασίου. Ενότητα : υνάµεις. Σε αυτό εµπλέκονται γνωστικά αντικείµενα

Διαβάστε περισσότερα

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA)

ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΡΓΑΛΕΙΑ ΚΑΙ ΠΡΑΚΤΙΚΕΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΗΣ ΠΕΡΙΟΔΙΚΟΤΗΤΑΣ: Ο ρόλος των οπτικών αναπαραστάσεων (OA) ΕΙΣΑΓΩΓΗ Θεωρώντας ότι η διδακτική σας εμπειρία είναι πολύτιμη στην έρευνά μας θα σας παρακαλούσαμε

Διαβάστε περισσότερα

ΚΕΦ. 5.3 Η ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ Η ΙΑΤΗΡΗΣΗ ΤΗΣ. 1o ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΜΕΤΡΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ.

ΚΕΦ. 5.3 Η ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ Η ΙΑΤΗΡΗΣΗ ΤΗΣ. 1o ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΜΕΤΡΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ. ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦ. 5.3 Η ΜΗΧΑΝΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ Η ΙΑΤΗΡΗΣΗ ΤΗΣ 1o ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ : ΜΕΤΡΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ 1 η ραστηριότητα : ΜΕΛΕΤΗ ΤΗΣ ΤΑΧΥΤΗΤΑΣ υ ΣΤΗΝ ΕΛΕΥΘΕΡΗ

Διαβάστε περισσότερα

Φύλλο εργασίας 1 ης διδακτικής ώρας. Τίτλος: Δημιουργία ηλεκτρονικού εγγράφου σε συνεργατικό διαδικτυακό περιβάλλον

Φύλλο εργασίας 1 ης διδακτικής ώρας. Τίτλος: Δημιουργία ηλεκτρονικού εγγράφου σε συνεργατικό διαδικτυακό περιβάλλον Φύλλα εργασίας Ντυμένος Τάσος σελ 1 Φύλλο εργασίας 1 ης διδακτικής ώρας Τίτλος: Δημιουργία ηλεκτρονικού εγγράφου σε συνεργατικό διαδικτυακό περιβάλλον Μάθημα: Πληροφορική Τάξη: Γ Γυμνασίου Όνομα Εκπαιδευτικού:

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος)

Σενάριο 1. Σκιτσάροντας µε παραλληλόγραµµα. (χρήση λογισµικού Χελωνόκοσµος) Σενάριο 1 Σκιτσάροντας µε παραλληλόγραµµα (χρήση λογισµικού Χελωνόκοσµος) Βασική ιδέα του σεναρίου Οι µαθητές σκιτσάρουν παραλληλόγραµµα και τα «ζωντανεύουν» κινώντας τα δυναµικά µε χρήση της Logo. Με

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΟΥ ΝΟΗΜΑΤΟΣ ΣΤΗΝ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΡΙΑ ΚΑΛΔΡΥΜΙΔΟΥ

ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΟΥ ΝΟΗΜΑΤΟΣ ΣΤΗΝ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΡΙΑ ΚΑΛΔΡΥΜΙΔΟΥ ΑΝΑΠΤΥΞΗ ΜΑΘΗΜΑΤΙΚΟΥ ΝΟΗΜΑΤΟΣ ΣΤΗΝ ΤΑΞΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΑΧΕΙΡΙΣΗ ΤΗΣ ΤΑΞΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΜΑΡΙΑ ΚΑΛΔΡΥΜΙΔΟΥ ΜΑΘΗΜΑΤΙΚΟ ΝΟΗΜΑ κατάλληλο διδακτικό περιβάλλον εκπαιδευτικός διαχειριστής της τάξης μαθητές

Διαβάστε περισσότερα

Εφαρμογές Προσομοίωσης

Εφαρμογές Προσομοίωσης Εφαρμογές Προσομοίωσης H προσομοίωση (simulation) ως τεχνική μίμησης της συμπεριφοράς ενός συστήματος από ένα άλλο σύστημα, καταλαμβάνει περίοπτη θέση στα πλαίσια των εκπαιδευτικών εφαρμογών των ΤΠΕ. Μπορούμε

Διαβάστε περισσότερα

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Μιχάλης Αργύρης 1 Λόγοι και αναλογίες Περίληψη Οι μαθητές έχουν στη διάθεσή τους μια υπολογιστική οντότητα, ένα καγκουρό του οποίου το μέγεθος μπορούν

Διαβάστε περισσότερα

ΟΜΑΔΑ:. 2. Με ποια σειρά διαβάζετε μία συλλογή ποιημάτων, ένα περιοδικό ή τις σελίδες μιας

ΟΜΑΔΑ:. 2. Με ποια σειρά διαβάζετε μία συλλογή ποιημάτων, ένα περιοδικό ή τις σελίδες μιας ΜΕΣΑ - ΠΟΛΥΜΕΣΑ ΚΕΙΜΕΝΑ ΥΠΕΡΚΕΙΜΕΝΑ ΜΕΣΑ - ΥΠΕΡΜΕΣΑ media ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΤΑΞΗ.. ΗΜΕΡΟΜΗΝΙΑ: ΟΜΑΔΑ:.. 1. Με ποια σειρά διαβάζετε ένα μυθιστόρημα; 2. Με ποια σειρά διαβάζετε μία συλλογή ποιημάτων, ένα περιοδικό

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 Γνωριμία με το Excel...9

Περιεχόμενα. Κεφάλαιο 1 Γνωριμία με το Excel...9 Περιεχόμενα Κεφάλαιο 1 Γνωριμία με το Excel...9 Τα στοιχεία του παραθύρου του Excel... 10 Κελιά και διευθύνσεις... 13 Σε ποιο κελί θα τοποθετηθούν τα δεδομένα;... 14 Καταχώριση δεδομένων... 15 Τι καταλαβαίνει

Διαβάστε περισσότερα