Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2"

Transcript

1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 2

2 Ανατολή-δύση αστέρων Από την σχέση αυτή προκύπτουν δυο τιμές για την ωριαία γωνία Η Δ για την οποία ο αστέρας βρίσκεται στον ορίζοντα, μία για την ανατολή (<12h) και μια για τη δύση (>12h) συνα=-ημδ/συνφ Από την σχέση αυτή προκύπτουν δυο τιμές για το αζιμούθιο Α Δ για το οποίο ο αστέρας βρίσκεται στον ορίζοντα, μία για την ανατολή (<12h) και μια για τη δύση (>12h)

3 Φαινόμενα που μεταβάλλουν στις συντεταγμένες των ουρανίων σωμάτων Ακριβές σχήμα της Γης Σεληνοηλιακή μετάπτωση Κλόνιση του άξονα του κόσμου Πλανητική μετάπτωση Ατμοσφαιρική διάθλαση Ημερήσια, Ετήσια παράλλαξη Γεωκεντρική παράλλαξη Αποπλάνηση του φωτός Ιδία κίνηση των αστέρων

4 Η απόκλιση του σχήματος της Γης από την τέλεια σφαίρα : υπολογισμός βάσει αστρονομικών παρατηρήσεων Το ακριβές σχήμα της γης ονομάζεται γεωειδές και ορίζεται ως η επιφάνεια που είναι κάθετη προς την κατακόρυφο σε κάθε σημείο της Κατά προσέγγιση το σχήμα αυτό είναι ένα ελλειψοειδές εκ περιστροφής (περί τον άξονα περιστροφής της γης) Οι μεσημβρινοί της Γης δεν είναι μέγιστοι κύκλοι αλλά ελλείψεις με άξονες R I και R Π επί του ισημερινού επιπέδου και κάθετα σε αυτό Συνέπεια του σχήματος της γης είναι το ότι το μήκος τόξου μιας μοίρας αυξάνει με το γεωγραφικό πλάτος Πλάτυνση του γεωειδούς ορίζεται: ( R R )/ R I I

5 Ευθεία (ζ): εφαπτομένη στην επιφάνεια της Γης στο σημείο Τ(χ,y) ΤΖ: κάθετος στην (ζ) στο σημείο Τ: κατακόρυφος του τόπου Γεωγραφικό πλάτος: φ= Γεωκεντρικό πλάτος: φ = Αστρονομικό ζενίθ Z Γεωκεντρικό ζενίθ Z Απόκλιση της κατακορύφου ˆ ' Από αστρονομικές μετρήσεις του φ βρίσκουμε ότι: Μήκος της ακτίνας της Γης σε ένα σημείο της επιφάνειάς της εξίσωση έλλειψης: εξίσωση ευθείας ΚΤ ˆ ' ˆ csin 2 (1 ccos2 )... c x R y I R y xtan y R I tan. x R 2 x y 2 2 R R R 4 I I R tan R tan I R tan R x y R 2 I (cos )(1 ) sin (cos )(1 ) sin

6 Κίνηση της Γης ως στερεό σώμα Όταν σε μια οποιαδήποτε περιστρεφόμενη ασύμμετρη κατανομή μάζας ασκούνται εξωτερικές ροπές (Μηχανική Ι), προκαλείται μετάπτωση και κλόνηση του άξονα περιστροφής Όπως είδαμε η γη δεν είναι σφαιρική αλλά έχει σχήμα «γεωειδές» (λόγω της περιστροφής της) Παρατηρήσεις των μεταβολών στα τροχιακά επίπεδα τεχνητών δορυφόρων δείχνουν ότι η γη τείνει να έχει σχήμα αχλαδιού: υπάρχει περισσότερη μάζα στο νότιο ημισφαίριο

7 Ο ήλιος (και αντίστοιχα η σελήνη) έλκει ισχυρότερα το πλησιέστερο ισημερινό εξόγκωμα απ ότι το πιο απομακρυσμένο, κι έτσι ασκείται ένα ζεύγος στον άξονα της γης με φορά που θα έτεινε (αν η Γη δεν περιστρεφόταν) να τον προσανατολίσει κάθετα στο επίπεδο της τροχιάς της γης (εκλειπτική). Όμως λόγω της ημερήσιας γήινης περιστροφής, η πραγματική έκβαση είναι ο άξονάς της να πραγματοποιεί μετάπτωση γύρω από την κάθετο στο εκλειπτικό επίπεδο. Επειδή ο ισημερινός αποκλίνει από το επίπεδο της εκλειπτικής περίπου 23.5 ο, ο άξονας διαγράφει στο χώρο ένα κώνο με ημικατακόρυφη γωνία 23.5 ο Β.Ε.Π ο N Equator S Η επίδραση της σελήνης είναι περισσότερο από δυο φορές μεγαλύτερη από του ήλιου αλλά είναι πολυπλοκότερη διότι το επίπεδο της τροχιάς της δεν είναι σταθερό

8

9 Διορθώσεις λόγω της μετάπτωσης του άξονα του κόσμου Σεληνοηλιακή Μετάπτωση των ισημεριών Ο συνδυασμός των ροπών από την σελήνη και τον ήλιο προκαλούν την κίνηση του άξονα περιστροφής Η επίδραση της σελήνης είναι η σημαντικότερη (λόγω εγγύτητας), αλλά και τα δυο σώματα ασκούν ροπές στο ισημερινό εξόγκωμα προσπαθώντας να ευθυγραμμίσουν τον γήινο ισημερινό με την εκλειπτική. Λόγω διατήρησης της στροφορμής, η επίδραση των ροπών είναι η μετάπτωση του άξονα περιστροφής (κίνηση σβούρας). Η γωνία του κώνου που διαγράφει ο άξονας είναι ίση με την λόξωση Η μετάπτωση του άξονα έχει περίοδο yr Έτσι οι θέσεις των ισημεριών δεν είναι σταθερές, αλλά «κινούνται» πάνω στην εκλειπτική, προς τα δυτικά (ανάδρομα), περίπου /χρόνο (360 ο *3600 /25800yr) μετάπτωση των ισημεριών Επομένως οι ουρανογραφικές συντεταγμένες μεταβάλλονται με την ίδια περιοδικότητα (εφόσον αλλάζει αντίστοιχα- η θέση της εαρινής ισημερίας πάνω στην εκλειπτική που είναι το σημείο αναφοράς) Οι ουράνιοι πόλοι ακολουθούν κύκλους γύρω από τους εκλειπτικούς πόλους μία φορά κάθε χρόνια με ακτίνα 23.5 ο Οι ουρανογραφικές συντεταγμένες πρέπει να ακολουθούνται πάντα από το έτος αναφοράς, π.χ RA=18 h 36 m 56 s, dec=38 o (equinox J2000.0)

10 Με κόκκινη διακεκομένη γραμμή φαίνεται η κυκλική τροχιά που διανύει το «ίχνος» του βόρειου ουρανογραφικού πόλου (ΒΟΠ) τροχία του ΒΟΠ Πολικός Αστέρας Χρειάζονται χρόνια για να συμπληρωθεί ένας πλήρης κύκλος.

11 Ποιος αστέρας είναι πλησίον του βόρειου ουρανογραφικού πόλου: Πολικός αστέρας Vega N S Σήμερα S Πριν από ~13,000 yr N

12 Υπολογισμός της επίδρασης της σεληνοηλιακής μετάπτωσης στις ουρανογραφικές συντεταγμένες ενός αστέρα Χρησιμοποιώντας το αρχικό σφαιρικό τρίγωνο θέσης του σχήματος και υποθέτωντας ότι η μετάπτωση του άξονα προκαλεί μικρή μεταβολή των λ, α, και δ κατά Δλ, Δα και Δδ αντίστοιχα (το εκλειπτικό πλάτος β και το ε παραμένουν σταθερά) έχουμε ημδ=ημε ημλ συνβ + συνε ημβ Παραγωγίζοντας συνδ Δδ=ημε συνβ συνλ Δλ Ισχύει επίσης συνα συνδ = συνβ συν λ Δδ=Δλ ημε συνα, όπου ε=23 ο και Δλ είναι περίπου ο χρόνο (το εκλειπτικό πλάτος παραμένει σταθερό) σε ένα Ομοίως, παραγωγίζοντας την συνα συνδ = συνβ συν λ καταλήγουμε στη σχέση: Δα=Δλ (συνε+ημε ημα εφδ) (να αποδειχθεί από τον φοιτητή)

13 Κλόνηση του άξονα (Nutation) H κλόνηση του άξονα περιστροφής (αλλαγή της γωνίας των 23.5 ο οφείλεται κυρίως στην επίδραση της σελήνης: τροχιακό επίπεδο της σελήνης σχηματίζει 6 ο με την εκλειπτική Περίοδος 18.6 yr Η μέγιστη απομάκρυνση από τον μέσο κύκλο που διαγράφεται από τον κάθε πόλο, είναι μόλις 9.23 Η επιπλέον επίδραση των πλανητών του ηλιακού συστήματος αυξάνουν την κλόνηση του άξονα και προκαλούν ανωμαλίες στη μεταπτωτική κίνηση πλανητική μετάπτωση λόγω μικρών μετατοπίσεων του επιπέδου της εκλειπτικής με αποτέλεσμα τη μείωση των ορθών αναφορών κατά 0.13 /έτος Κύριεςπερίοδοι κλόνησης (nutation periods): 13.66δ, ½ yr, 1 yr, 9.3 yr, 18.6 yr.

14 Μεταβολές των ισημερινών συντεταγμένων λόγω της ατμοσφαιρικής διάθλασης Ισημερινές συντεταγμένες Η δ, δ δ Σ: πραγματική θέση αστέρα Σ δ : φαινόμενη θέση λόγω α.δ. Σ και Σ δ στην ίδια κατακόρυφο Σ δ Σ δ // ισημερινό Τρίγωνο ΣΣ δ Σ δ S~S δ

15 Επίδραση της ατμοσφαιρικής διάθλασης στη διάρκεια της μέρας διαφορίζοντας Σε πρώτη προσέγγιση ισχύει:

16 Μεταβολές ουρανογραφικών συντεταγμένων λόγω μετάπτωσης του άξονα του κόσμου λ,β: εκλειπτικές συντεταγμένες α,δ: ουρανογραφικές συντεταγμένες ε: γωνία μεταξύ εκλειπτικής και ουρανιου ισημερινου σταθερη 23 ο 17 συνασυνδ=συνβσυνλ (***) Από (**) και (***) dδ=ημεσυναdλ, όπου dλ=50,3 /yr

17 Μεταβολές ουρανογραφικών συντεταγμένων λόγω μετάπτωσης του άξονα του κόσμου Το dα υπολογίζεται από τον νόμο των 5 στοιχείων συνδημα=-ημβημε+συνβσυνεημλ (διαφορίζω) -ημδημαdδ+συνδσυναdα=συνβσυνεσυνλdλ (***) dα=(συνε+ημεημαεφδ)dλ

18 Μεταβολές ουρανογραφικών συντεταγμένων συντεταγμένων λόγω κλόνισης του άξονα του κόσμου dλ=dβ=0 dε 0 ημδ=συνεημβ+ημεσυνβημλ (*) Διαφορίζω την (*): συνδdδ=(- ημβημε+ημλσυνβσυνε)dε (**) Από νόμο 5 στοιχείων προκύπτει: ημασυνδ=-ημβημε+συνβσυνεημλ (***) Από (**) και (***) συνδdδ=ημασυνδdε Δηλ. dδ=ημαdε

19 Η μέτρηση του χρόνου βασίζεται στη περιστροφή της Γης γύρω από τον άξονά της Καθώς η Γη περιστρέφεται τα ουράνια σώματα φαίνονται να κινούνται από ανατολικά προς τα δυτικά περνώντας κάθε μέρα από το μεσημβρινό του τόπου Μέτρηση του χρόνου Η μέτρηση του χρόνου ανάγεται στη μέτρηση της ωριαίας γωνίας συγκεκριμένου αστέρα ή σταθερού σημείου της ουράνιας σφαίρας. Καθώς η ουράνια σφαίρα περιστρέφεται από ανατολικά προς τα δυτικά, η ωριαία γωνία ενός σημείου της αυξάνει ομαλά με τον χρόνο. Ανάλογα με το σημείο που επιλέγουμε για να μετρήσουμε την ωριαία γωνία, έχουμε διάφορα συστήματα χρόνου

20

21 t=h γ

22 Sidereal time Σαν αρχή της αστρικής μέρας σε ένα τόπο λαμβάνεται η στιγμή της άνω μεσουράνησης του σημείου γ στον τόπο αυτό Μεσημβρινός του τόπου Εξίσωση χρόνου

23

24 ΗΛΙΑΚΗ ΜΕΡΑ Αληθής ηλιακός χρόνος ενός τόπου ορίζεται ως η ωριαία γωνία του αληθούς Ήλιου αυξημένη κατά 12 h Αληθής ηλιακή ημέρα είναι το διάστημα που μεσολαβεί μεταξύ δυο διαδοχικών μεσουρανήσεων του κέντρου του δίσκου του αληθούς ήλιου

25 Αστρική ημέρα (sidereal day) Στη θέση 1 η κατεύθυνση προς τον ήλιο είναι πάνω στον μεσημβρινό του παρατηρητή (τοπική μεσημβρία). Υποθέτουμε ότι ένα αστέρι βρίσκεται πάνω στην προέκταση της ευθείας ΓΗ στη θέση αυτή Καθώς η Γη κινείται κατά μήκος της τροχιάς της ταυτόχρονα περιστρέφεται. Ας υποθέσουμε ότι στη θέση 2 η γη έχει περιστραφεί μόνο 1 φορά σε σχέση με τους μακρινούς αστέρες, οπότε το αστέρι βρίσκεται πάλι στη διεύθυνση της μεσημβρίας. Ο χρόνος μεταξύ των θέσεων 1 και 2 λέγεται αστρική μέρα. Ο ήλιος δεν είναι ακόμα στη μεσημβρία. Η γη πρέπει να περιστραφεί ακόμα λίγο (θέση 3) Ο χρόνος μεταξύ των θέσεων 1 και 3 είναι η ηλιακή μέρα (λίγα λεπτά <4 μεγαλύτερη από την αστρική μέρα

26 Προσοχή, αυτό ισχύει όταν δεν εχουμε θερινή ώρα! α

27

28

29

30

31

32 Ιουλιανή ημερομηνία (Julian date) Σε αρκετές παρατηρήσεις, κυρίως μεταβλητών αστέρων, χρησιμοποιείται ως χρόνος μέτρησης η Ιουλιανή ημερομηνία. Αρχή της μέτρησης αυτής είναι η μέση μεσημβρία της 1 Ιανουαρίου του 4713 π.χ. : JD0.0 J JD H Ιουλιανή ημερομηνία του «6 μμ 1/1/2000.0» είναι JD T=(JD )/36525 (Ιουλιανό έτος d) Τροποποιημένη Ιουλιανή ημερομηνία (Modified Julian Date): MJD=JD (η MJD αρχίζει τα μεσάνυκτα UT, αντί της μεσημβρίας)

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων Μάθημα 1 Σύστημα γήινων συντεταγμένων Γήινος μεσημβρινός του τόπου Ο Μεσημβρινός του Greenwich (πρώτος κάθετος) Γεωγραφικό μήκος 0

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Κύρια σημεία του μαθήματος Το σχήμα και οι κινήσεις της Γης Μετάπτωση και κλόνιση του άξονα της Γης Συστήματα χρόνου και ορισμοί: αστρικός χρόνος,

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: ΓΕΩΚΕΝΤΡΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΤΗΡΗΣΗΣ Μάθημα 1 Γεωκεντρικό σύστημα παρατήρησης Με εξαίρεση έναν αριθμό από διαστημικές αποστολές, οι παρατηρήσεις των ουράνιων αντικειμένων

Διαβάστε περισσότερα

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3

Παρατηρησιακή Αστροφυσική Μέρος Α. Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Παρατηρησιακή Αστροφυσική Μέρος Α Κεφάλαιο 1: Συστήματα συντεταγμένων- Συστήματα Χρόνου Μάθημα 3 Εφαρμογή: Μεταβολή των ουρανογραφικών συντεταγμένων λόγω της μετάπτωσης του άξονα του κόσμου (προηγούμενο

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών. Κοσμάς Γαζέας Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Κοσμάς Γαζέας Σφαιρικό Τρίγωνο Σφαιρικό τρίγωνο λέγεται το μέρος της σφαίρας, το οποίο περικλείεται μεταξύ των τόξων τριών μέγιστων κύκλων, με την προϋπόθεση

Διαβάστε περισσότερα

Β.Π. Ουράνιος Ισηµερινός Ν.Π.

Β.Π. Ουράνιος Ισηµερινός Ν.Π. Β.Π. Ουράνιος Ισηµερινός Ν.Π. Ανάδροµη Φορά Ορθή Φορά Η ορθή και ανάδροµη φορά περιστροφής της Ουράνιας Σφαίρας, όπως φαίνονται από το Βόρειο και το Νότιο ηµισφαίριο, αντίστοιχα Κύκλος Απόκλισης Μεσηµβρινός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ 1 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ Κεφάλαιο 2 ο Συστήματα αστρονομικών συντεταγμένων και χρόνος ΑΣΚΗΣΗ 1 η (α) Να εξηγηθεί γιατί το αζιμούθιο της ανατολής και της δύσεως του Ηλίου σε ένα τόπο,

Διαβάστε περισσότερα

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται

Η κατακόρυφη ενός τόπου συναντά την ουράνια σφαίρα σε δύο υποθετικά σηµεία, που ονοµάζονται. Ο κατακόρυφος κύκλος που περνά. αστέρα Α ονοµάζεται Sfaelos Ioannis Τα ουράνια σώµατα φαίνονται από τη Γη σαν να βρίσκονται στην εσωτερική επιφάνεια µιας γιγαντιαίας σφαίρας, απροσδιόριστης ακτίνας, µε κέντρο τη Γη. Τη φανταστική αυτή σφαίρα τη λέµε "ουράνια

Διαβάστε περισσότερα

Τεύχος B - Διδακτικών Σημειώσεων

Τεύχος B - Διδακτικών Σημειώσεων Τεύχος B - Διδακτικών Σημειώσεων ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ ΚΑΙ ΟΙ ΕΠΙΠΤΩΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ Δημήτρης Δεληκαράογλου Αναπλ. Καθ., Σχολή Αγρονόμων και Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο Επισκ.

Διαβάστε περισσότερα

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ

5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 37 5. ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΚΙΝΗΣΕΩΝ ΤΗΣ ΓΗΣ 5.1 Εισαγωγή Οι κύριες κινήσεις της Γης είναι: μια τροχιακή κίνηση του κέντρου μάζας γύρω από τον Ήλιο και μια περιστροφική κίνηση γύρω από τον άξονα που περνά από

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΣΤΡΟΝΟΜΙΑ Μάθημα 3 ο (Κεφ. 2 ο ) Ν. Στεργιούλας Τα 3 πρώτα ορίζονται με βάση περιοδικές κινήσεις ουρανίων σωμάτων. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ Τα κυριότερα συστήματα χρόνου στην Αστρονομία: (α) Αστρικός

Διαβάστε περισσότερα

Γεωδαιτική Αστρονομία

Γεωδαιτική Αστρονομία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόμων Τοπογράφων Μηχανικών Γεωδαιτική Αστρονομία Ρωμύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr ΑΝΑΚΕΦΑΛΑΙΩΣΗ Σφαιρικό σύστημα αναφοράς

Διαβάστε περισσότερα

Σφαιρικό σύστημα αναφοράς

Σφαιρικό σύστημα αναφοράς Σφαιρικό σύστημα αναφοράς Ουρανογραφικό σύστημα αναφοράς Αστρονομικό σύστημα αναφοράς Οριζόντιο σύστημα αναφοράς Ισημερινό σύστημα αναφοράς Το τρίγωνο θέσης Αστρικός Χρόνος - 1 Ο αστρικός χρόνος είναι

Διαβάστε περισσότερα

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης

Οι Κινήσεις της Γης. Eπιπτώσεις. Η κίνηση της Γης. στα Συστήματα Αναφοράς για τη ορυφορική Γεωδαισία. Η περιστροφή της Γης Οι Κινήσεις της Γης. Eπιπτώσεις στα Συστήματα για τη ορυφορική Γεωδαισία Οι αρχαίοι θεωρούσαν τη Γη ακίνητη και κέντρο του σύμπαντος Η κίνηση της Γης TEPAK ορυφορική Γεωδαισία 6 ο Εξάμηνο 2011-12 Στην

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ. Αστρονομία. Ενότητα # 3: Συστήματα Χρόνου. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 3: Συστήματα Χρόνου Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις

Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Διπλωματική εργασία Συστήματα και Πλαίσια Αναφοράς στη Γεωδαιτική Αστρονομία Οι Διεθνείς συμβάσεις Καλλιανού Φωτεινή Θέμα της εργασίας : Τα συστήματα και τα πλαίσια αναφοράς (ουράνια και γήινα) Οι κινήσεις

Διαβάστε περισσότερα

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται

Η γωνία υπό την οποία φαίνονται από κάποιον παρατηρητή δύο αστέρες ονοµάζεται ΚΕΦΑΛΑΙΟ 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΧΡΟΝΟΣ 2.1 Ουράνια σφαίρα-βασικοί ορισµοί Για να ορίσουµε τις θέσεις των αστέρων, τους θεωρούµε να προβάλλονται σαν σηµεία στην εσωτερική επιφάνεια µιας σφαίρας µε αυθαίρετη

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ

1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 3 1. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ ΣΤΗΝ ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ 1.1 Βασικές έννοιες Για τις εφαρμογές της Γεωδαιτικής Αστρονομίας είναι απαραίτητος ο ορισμός συστημάτων συντεταγμένων, στα οποία περιγράφονται οι θέσεις και

Διαβάστε περισσότερα

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017

Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017 Επιλεγμένες Ασκήσεις Φυλλαδίου 1 8/3/2017 19) Ποια είναι η περιοχή τιμών των ουρανογραφικών συντεταγμένων των ουράνιων αντικειμένων που είναι (i) αειφανή και (ii) αφανή για το Αστεροσκοπείο του Χελμού.

Διαβάστε περισσότερα

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle

3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ τρίγωνο θέσης position triangle astronomical triangle 21 3. ΤΟ ΤΡΙΓΩΝΟ ΘΕΣΗΣ Ως τώρα είδαμε πως ορίζονται διάφορα συστήματα αναφοράς και πως οι συντεταγμένες, σε κάθε σύστημα, αλλάζουν ανάλογα με την διεύθυνση παρατήρησης, τον τόπο και τον χρόνο. Για να γίνουν

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα

ΕΙΣΑΓΩΓΗ Γεωδαιτική Αστρονομία (Geodetic Astronomy) τρεις δύο γεωειδούς ουράνια σφαίρα 1 ΕΙΣΑΓΩΓΗ Η Γεωδαιτική Αστρονομία (Geodetic Astronomy) είναι ο κλάδος της Αστρονομίας Θέσης (Positional Astronomy) που ασχολείται με τον προσδιορισμό διευθύνσεων στον χώρο, από σημεία πάνω ή κοντά στην

Διαβάστε περισσότερα

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Αστρονομία. Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων. Νικόλαος Στεργιούλας Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αστρονομία Ενότητα # 1: Ουράνια Σφαίρα Συστήματα Συντεταγμένων Νικόλαος Στεργιούλας Τμήμα Φυσικής Αριστοτέιο Πανεπιστήμιο Θεσσαλονίκης

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο

Διδάσκοντας Φυσικές Επιστήμες στο Γυμνάσιο και στο Λύκειο Ο Γνώμονας, ένα απλό αστρονομικό όργανο και οι χρήσεις του στην εκπαίδευση Σοφία Γκοτζαμάνη και Σταύρος Αυγολύπης Ο Γνώμονας Ο Γνώμονας είναι το πιο απλό αστρονομικό όργανο και το πρώτο που χρησιμοποιήθηκε

Διαβάστε περισσότερα

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ

6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 45 6. ΑΝΑΓΩΓΕΣ ΤΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ 6.1 Εισαγωγή Ως τώρα έχουμε δεχθεί ότι οι ουρανογραφικές συντεταγμένες (α,δ) κάθε άστρου ή οι αστρονομικές συντεταγμένες (Λ,Φ) ενός συγκεκριμένου τόπου παραμένουν σταθερές,

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονομία

Εισαγωγή στην Αστρονομία Παπαδόπουλος Μιλτιάδης ΑΕΜ: 13134 Εξάμηνο: 7 ο Ασκήσεις: 12-1 Εισαγωγή στην Αστρονομία 1. Ο αστέρας Βέγας στον αστερισμό της Λύρας έχει απόκλιση δ=+38 ο 47. α) Σχεδιάστε την φαινόμενη τροχιά του Βέγα στην

Διαβάστε περισσότερα

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο

15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 15 ος Πανελλήνιος Μαθητικός Διαγωνισµός Αστρονοµίας και Διαστηµικής 2010 Θέµατα για το Γυµνάσιο 1.- Από τα πρώτα σχολικά µας χρόνια µαθαίνουµε για το πλανητικό µας σύστηµα. Α) Ποιος είναι ο πρώτος και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH

ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH TZΕΜΟΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 3507 ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΗ ΓΕΩΦΥΣΙΚΗ 24.11.2005 Η ΘΕΩΡΙΑ ΤΟΥ MILANKOVITCH Όλοι γνωρίζουμε ότι η εναλλαγή των 4 εποχών οφείλεται στην κλίση που παρουσιάζει ο άξονας περιστροφής

Διαβάστε περισσότερα

1.2: 1.2 D R r (1.1) 1.3: 206.265 (1.2)

1.2: 1.2    D R r (1.1) 1.3: 206.265 (1.2) ΕΙΣΑΓΩΓΗ Η Αστρονοµία κατέχει ξεχωριστή θέση ανάµεσα στις επιστήµες και από πολλούς θεωρείται η αρχαιότερη όλων. Παρά ταύτα πρόδροµος και «µητέρα» της θεωρείται η Αστρολογία. Η Αστρονοµία ξεκίνησε παρατηρώντας

Διαβάστε περισσότερα

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ

ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΑΚΤΙΝΟΒΟΛΙΑ ΗΛΙΑΚΗ ΜΗΧΑΝΙΚΗ Μάθημα 2o Διδάσκων: Επ. Καθηγητής Ε. Αμανατίδης ΔΕΥΤΕΡΑ 6/3/2017 Τμήμα Χημικών Μηχανικών Πανεπιστήμιο Πατρών Περίληψη Ηλιακή

Διαβάστε περισσότερα

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ

10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ 77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,

Διαβάστε περισσότερα

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number)

Υπολογισμός Αριθμού Ιουλιανής Ημέρας (Julian Day Number) ΚΛΙΜΑΚΕΣ ΧΡΟΝΟΥ Διάστημα ισχύος ( 0 h UTC ) TAI - UTC Άλλες κλίμακες 1980 Jan 1. - 1981 Jul 1. 19 s TAI - GPS Time = 19 s 1981 Jul 1. - 1982 Jul 1. 20 s 1982 Jul 1. - 1983 Jul 1. 21 s 1983 Jul 1. - 1985

Διαβάστε περισσότερα

Να το πάρει το ποτάµι;

Να το πάρει το ποτάµι; Να το πάρει το ποτάµι; Είναι η σκιά ενός σώµατος που το φωτίζει ο Ήλιος. Όπως η σκιά του γνώµονα ενός ηλιακού ρολογιού που µε το αργό πέρασµά της πάνω απ τα σηµάδια των ωρών και µε το ύφος µιας άλλης εποχής

Διαβάστε περισσότερα

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ

7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ 61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του

Διαβάστε περισσότερα

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 23 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συμβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονομάζεται κλίμακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης

Ηλιακήενέργεια. Ηλιακή γεωµετρία. Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης. ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήενέργεια Ηλιακή γεωµετρία Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Ηλιακήγεωµετρία Ηλιακήγεωµετρία Η Ηλιακή Γεωµετρία αναφέρεται στη µελέτη της θέσης του ήλιου σε σχέση

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 -

ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ. www.meteo.gr - 1 - ΟΙ ΚΙΝΗΣΕΙΣ ΤΗΣ ΓΗΣ H Γη είναι ένας πλανήτης από τους οκτώ συνολικά του ηλιακού μας συστήματος, το οποίο αποτελεί ένα από τα εκατοντάδες δισεκατομμύρια αστρικά συστήματα του Γαλαξία μας, ο οποίος με την

Διαβάστε περισσότερα

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή

Κεφάλαιο 5: Ηλιακή γεωμετρία και ακτινοβολία Εισαγωγή Κεφάλαιο 5: 5.1. Εισαγωγή Η ηλιακή γεωμετρία περιγράφει τη σχετική κίνηση γης και ήλιου και αποτελεί ένα σημαντικό παράγοντα που υπεισέρχεται στον ενεργειακό ισολογισμό κτηρίων. Ανάλογα με τη γεωμετρία

Διαβάστε περισσότερα

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω

dv = dx dy dz = r 2 sin θ dr dθ dϕ = r 2 dω Παράρτημα Αʹ Στοιχεία αστρονομίας θέσης - πηγές δεδομένων Αʹ.1 Εισαγωγή Απαραίτητη προϋπόθεση για να αξιοποιηθούν όλα όσα αναπτύξαμε στο κυρίως βιβλίο είναι να γνωρίζουμε τη θέση στον ουρανό του αντικειμένου

Διαβάστε περισσότερα

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ

ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ - ΛΟΞΩΣΗ Η κίνηση των πλανητών είναι το αποτέλεσμα της σύνθεσης 2 κινήσεων: μίας περιστροφής γύρω από τον Ήλιο, η περίοδος της οποίας μας δίνει το έτος κάθε πλανήτη, και πραγματοποιείται

Διαβάστε περισσότερα

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ

9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 73 9. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΜΗΚΟΥΣ 9.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό μήκος ενός τόπου είναι η δίεδρη γωνία μεταξύ του αστρονομικού μεσημβρινού του τόπου και του μεσημβρινού του Greenwich. Η γωνία αυτή

Διαβάστε περισσότερα

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ

ΠΑΡΑΡΤΗΜΑ A. Οι δορυφόροι του συστήµατος GPS. GPS Block Ι. GPS Block ΙΙ και ΙΙΑ ΠΑΡΑΡΤΗΜΑ A Οι δορυφόροι του συστήµατος GPS GPS Block Ι Η σειρά δορυφόρων GPS Block Ι (Demonstration) ήταν η πρώτη σειρά δορυφόρων και είχε δοκιµαστικό χαρακτήρα, ακολουθήθηκε από την επόµενη επιχειρησιακή

Διαβάστε περισσότερα

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες

4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες 25 4. ΣΥΣΤΗΜΑΤΑ ΧΡΟΝΟΥ 4.1 Γενικές έννοιες Η υλοποίηση ενός συµβατικού πλαισίου αναφοράς για την διάσταση του χρόνου, το οποίο θα ονοµάζεται κλίµακα χρόνου (time scale), απαιτεί την ίδια διαδικασία όπως

Διαβάστε περισσότερα

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ

8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 69 8. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΠΛΑΤΟΥΣ 8.1 Εισαγωγή Υπενθυμίζεται ότι το αστρονομικό πλάτος ενός τόπου είναι η γωνία μεταξύ της διεύθυνσης της κατακορύφου του τόπου και του επιπέδου του ουράνιου Ισημερινού. Ο προσδιορισμός

Διαβάστε περισσότερα

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD)

Διαταραχές των κινήσεων της Γης. Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Διαταραχές των κινήσεων της Γης Στροφή του επιπέδου της εκλειπτικής (πλανητική μετάπτωση) Μεταβολή της γωνιακής ταχύτητας περιστροφής (LOD) Μεταβολή στην διεύθυνση του άξονα περιστροφής στον χώρο (μετάπτωση

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 19/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ ΙΙ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Μάθηµα 4 ο : ορυφορικές τροχιές

Μάθηµα 4 ο : ορυφορικές τροχιές Μάθηµα 4 ο : ορυφορικές τροχιές Στόχοι: Στο τέλος αυτού του µαθήµατος ο σπουδαστής θα γνωρίζει: Tις σηµαντικότερες κατηγορίες δορυφορικών τροχιών Τους παράγοντες που οδηγούν στην επιλογή συγκεκριµένης

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι:

Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: ΗΛΙΑΚΑ ΩΡΟΛΟΓΙΑ Υπάρχουν πολλά είδη Ηλιακών Ρολογιών. Τα σημαντικότερα και συχνότερα απαντόμενα είναι: Οριζόντια Κατακόρυφα Ισημερινά Το παρακάτω άρθρο αναφέρεται στον τρόπο λειτουργίας αλλά και κατασκευής

Διαβάστε περισσότερα

Εφαρμογές μεγάλης και μικρής κλίμακας στην «ομαλή» κυκλική κίνηση

Εφαρμογές μεγάλης και μικρής κλίμακας στην «ομαλή» κυκλική κίνηση Εφαρμογές μεγάλης και μικρής κλίμακας στην «ομαλή» κυκλική κίνηση Εφαρμογή η Η μέση στρική ημέρα* έχει διάρκεια 3h 5min 4sec. Η ακτίνα της ης στον ισημερινό είναι R =,38 0 m. ια έναν ερευνητή του στεροσκοπείου

Διαβάστε περισσότερα

Ειδικά κεφάλαια παραγωγής ενέργειας

Ειδικά κεφάλαια παραγωγής ενέργειας Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανολόγων Μηχανικών Ειδικά κεφάλαια παραγωγής ενέργειας Ενότητα 3 (β): Μη Συμβατικές Πηγές Ενέργειας Αν. Καθηγητής Γεώργιος Μαρνέλλος (Γραφείο 208) Τηλ.: 24610 56690,

Διαβάστε περισσότερα

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου

Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου. ρ. Σ.Πατσιοµίτου Στοιχεία και εµβαδόν πρίσµατος και κυλίνδρου ρ. Σ.Πατσιοµίτου Το ορθό πρίσµα και τα στοιχεία του Στη Στερεοµετρία τα παρακάτω στερεά σώµατα ονοµάζονται ορθά πρίσµατα. Οι δύο παράλληλες έδρες του λέγονταιβάσεις

Διαβάστε περισσότερα

Έκλειψη Ηλίου 20ης Μαρτίου 2015

Έκλειψη Ηλίου 20ης Μαρτίου 2015 Έκλειψη Ηλίου 20ης Μαρτίου 2015 Πληροφοριακό υλικό Κέντρο Επισκεπτών Ινστιτούτο Αστρονομίας Αστροφυσικής Διαστημικών Εφαρμογών και Τηλεπισκόπησης (ΙΑΑΔΕΤ) Εθνικό Αστεροσκοπείο Αθηνών Την Παρασκευή 20 Μαρτίου

Διαβάστε περισσότερα

Data Analysis Examination

Data Analysis Examination Data Analysis Examination Page 1 of (D1) Διπλός Πάλσαρ Κάνοντας συστηµατικές έρευνες τις τελευταίες δεκαετίες, οι αστρονόµοι κατάφεραν να εντοπίσουν ένα µεγάλο πλήθος από πάλσαρς µε περίοδο περιστροφής

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΣΕΛΗΝΗΣ Η τροχιά της Σελήνης γύρω από τη Γη δεν είναι κύκλος αλλά έλλειψη. Αυτό σηµαίνει πως η Σελήνη δεν απέχει πάντα το ίδιο από τη Γη. Τα δύο σηµεία που έχουν ενδιαφέρον

Διαβάστε περισσότερα

18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ»

18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ» Θέμα 1 ο (Σύντομης ανάπτυξης): 18 ος Πανελλήνιος Μαθητικός Διαγωνισμός Αστρονομίας και Διαστημικής 2013 Φάση 3 η : «ΙΠΠΑΡΧΟΣ» Θέματα του Γυμνασίου (Α) Ποιοι πλανήτες ονομάζονται Δίιοι; (Β) Αναφέρατε και

Διαβάστε περισσότερα

ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. Ηρακλή, καθώς και στην κίνηση του γαλαξία

ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. Ηρακλή, καθώς και στην κίνηση του γαλαξία Sfaelos Ioannis 1. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΗΣ Η Γη είναι ο τρίτος στη σειρά πλανήτης του ηλιακού μας συστήματος και ο πέμπτος σε μέγεθος. έ θ Η μέση απόστασή της από τον Ήλιο είναι 149.600.000 km.

Διαβάστε περισσότερα

Ο χώρος. 1.Μονοδιάστατη κίνηση

Ο χώρος. 1.Μονοδιάστατη κίνηση Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά

Διαβάστε περισσότερα

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ

ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ ΑΣΤΡΟΝΟΜΙΑ ΚΑΙ ΑΣΤΡΟΦΥΣΙΚΗ 7 ο ΕΞΑΜΗΝΟ 2016-2017 ΤΜΗΜΑ ΦΥΣIΚΗΣ ΑΠΘ 1ο Σ Ε Τ Α Σ Κ Η Σ Ε Ω Ν 1. Να κατασκευαστεί η ουράνια σφαίρα για έναν παρατηρητή που βρίσκεται σε γεωγραφικό πλάτος 25º και να τοποθετηθούν

Διαβάστε περισσότερα

Εισαγωγή στην Αστρονοµική Παρατήρηση. Ανδρέας Παπαλάμπρου Αστρονομική Εταιρεία Πάτρας Ωρίων 20/5/2009

Εισαγωγή στην Αστρονοµική Παρατήρηση. Ανδρέας Παπαλάμπρου Αστρονομική Εταιρεία Πάτρας Ωρίων 20/5/2009 Εισαγωγή στην Αστρονοµική Παρατήρηση Ανδρέας Παπαλάμπρου Αστρονομική Εταιρεία Πάτρας Ωρίων 20/5/2009 1 Ερασιτεχνική Αστρονομία Μια ενασχόληση που αρχίζει από απλό χόμπι... & φτάνει έως συμβολή σε επιστημονικές

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β. 2.1.. 2.1.. Ομάδα Β. 2.1.Σχέσεις μεταξύ γραμμικών και γωνιακών μεγεθών στην ΟΚΚ. Κινητό κινείται σε περιφέρεια κύκλου ακτίνας 40m με ταχύτητα μέτρου 4m/s. i) Ποια είναι η περίοδος και ποια η συχνότητά

Διαβάστε περισσότερα

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης

1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης 1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ. 1.1. Γενικά

1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ. 1.1. Γενικά 1 ΟΥΡΑΝΙΑ ΣΦΑΙΡΑ και έχει για κέντρο της τον εκάστοτε παρατηρητή και αυθαίρετη αλλά σταθερή ακτίνα. Ο άξονας περιστροφήςτηςγηςτέµνειτηνουράνιασφαίρασεδύοσηµεία Π και Π, που ονοµάζονται βόρειος(ουράνιος)

Διαβάστε περισσότερα

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ

ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ

Διαβάστε περισσότερα

Ήπιες Μορφές Ενέργειας

Ήπιες Μορφές Ενέργειας Ήπιες Μορφές Ενέργειας Ενότητα 2: Ελευθέριος Αμανατίδης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Περιεχόμενα ενότητας Ο Ήλιος ως πηγή ενέργειας Κατανομή ενέργειας στη γη Ηλιακό φάσμα και ηλιακή σταθερά

Διαβάστε περισσότερα

P. E. QristopoÔlou - N. Galanˆkhc. Ergasthriak AstronomÐa. Ergasthriakèc Ask seic

P. E. QristopoÔlou - N. Galanˆkhc. Ergasthriak AstronomÐa. Ergasthriakèc Ask seic Πανεπιστήμιο Πατρών Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Τομέας Θεωρητικής & Μαθηματικής Φυσικής, Αστρονομίας & Αστροφυσικής P. E. QristopoÔlou - N. Galanˆkhc Ergasthriak AstronomÐa Ergasthriakèc Ask

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ

ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ Ερασιτεχνικής Αστρονομίας ΠΡΟΣΟΜΟΙΩΤΗΣ ΟΥΡΑΝΙΟΥ ΘΟΛΟΥ ΝΙΚΟΣ ΓΙΑΝΝΑΚΟΠΟΥΛΟΣ (Εκπαιδευτικός ΠΕ19-Μεταπτυχιακός φοιτητής ΕΑΠ- Μέλος Αστρονομικής Εταιρείας Πάτρας «Ωρίων») gianakop@gmail.com ΠΕΡΙΛΗΨΗ Η εργασία

Διαβάστε περισσότερα

Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου.

Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου. Ενότητα 1 Να υπολογισθεί ο αστρικός χρόνος της ανατολής του Ήλιου στη Θεσσαλονίκη (φ = 40º 37') κατά την 21η Μαρτίου. Την 21η Μαρτίου οι ουρανογραφικές συντεταγμένες του Ήλιου είναι α = 0 h, δ = 0 ενώ

Διαβάστε περισσότερα

Δυνάμεις που καθορίζουν την κίνηση των αέριων μαζών

Δυνάμεις που καθορίζουν την κίνηση των αέριων μαζών Κίνηση αερίων μαζών Πηγές: Fleae and Businer, An introduction to Atmosheric Physics Πρ. Ζάνης, Σημειώσεις, ΑΠΘ Π. Κατσαφάδος και Ηλ. Μαυροματίδης, Αρχές Μετεωρολογίας και Κλιματολογίας, Χαροκόπειο Παν/μιο.

Διαβάστε περισσότερα

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016

= 2, s! 8,23yr. Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 Απαντήσεις Γυμνασίου 21 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2016 1. Αστρική μέρα ονομάζουμε: (α) τον χρόνο από την ανατολή μέχρι τη δύση ενός αστέρα (β) τον χρόνο περιστροφής ενός αστέρα

Διαβάστε περισσότερα

Γενική Φυσική. Ενότητα 7: Δυναμική Άκαμπτου Σώματος. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών

Γενική Φυσική. Ενότητα 7: Δυναμική Άκαμπτου Σώματος. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Γενική Φυσική Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιστροφή Άκαμπτου Σώματος 1) ) 1. Κάθε σημείο Περιστρέφεται με την ίδια Γωνιακή Ταχύτητα.. Κάθε σημείο Περιστρέφεται με την

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις.

ΗΛΙΑΚΟ ΡΟΛΟΙ. Ρώτησε τη φύση, θα σου απαντήσει! Παρατηρώντας την, κάτι το σημαντικό θα βρεις. ΕΙΣΑΓΩΓΗ Στα πλαίσια του προγράμματος περιβαλλοντικής Αγωγής, τη σχολική χρονιά 2012-2013, αποφασίσαμε με τους μαθητές του τμήματος Β 3 να ασχοληθούμε με κάτι που θα τους κέντριζε το ενδιαφέρον. Έτσι καταλήξαμε

Διαβάστε περισσότερα

Επίδραση μαγνητικού πεδίου της Γης. (συνοδεύει τις διαφάνειες)

Επίδραση μαγνητικού πεδίου της Γης. (συνοδεύει τις διαφάνειες) Επίδραση μαγνητικού πεδίου της Γης (συνοδεύει τις διαφάνειες) Επίδραση μαγνητικού πεδίου της Γης. Ένα σωματίδιο με ατομικό αριθμό Ζ, που κινείται σε μαγνητικά πεδίο Β με ταχύτητα υ. Η κεντρομόλος δύναμη

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης

ΔΥΝΑΜΙΚΗ 3. Νίκος Κανδεράκης ΔΥΝΑΜΙΚΗ 3 Νίκος Κανδεράκης Νόμος της βαρύτητας ή της παγκόσμιας έλξης Δύο σώματα αλληλεπιδρούν με βαρυτικές δυνάμεις Η δύναμη στο καθένα από αυτά: Είναι ανάλογη με τη μάζα του m Είναι ανάλογη με τη μάζα

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΗΜΕΡΗΣΙΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 9 ΙΟΥΝΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ

Διαβάστε περισσότερα

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M,

ΒΑΡΥΤΗΤΑ. Το μέτρο της βαρυτικής αυτής δύναμης είναι: F G όπου M, ΒΑΡΥΤΗΤΑ ΝΟΜΟΣ ΤΗΣ ΠΑΓΚΟΣΜΙΑΣ ΕΛΞΗΣ Ο Νεύτωνας ανακάλυψε τον νόμο της βαρύτητας μελετώντας τις κινήσεις των πλανητών γύρω από τον Ήλιο και τον δημοσίευσε το 1686. Από την ανάλυση των δεδομένων αυτών ο

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc ΤΑΛΑΝΤΩΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 1 Να συμπληρώσετε τα κενά στις επόμενες προτάσεις: α. Το χρονικό διάστημα μέσα στο οποίο πραγματοποιείται μία πλήρης ταλάντωση ονομάζεται.. και το πηλίκο του αριθμού των ταλαντώσεων

Διαβάστε περισσότερα

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε

Διαβάστε περισσότερα

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ

ΝΑΥΣΙΠΛΟΪΑ. 1 o ΔΙΑΓΩΝΙΣΜΑ ΝΑΥΣΙΠΛΟΪΑ 1 o ΔΙΑΓΩΝΙΣΜΑ α. Τι είναι έξαρμα του πόλου υπέρ τον ορίζοντα και γιατί ενδιαφέρει τον ναυτιλλόμενο. β. Να ορίσετε τα είδη των αστέρων (αειφανείς, αφανείς και Αμφιφανείς)και να γράψετε τις συνθήκες

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s] ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

1. Μετάπτωση Larmor (γενικά)

1. Μετάπτωση Larmor (γενικά) . Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται

Διαβάστε περισσότερα

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο.

β. Το τρίγωνο που σχηματίζεται στην επιφάνεια της σφαίρας, του οποίου οι πλευρές αποτελούν τόξα μεγίστων κύκλων, ονομάζεται σφαιρικό τρίγωνο. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΝΑΥΣΙΠΛΟΪΑ II ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός

Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ. Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός Η ΓΗ ΣΑΝ ΠΛΑΝΗΤΗΣ Γεωγραφικά στοιχεία της Γης Σχήµα και µέγεθος της Γης - Κινήσεις της Γης Βαρύτητα - Μαγνητισµός ρ. Ε. Λυκούδη Αθήνα 2005 Γεωγραφικά στοιχεία της Γης Η Φυσική Γεωγραφία εξετάζει: τον γήινο

Διαβάστε περισσότερα

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο

Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα

Διαβάστε περισσότερα

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη

Διαβάστε περισσότερα

Πρόγραμμα Παρατήρησης

Πρόγραμμα Παρατήρησης Πρόγραμμα Παρατήρησης Η αναζήτηση του ζοφερού ουρανού Άγγελος Κιοσκλής Οκτώβριος 2005 ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ * η παρατήρηση πραγματοποιείται κατά προτίμηση όταν η Σελήνη δεν εμφανίζεται στον ουρανό, διότι

Διαβάστε περισσότερα

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.

1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης. Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική

Διαβάστε περισσότερα

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7)

3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου ΘΕΜΑ 1 (Μονάδες 7) 3 η εργασία Ημερομηνία αποστολής: 28 Φεβρουαρίου 2007 ΘΕΜΑ 1 (Μονάδες 7) Η θέση ενός σωματίου που κινείται στον άξονα x εξαρτάται από το χρόνο σύμφωνα με την εξίσωση: x (t) = ct 2 -bt 3 (1) όπου x σε μέτρα

Διαβάστε περισσότερα

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017

Ερωτήσεις Λυκείου 22 ου Πανελλήνιου Διαγωνισμού Αστρονομίας Διαστημικής 2017 ΠΡΟΣΟΧΗ: Δεν θα συμπληρώσετε τίποτα πάνω σε αυτό το έγγραφο, ούτε θα το αποστείλετε ηλεκτρονικά (μέσω e-mail). Απλά το αναρτήσαμε για την δική σας διευκόλυνση. Μόλις βρείτε τις απαντήσεις που γνωρίζετε,

Διαβάστε περισσότερα

Μεθοδολογία Έλλειψης

Μεθοδολογία Έλλειψης Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση

Διαβάστε περισσότερα