Catalogue of Spacetimes

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Catalogue of Spacetimes"

Transcript

1 Catalogue of Spacetimes axiv: v3 [g-qc] 4 Nov 00 x = x = q 0 x 0 x 00 0 x = 0 x = 0 x = Authos: Thomas Mülle Visualisieungsinstitut de Univesität Stuttgat VISUS) Allmanding 9, Stuttgat, Gemany Thomas.Muelle@vis.uni-stuttgat.de e e M x = Fank Gave fomely, Univesität Stuttgat, Institut fü Theoetische Physik ITP) Pfaffenwalding 57 // IV, Stuttgat, Gemany Fank.Gave@vis.uni-stuttgat.de URL: Date: 04. Nov 00

2 Co-authos Andeas Lemme, fomely, Institut fü Theoetische Physik ITP), Univesität Stuttgat Alcubiee Wap Sebastian Boblest, Institut fü Theoetische Physik ITP), Univesität Stuttgat desitte, Fiedmann-Robetson-Walke Felix Beslmeisl, Institut fü Theoetische Physik ITP), Univesität Stuttgat Petov-Type D Heiko Munz, Institut fü Theoetische Physik ITP), Univesität Stuttgat Bessel and plane wave

3 Contents Intoduction and Notation. Notation Geneal emaks Basic objects of a metic Natual local tetad and initial conditions fo geodesics Othonomality condition Tetad tansfomations Ricci otation-, connection-, and stuctue coefficients Riemann-, Ricci-, and Weyl-tenso with espect to a local tetad Null o timelike diections Local tetad fo diagonal metics Local tetad fo stationay axisymmetic spacetimes Newman-Penose tetad and spin-coefficients Coodinate elations Spheical and Catesian coodinates Cylindical and Catesian coodinates Embedding diagam Equations of motion and tanspot equations Geodesic equation Femi-Walke tanspot Paallel tanspot Eule-Lagange fomalism Hamilton fomalism Units Tools Maple/GRTensoII Mathematica Maxima Spacetimes 4. Minkowski Catesian coodinates Cylindical coodinates Spheical coodinates Confom-compactified coodinates Rotating coodinates Rindle coodinates Schwazschild spacetime Schwazschild coodinates Schwazschild in pseudo-catesian coodinates Isotopic coodinates Eddington-Finkelstein Kuskal-Szekees Totoise coodinates i

4 ii CONTENTS..7 Painlevé-Gullstand Isael coodinates Alcubiee Wap Baiola-Vilenkin monopol Betotti-Kasne Bessel gavitational wave Cylindical coodinates Catesian coodinates Cosmic sting in Schwazschild spacetime Enst spacetime Fiedman-Robetson-Walke Fom Fom Fom Gödel Univese Cylindical coodinates Scaled cylindical coodinates Halilsoy standing wave Janis-Newman-Winicou Kasne Ke Boye-Lindquist coodinates Kottle spacetime Mois-Thone Oppenheime-Snyde collapse Oute metic Inne metic Petov-Type D Levi-Civita spacetimes Case AI Case AII Case AIII Case BI Case BII Case BIII Case C Plane gavitational wave Reissne-Nodstøm de Sitte spacetime Standad coodinates Confomally Einstein coodinates Confomally flat coodinates Static coodinates Lemaîte-Robetson fom Catesian coodinates Staight spinning sting Sultana-Dye spacetime TaubNUT Bibliogaphy 79

5 Chapte Intoduction and Notation The Catalogue of Spacetimes is a collection of fou-dimensional Loentzian spacetimes in the context of the Geneal Theoy of Relativity GR). The aim of the catalogue is to give a quick efeence fo students who need some basic facts of the most well-known spacetimes in GR. Fo a detailed discussion of a metic, the eade is efeed to the standad liteatue o the oiginal aticles. Impotant esouces fo exact solutions ae the book by Stephani et al[skm + 03] and the book by Giffiths and Podolský[GP09]. Most of the metics in this catalogue ae implemented in the Motion4D-libay[MG09] and can be visualized using the GeodesicViewe[MG0]. Except fo the Minkowski and Schwazschild spacetimes, the metics ae soted by thei names.. Notation The notation we use in this catalogue is as follows: Indices: Coodinate indices ae epesented eithe by Geek lettes o by coodinate names. Tetad indices ae indicated by Latin lettes o coodinate names in backets. Einstein sum convention: When an index appeas twice in a single tem, once as lowe index and once as uppe index, we build the sum ove all indices: ζ µ ζ µ 3 µ=0 ζ µ ζ µ...) Vectos: A coodinate vecto in x µ diection is epesented as x µ µ. Fo abitay vectos, we use boldface symbols. Hence, a vecto a in coodinate epesentation eads a=a µ µ. Deivatives: Patial deivatives ae indicated by a comma, ψ/ x µ µ ψ ψ,µ, wheeas covaiant deivatives ae indicated by a semicolon, ψ = ψ ;µ. Symmetization and Antisymmetization backets: a µ b ν) = aµ b ν + a ν b µ ), a[ µ b ν] =. Geneal emaks aµ b ν a ν b µ ) The Einstein field equation in the most geneal fom eads[mtw73] G µν =κt µν Λg µν,..) κ = 8πG c 4,..) with the symmetic and divegence-fee Einstein tenso G µν = R µν Rg µν, the Ricci tenso R µν, the Ricci scala R, the metic tenso g µν, the enegy-momentum tenso T µν, the cosmological constant Λ, Newton s gavitational constant G, and the speed of light c. Because the Einstein tenso is divegencefee, the consevation equation T µν ;ν = 0 is automatically fulfilled.

6 CHAPTER. INTRODUCTION AND NOTATION A solution to the field equation is given by the line element ds = g µν dx µ dx ν..) with the symmetic, covaiant metic tenso g µν. The contavaiant metic tenso g µν is elated to the covaiant tenso via g µν g νλ = δ λ µ with the Konecke-δ. Even though g µν is only a component of the metic tenso g=g µν dx µ dx ν, we will also call g µν the metic tenso. Note that, in this catalogue, we mostly use the convention that the signatue of the metic is +. In geneal, we will also keep the physical constants c and G within the metics..3 Basic objects of a metic The basic objects of a metic ae the Chistoffel symbols, the Riemann and Ricci tensos as well as the Ricci and Ketschmann scalas which ae defined as follows: Chistoffel symbols of the fist kind: Γ νλ µ = gµν,λ + g µλ,ν g νλ,µ ).3.) with the elation g νλ,µ = Γ µνλ + Γ µλ ν.3.) Chistoffel symbols of the second kind: Γ µ νλ = gµρ g ρν,λ + g ρλ,ν g νλ,ρ ).3.3) which ae elated to the Chistoffel symbols of the fist kind via Γ µ νλ = gµρ Γ νλ ρ.3.4) Riemann tenso: o R µ νρσ = Γ µ νσ,ρ Γ µ νρ,σ + Γ µ ρλ Γλ νσ Γ µ σλ Γλ νρ.3.5) R µνρσ = g µλ R λ νρσ = Γ νσ µ,ρ Γ νρµ,σ + Γ λ νρ Γ µσλ Γ λ νσ Γ µσλ.3.6) with symmeties and R µνρσ = R µνσρ, R µνρσ = R νµρσ, R µνρσ = R ρσ µν.3.7) R µνρσ + R µρσν + R µσνρ = 0.3.8) Ricci tenso: R µν = g ρσ R ρµσν = R ρ µρν.3.9) Ricci and Ketschmann scala: R = g µν R µν = R µ µ, K = R αβ γδ R αβ γδ = R γδ αβ Rαβ γδ.3.0) The notation of the Chistoffel symbols of the fist kind diffes fom the one used by Rindle[Rin0], Γ Rindle µνλ = Γ CoS νλ µ.

7 .4. NATURAL LOCAL TETRAD AND INITIAL CONDITIONS FOR GEODESICS 3 Weyl tenso: C µνρσ = R µνρσ gµ[ ρ R σ ]ν g ν[ ρ R σ ]µ ) + 3 Rg µ[ ρg σ ]ν.3.) If we change the signatue of a metic, these basic objects tansfom as follows: Γ µ νλ Γµ νλ, R µνρσ R µνρσ, C µνρσ C µνρσ,.3.a) R µν R µν, R R, K K..3.b) Covaiant deivative λ g µν = g µν;λ = ) Covaiant deivative of the vecto field ψ µ : ν ψ µ = ψ µ ;ν = ν ψ µ + Γ µ νλ ψλ.3.4) Covaiant deivative of a -s-tenso field: c T a...a b...b s = c T a...a b...b s + Γ a dc T d...a b...b s Γ a dc T a...a d b...b s Γ d b c T a...a d...bs... Γ d b s c T a...a b...b s d.3.5) Killing equation: ξ µ;ν + ξ ν;µ = ).4 Natual local tetad and initial conditions fo geodesics We will call a local tetad natual if it is adapted to the symmeties o the coodinates of the spacetime. The fou base vectos e i) = e µ i) µ ae given with espect to coodinate diections / x µ = µ, compae Nakahaa[Nak90] o Chandasekha[Cha06] fo an intoduction to the tetad fomalism. The invese o dual tetad is given by θ i) = θ i) µ dx µ with θ i) µ e µ j) = δi) j) and θ i) µ e ν i) = δ ν µ..4.) Note that we us Latin indices in backets fo tetads and Geek indices fo coodinates..4. Othonomality condition To be applicable as a local efeence fame Minkowski fame), a local tetad e i) has to fulfill the othonomality condition ei),e j) g = g e i),e j) ) = gµν e µ i) eν j)! = η i) j),.4.) whee η i) j) = diag,±,±,±) depending on the signatue signg) = ± of the metic. Thus, the line element of a metic can be witten as ds = η i) j) θ i) θ j) = η i) j) θ i) µ θ j) ν dx µ dx ν..4.3) To obtain a local tetad e i), we could fist detemine the dual tetad θ i) via Eq..4.3). If we combine all fou dual tetad vectos into one matix Θ, we only have to detemine its invese Θ to find the tetad vectos, θ 0) 0 θ 0) θ 0) θ 0) e 0 e 3 θ ) Θ= 0 θ ) θ ) θ ) 0) 0 e ) 0 e ) 0 3) 3 θ ) 0 θ ) θ ) θ ) e Θ 0) e ) e ) e 3) = e 3 0) e ) e ) e 3)..4.4) θ 3) 0 θ 3) θ 3) θ 3) e 3 3 0) e 3 ) e 3 ) e 3 3)

8 4 CHAPTER. INTRODUCTION AND NOTATION Thee ae also seveal useful elations: e a)µ = g µν e ν a), η a)b) = e µ a) e b)µ, e b)µ = η a)b) θ a) µ,.4.5a) µ = η a)b) e a)µ, g µν = e a)µ θ a) ν, η a)b) = θ a) µ θ b) ν g µν..4.5b) θ b).4. Tetad tansfomations Instead of the above found local tetad that was diectly constucted fom the spacetime metic, we can also use any othe local tetad ê i) = A k i e k),.4.6) whee A is an element of the Loentz goup O,3). Hence A T ηa=η and deta) =. Loentz-tansfomation in the diection n a =sin χ cosξ,sin χ sinξ,cosξ) T = n a with γ = / β, Λ 0 0 = γ, Λ0 a = β γn a, Λ a 0 = β γna, Λ a b =γ )na n b + δ a b..4.7).4.3 Ricci otation-, connection-, and stuctue coefficients The Ricci otation coefficients γ i) j)k) with espect to the local tetad e i) ae defined by γ i) j)k) := g µλ e µ i) e k) e λ j) = g µλ e µ i) eν k) νe λ j) = g µλ e µ i) eν k) ) ν e λ j) + Γλ νβ eβ..4.8) j) They ae antisymmetic in the fist two indices, γ i) j)k) = γ j)i)k), which follows fom the definition, Eq..4.8), and the elation ) 0= µ η i) j) = µ g β ν e β i) eν j),.4.9) whee µ g β ν = 0, compae [Cha06]. Othewise, we have γ i) j)k) = θi) λ eν k) νe λ j) = eλ j) eν k) νθ i) λ..4.0) The contaction of the fist and the last index is given by γ j) = γ k) j)k) = ηk)i) γ i) j)k) = γ 0) j)0) + γ ) j)) + γ ) j)) + γ 3) j)3) = ν e ν j)..4.) The connection coefficients ω m) j)n) with espect to the local tetad e i) ae defined by ) ω m) := θm) j)n) µ e j) e µ n) = θm) µ e α j) αe µ n) = θm) µ e α j) α e µ n) + Γµ αβ eβ,.4.) n) compae Nakahaa[Nak90]. They ae elated to the Ricci otation coefficients via γ i) j)k) = η i)m) ω m) k) j)..4.3) Futhemoe, the local tetad has a non-vanishing Lie-backet[X,Y] ν = X µ µ Y ν Y µ µ X ν. Thus, [ ei),e j) ] = c k) i) j) e k) o c k) i) j) = θk)[ e i),e j) ]..4.4) The stuctue coefficients c k) via i) j) ae elated to the connection coefficients o the Ricci otation coefficients c k) i) j) = ωk) i) j) ωk) j)i) = ηk)m) γ m) j)i) γ m)i) j) ) = γ k) j)i) γ k) i) j)..4.5)

9 .4. NATURAL LOCAL TETRAD AND INITIAL CONDITIONS FOR GEODESICS Riemann-, Ricci-, and Weyl-tenso with espect to a local tetad The tansfomations between the coodinate epesentations of the Riemann-, Ricci-, and Weyl-tensos and thei epesentation with espect to a local tetad e i) ae given by R a)b)c)d) = R µνρσ e µ a) eν b) eρ c) eσ d), R a)b) = R µν e µ a) eν b),.4.6a).4.6b) C a)b)c)d) = C µνρσ e µ a) eν b) eρ c) eσ d) = R a)b)c)d) ) R ηa)[c) R d)]b) η b)[c) R d)]a) + 3 η a)[c)η d)]b)..4.6c).4.5 Null o timelike diections A null o timelike diection υ = υ i) e i) with espect to a local tetad e i) can be witten as υ = υ 0) e 0) + ψ sin χ cosξ e ) + sin χ sinξ e ) + cosχ e 3) ) = υ 0) e 0) + ψn..4.7) In the case of a null diection we have ψ = and υ 0) =±. A timelike diection can be identified with an initial fou-velocity u=cγe 0 + β n), whee u = u,u g = c γ e 0) + β n,e 0) + β n = c γ +β ) = c, signg)=±..4.8) Thus, ψ = cβ γ and υ 0 =±cγ. The sign of υ 0) detemines the time diection. e 3) χ ψ υ ξ e ) e ) Figue.: Null o timelike diection υ with espect to the local tetad e i). The tansfomations between a local diection υ i) and its coodinate epesentation υ µ ead υ µ = υ i) e µ i) and υ i) = θ i) µ υ µ..4.9).4.6 Local tetad fo diagonal metics If a spacetime is epesented by a diagonal metic ds = g 00 dx 0 ) + g dx ) + g dx ) + g 33 dx 3 ),.4.0) the natual local tetad eads e 0) = g00 0, e ) = g, e ) = g, e 3) = g33 3,.4.) given that the metic coefficients ae well behaved. Analogously, the dual tetad eads θ 0) = g 00 dx 0, θ ) = g dx, θ ) = g dx, θ 3) = g 33 dx 3..4.)

10 6 CHAPTER. INTRODUCTION AND NOTATION.4.7 Local tetad fo stationay axisymmetic spacetimes The line element of a stationay axisymmetic spacetime is given by ds = g tt dt + g tϕ dt dϕ+ g ϕϕ dϕ + g d + g ϑϑ dϑ,.4.3) whee the metic components ae functions of and ϑ only. The local tetad fo an obseve on a stationay cicula obit, = const,ϑ = const), with fou velocity u=cγ t + ζ ϕ ) can be defined as, compae Bini[BJ00], e 0) = Γ t + ζ ϕ ), e) = g, e ) = gϑϑ ϑ, e 3) = Γ [ ±g tϕ + ζg ϕϕ ) t g tt + ζg tϕ ) ϕ ],.4.4a).4.4b) whee Γ= ) and =..4.5) g tt + ζg tϕ + ζ g ϕϕ g tϕ g tt g ϕϕ The angula velocity ζ is limited due to g tt + ζg tϕ + ζ g ϕϕ < 0 ζ min = ω ω g tt and ζ max = ω+ ω g g tt.4.6) ϕϕ g ϕϕ with ω = g tϕ /g ϕϕ. Fo ζ = 0, the obseve is static with espect to spatial infinity. The locally non-otating fame LNRF) has angula velocity ζ = ω, see also MTW[MTW73], execise Static limit: ζ min = 0 g tt = 0. The tansfomation between the local diection υ i) and the coodinate diection υ µ eads with υ 0 = Γ υ 0) ± υ 3) w ), υ = υ) g, υ = υ) gϑϑ, υ 3 = Γ υ 0) ζ υ 3) w ),.4.7) w = g tϕ + ζg ϕϕ and w = g tt + ζg tϕ..4.8) The back tansfomation eads υ 0) = υ 0 w + υ 3 w, υ ) = g υ, υ ) = g ϑϑ υ, υ 3) =± ζυ 0 υ ) Γ ζw + w Γ ζw + w ) Note, to obtain a ight-handed local tetad, det e µ > 0, the uppe sign has to be used. i).5 Newman-Penose tetad and spin-coefficients The Newman-Penose tetad consists of fou null vectos e i) ={l,n,m, m}, whee l and n ae eal and m and m ae complex conjugates; see Penose and Rindle[PR84] o Chandasekha[Cha06] fo a thoough discussion. The Newman-Penose NP) tetad has to fulfill the othonomality elation e i),e j) = η i) j) with η i) j) = ) A staightfowad elation between the NP tetad and the natual local tetad, as discussed in Sec..4, is given by l= e0) + e ) ), n= e0) e ) ), m= e) + ie 3) ),.5.)

11 .6. COORDINATE RELATIONS 7 whee the uppe/lowe sign has to be used fo metics with positive/negative signatue. The Ricci otation-coefficients of a NP tetad ae now called spin coefficients and ae designated by specific symbols: κ = γ ))), ρ = γ )0)3), ε = ) γ)0)0) + γ )3)0),.5.3a) σ = γ )0)), µ = γ )3)), γ = ) γ)0)) + γ )3)),.5.3b) λ = γ )3)3), τ = γ )0)), α = ) γ)0)3) + γ )3)3),.5.3c) ν = γ )3)), π = γ )3)0), β = ) γ)0)) + γ )3))..5.3d).6 Coodinate elations.6. Spheical and Catesian coodinates The well-known elation between the spheical coodinates, ϑ, ϕ) and the Catesian coodinatesx, y, z), compae Fig.., ae and x= sin ϑ cosϕ, y= sin ϑ sinϕ, z= cosϑ,.6.) = x + y + z, ϑ = actan x + y,z), ϕ = actany,x),.6.) whee actan) ensues that ϕ [0,π) and ϑ 0,π). z ϑ ϕ y x Figue.: Relation between spheical and Catesian coodinates. The total diffeentials of the spheical coodinates ead d= xdx+ydy+zdz, dϑ = xzdx+yzdy x + y )dz, dϕ = ydx+xdy x + y x + y,.6.3) wheeas the coodinate deivatives ead = x x+ y y+ z z = sin ϑ cosϕ x + sinϑ sinϕ y + cosϑ z,.6.4a) ϑ = x ϑ x+ y ϑ y+ z ϑ z = cosϑ cosϕ x + cosϑ sinϕ y sinϑ z,.6.4b) ϕ = x ϕ x+ y ϕ y+ z ϕ z = sinϑ sinϕ x + sinϑ cosϕ y,.6.4c)

12 8 CHAPTER. INTRODUCTION AND NOTATION and x = x + ϑ x ϑ + ϕ x ϕ = sinϑ cosϕ + y = y + ϑ y ϑ + ϕ y ϕ = sinϑ sinϕ + z = z + ϑ z ϑ + ϕ z ϕ = cosϑ sinϑ ϑ. cosϑ cosϕ ϑ sinϕ sinϑ ϕ, cosϑ sin ϕ ϑ + cosϕ sin ϑ ϕ,.6.5a).6.5b).6.5c).6. Cylindical and Catesian coodinates The elation between cylindical coodinates,ϕ,z) and Catesian coodinatesx,y,z) is given by x= cosϕ, y= sinϕ, and = x + y, ϕ = actany,x),.6.6) whee actan ) again ensues that the angle ϕ [0, π). z ϕ z y x Figue.3: Relation between cylindical and Catesian coodinates. The total diffeentials of the spheical coodinates ae given by and d= xdx+ydy, dϕ = ydx+xdy,.6.7) dx=cosϕ d sinϕ dϕ, dy=sin ϕ d+ cosϕ dϕ..6.8) The coodinate deivatives ae and = x x+ y y = cosϕ x + sinϕ y,.6.9a) ϕ = x ϕ x+ y ϕ y = sinϕ x + cosϕ y m x = x + ϕ x ϕ = cosϕ sinϕ y, y = y + ϕ y ϕ = sinϕ + cosϕ y..7 Embedding diagam A two-dimensional hypesuface with line segment.6.9b).6.0a).6.0b) dσ = g )d + g ϕϕ )dϕ.7.)

13 .8. EQUATIONS OF MOTION AND TRANSPORT EQUATIONS 9 can be embedded in a thee-dimensional Euclidean space with cylindical coodinates, [ ) ] dz dσ = + dρ + ρ dϕ..7.) dρ With ρ) = g ϕϕ ) and d=d/dρ)dρ, we obtain fo the embedding function z=z), ) dz d gϕϕ d =± g..7.3) d If g ϕϕ )=, then d g ϕϕ /d=..8 Equations of motion and tanspot equations.8. Geodesic equation The geodesic equation eads D x µ dλ = d x µ dλ + Γµ ρσ dx ρ dλ dx σ dλ = 0.8.) with the affine paamete λ. Fo timelike geodesics, howeve, we eplace the affine paamete by the pope time τ. The geodesic equation.8.) is a system of odinay diffeential equations of second ode. Hence, to solve these diffeential equations, we need an initial position x µ λ = 0) as well as an initial diection dx µ /dλ)λ = 0). This initial diection has to fulfill the constaint equation dx µ dx ν g µν dλ dλ = κc,.8.) whee κ = 0 fo lightlike and κ =,signg) = ±), fo timelike geodesics. The initial diection can also be detemined by means of a local efeence fame, compae sec..4.5, that automatically fulfills the constaint equation.8.). If we use the natual local tetad as local efeence fame, we have dx µ dλ = υ µ = υ i) e µ i)..8.3) λ=0.8. Femi-Walke tanspot The Femi-Walke tanspot, see e.g. Stephani[SS90], of a vecto X = X µ µ along the woldline x µ τ) with fou-velocity u=u µ τ) µ is given by F u X µ = 0 with F u X µ := dx µ dτ + Γµ ρσu ρ X σ + c uσ a µ a σ u µ )g ρσ X ρ..8.4) The fou-acceleation follows fom the fou-velocity via a µ = D x µ dτ = Duµ dτ.8.3 Paallel tanspot = duµ dτ + Γµ ρσu ρ u σ..8.5) If the fou-acceleation vanishes, the Femi-Walke tanspot simplifies to the paallel tanspotp u X µ = 0 with P u X µ := DX µ dτ = dx µ dτ + Γµ ρσu ρ X σ..8.6)

14 0 CHAPTER. INTRODUCTION AND NOTATION.8.4 Eule-Lagange fomalism A detailed discussion of the Eule-Lagange fomalism can be found, e.g., in Rindle[Rin0]. The Lagangian L is defined as L := g µν ẋ µ ẋ ν, L! = κc,.8.7) whee x µ ae the coodinates of the metic, and the dot means diffeentiation with espect to the affine paamete λ. Fo timelike geodesics, κ = depending on the signatue of the metic, signg)=±. Fo lightlike geodesics, κ = 0. The Eule-Lagange equations ead d L dλ ẋ µ L x µ = 0. If L is independent of x ρ, then x ρ is a cyclic vaiable and p ρ = g ρν ẋ ν = const..8.8).8.9) Note that [L] U = length time fo timelike and [L] U = fo lightlike geodesics, see Sec Hamilton fomalism The supe-hamiltonian H is defined as H := gµν p µ p ν, H! = κc,.8.0) whee p µ = g µν ẋ ν ae the canonical momenta, see e.g. MTW[MTW73], paa... As in classical mechanics, we have dx µ dλ = H p µ.9 Units and d p µ dλ = H x µ..8.) A fist test in analyzing whethe an equation is coect is to check the units. Newton s gavitational constant G, fo example, has the following units [G] U = length3 mass time, whee[ ] U indicates that we evaluate the units of the enclosed expession. Futhe examples ae [ds] U = length,.0 Tools [u] U = length time,.0. Maple/GRTensoII [RSchwazschild tt ] U = [ time, R Schwazschild ϑϕϑϕ ] U.9.) = length..9.) The Chistoffel symbols, the Riemann- and Ricci-tensos as well as the Ricci and Ketschmann scalas in this catalogue wee detemined by means of the softwae Maple togethe with the GRTensoII package by Musgave, Pollney, and Lake. A typical woksheet to ente a new metic may look like this: The commecial softwae Maple can be found hee: The GRTensoII-package is fee:

15 .0. TOOLS > gtw); > makegschwazschild); Makeg.0: GRTenso metic/basis enty utility To quit makeg, type exit at any pompt. Do you wish to ente a ) metic [gdn,dn)], ) line element [ds], 3) non-holonomic basis [e)...en)], o 4) NP tetad [l,n,m,mba]? > : Ente coodinates as a LIST eg. [t,,theta,phi]): > [t,,theta,phi]: Ente the line element using d[cood] to indicate diffeentials. fo example, ^*d[theta]^ + sintheta)^*d[phi]^) [Type exit to quit makeg] ds^ = If thee ae any complex valued coodinates, constants o functions fo this spacetime, please ente them as a SET eg. { z, psi } ). Complex quantities [default={}]: > {}: You may choose to 0) Use the metic WITHOUT saving it, ) Save the metic as it is, ) Coect an element of the metic, 3) Re-ente the metic, 4) Add/change constaint equations, 5) Add a text desciption, o 6) Abandon this metic and etun to Maple. > 0: The woksheets fo some of the metics in this catalogue can be found on the authos homepage. To detemine the objects that ae defined with espect to a local tetad, the metic must be given as nonholonomic basis. The vaious basic objects can be detemined via Chistoffel symbols Γ νρ µ gcalcch); gcalcchdn,dn,up)); patial deivatives Γ νρ,σ µ gcalcchdn,dn,up,pdn)); Riemann tenso R µνρσ gcalcriemman); gcalcrdn,dn,dn,dn)); Ricci tenso R µν gcalcricci); gcalcrdn,dn)); Ricci scala R gcalcricciscala); Ketschmann scala K gcalcriemsq);.0. Mathematica The calculation of the Chistoffel symbols, the Riemann- o Ricci-tenso within Mathematica could ead like this: Cleaing the values of symbols: In[]:= Clea[cood, metic, invesemetic, affine, t,, Theta, Phi] Setting the dimension: In[]:= n := 4 Defining a list of coodinates: In[3]:= cood := {t,, Theta, Phi} Defining the metic: In[4]:= metic := {{- - s/) c^, 0, 0, 0}, {0, / - s/), 0, 0}, {0, 0, ^, 0}, {0, 0, 0, ^ Sin[Theta]^}} In[5]:= metic // MatixFom

16 CHAPTER. INTRODUCTION AND NOTATION Calculating the invese metic: In[6]:= invesemetic := Simplify[Invese[metic]] In[7]:= invesemetic // MatixFom Calculating the Chistoffel symbols of the second kind: In[8]:= affine := affine = Simplify[ Table[/) Sum[invesemetic[[Mu, Rho]] D[metic[[Rho, Nu]], cood[[lambda]]] + D[metic[[Rho, Lambda]], cood[[nu]]] - D[metic[[Nu, Lambda]], cood[[rho]]]), {Rho,, n}], {Nu,, n}, {Lambda,, n}, {Mu,, n}]] Displaying the Chistoffel symbols of the second kind: In[9]:= listaffine := Table[If[UnsameQ[affine[[Nu, Lambda, Mu]], 0], {Style[ Subsupescipt[\[CapitalGamma], Row[{cood[[Nu]], cood[[lambda]]}], cood[[mu]]], 8], "=", Style[affine[[Nu, Lambda, Mu]], 4]}], {Lambda,, n}, {Nu,, Lambda}, {Mu,, n}] In[0]:= TableFom[Patition[DeleteCases[Flatten[listaffine], Null], 3], TableSpacing -> {, }] Defining the Riemann tenso: In[]:= iemann := iemann = Table[D[affine[[Nu, Sigma, Mu]], cood[[rho]]] - D[affine[[Nu, Rho, Mu]], cood[[sigma]]] + Sum[affine[[Rho, Lambda, Mu]] affine[[nu, Sigma, Lambda]] - affine[[sigma, Lambda, Mu]] affine[[nu, Rho, Lambda]], {Lambda,, n}], {Mu,, n}, {Nu,, n}, {Rho,, n}, {Sigma,, n}] Defining the Riemann tenso with lowe indices: In[]:= iemanndn := iemanndn = Table[Simplify[ Sum[metic[[Mu, Kappa]] iemann[[kappa, Nu, Rho, Sigma]], {Kappa,, n}]], {Mu,, n}, {Nu,, n}, {Rho,, n}, {Sigma,, n}] In[3]:= listriemann := Table[If[UnsameQ[iemannDn[[Mu, Nu, Rho, Sigma]], 0], {Style[Subscipt[R, Row[{cood[[Mu]], cood[[nu]], cood[[rho]], cood[[sigma]]}]], 6], "=", iemanndn[[mu, Nu, Rho, Sigma]]}], {Nu,, n}, {Mu,, Nu}, {Sigma,, n}, {Rho,, Sigma}] In[4]:= TableFom[Patition[DeleteCases[Flatten[listRiemann], Null], 3], TableSpacing -> {, }] Defining the Ricci tenso: In[5]:= icci := icci = Table[Simplify[ Sum[iemann[[Rho, Mu, Rho, Nu]], {Rho,, n}]], {Mu,, n}, {Nu,, n}] In[6]:= listricci := Table[If[UnsameQ[icci[[Mu, Nu]], 0], {Style[Subscipt[R, Row[{cood[[Mu]], cood[[nu]]}]], 6], "=", Style[icci[[Mu, Nu]], 6]}], {Nu,, 4}, {Mu,, Nu}] In[7]:= TableFom[Patition[DeleteCases[Flatten[listRicci], Null], 3], TableSpacing -> {, }] Defining the Ricci scala: In[8]:= icciscala := icciscala = Simplify[Sum[

17 .0. TOOLS 3 Sum[invesemetic[[Mu, Nu]] icci[[nu, Mu]], {Mu,, n}], {Nu,, n}]] Defining the Ketschmann scala: In[9]:= iemannup := iemannup = Table[Simplify[ Sum[invesemetic[[Nu, Kappa]] iemann[[mu, Kappa, Rho, Sigma]], {Kappa,, n}]], {Mu,, n}, {Nu,, n}, {Rho,, n}, {Sigma,, n}] In[0]:= ketschmann := ketschmann = Simplify[Sum[ Sum[Sum[Sum[ iemannup[[mu, Nu, Rho, Sigma]] iemannup[[rho, Sigma, Mu, Nu]], {Mu,, n}], {Nu,, n}], {Rho,, n}], {Sigma,, n}]] Some example notebooks can be found on the authos homepage..0.3 Maxima Instead of using commecial softwae like Maple o Mathematica, Maxima also offes a tenso package that helps to calculate the Chistoffel symbols etc. The above example fo the Schwazschild metic can be witten as a maxima woksheet as follows: /* load ctenso package */ loadctenso); /* define coodinates to use */ ct_coods:[t,,theta,phi]; /* stat with the identity metic */ lg:ident4); lg[,]:c^*-s/); lg[,]:-/-s/); lg[3,3]:-^; lg[4,4]:-^*sintheta)^; cmetic); /* calculate the chistoffel symbols of the second kind */ chistofmcs); /* calculate the iemann tenso */ liemannmcs); /* calculate the icci tenso */ iccimcs); /* calculate the icci scala */ scuvatue); /* calculate the Ketschmann scala */ uiemannmcs); invaiant); atsimp%); As you may have noticed, the Schwazschild metic must be given with negative signatue.

18 Chapte Spacetimes. Minkowski.. Catesian coodinates The Minkowski metic in Catesian coodinates{t, x, y, z Ê} eads ds = c dt + dx + dy + dz...) All Chistoffel symbols as well as the Riemann- and Ricci-tenso vanish identically. The natual local tetad is tivial, with dual e t) = c t, e x) = x, e y) = y, e z) = z,..) θ t) = cdt, θ x) = dx, θ y) = dy, θ z) = dz...3).. Cylindical coodinates The Minkowski metic in cylindical coodinates {t Ê, Ê +,ϕ [0,π),z Ê}, ds = c dt + d + dϕ + dz,..4) has the natual local tetad e t) = c t, e ) =, e ϕ) = ϕ, e z) = z...5) Chistoffel symbols: Γ ϕϕ =, Γ ϕ ϕ =...6) Patial deivatives Γϕ, ϕ =, Γ ϕϕ, =...7) Ricci otation coefficients: γ ϕ))ϕ) = and γ ) =...8) 4

19 .. MINKOWSKI 5..3 Spheical coodinates In spheical coodinates{t Ê, Ê +,ϑ 0,π),ϕ [0,π)}, the Minkowski metic eads ds = c dt + d + dϑ + sin ϑdϕ )...9) Chistoffel symbols: Γ ϑϑ =, Γ ϕϕ = sin ϑ, Γ ϑ ϑ =,..0a) Γϕϕ ϑ = sinϑ cosϑ, Γϕ ϕ =, Γϕ ϑϕ = cotϑ...0b) Patial deivatives Γϑ, ϑ =, Γϕ ϕ, =, Γ ϑϑ, =,..a) Γ ϕ ϑϕ,ϑ = sin ϑ, Γ ϕϕ, = sin ϑ, Γ ϑ ϕϕ,ϑ = cosϑ),..b) Γ ϕϕ,ϑ = sinϑ)...c) Local tetad: e t) = c t, e ) =, e ϑ) = ϑ, e ϕ) = sin ϑ ϕ...) Ricci otation coefficients: γ ϑ))ϑ) = γ ϕ))ϕ) =, The contactions of the Ricci otation coefficients ead γ ) =, γ ϕ)ϑ)ϕ) = cotϑ...3) γ ϑ) = cotϑ...4)..4 Confom-compactified coodinates The Minkowski metic in confom-compactified coodinates{ψ [ π,π],ξ 0,π),ϑ 0,π),ϕ [0,π)} eads[he99] ds = dψ + dξ + sin ξ dϑ + sin ϑdϕ )...5) This fom follows fom the spheical Minkowski metic..9) by means of the coodinate tansfomation ct+ =tan ψ+ ξ esulting in the metic d s = dψ + dξ 4cos ψ+ξ cos ψ ξ, ct =tan ψ ξ,..6) + sin ξ dϑ 4cos ψ+ξ cos ψ ξ + sin ϑdϕ ),..7) and by the confomal tansfomation ds = Ω d s with Ω = 4cos ψ+ξ cos ψ ξ. Chistoffel symbols: Γ ϑ ξ ϑ = cotξ, Γϕ ξ ϕ = cotξ, Γξ ϑϑ = sinξ cosξ,..8a) Γ ϕ ϑϕ = cotϑ, Γξ ϕϕ = sinξ cosξ sin ϑ, Γϕϕ ϑ = sinϑ cosϑ...8b)

20 6 CHAPTER. SPACETIMES Patial deivatives Γ ϑ ξ ϑ,ξ = sin ξ, Γϕ ξ ϕ,ξ = sin ξ, Γξ = cosξ),..9a) ϑϑ,ξ Γ ϕ ϑϕ,ϑ = sin ϑ, Γξ ϕϕ,ξ = cosξ)sin ϑ, Γ ϑ ϕϕ,ϑ = cosϑ),..9b) Γ ξ ϕϕ,ϑ = sinξ)sinϑ). Riemann-Tenso:..9c) R ξ ϑξϑ = sin ξ, R ξ ϕξ ϕ = sin ξ sin ϑ, R ϑϕϑϕ = sin 4 ξ sin ϑ...0) Ricci-Tenso: R ξ ξ =, R ϑϑ = sin ξ, R ϕϕ = sin ξ sin ϑ...) Ricci and Ketschmann scalas: R = 6, K =...) The Weyl tenso vanishs identically. Local tetad: e ψ) = ψ, e ξ) = ξ, e ϑ) = sinξ ϑ, e ϕ) = sinξ sinϑ ϕ...3) Ricci otation coefficients: γ ϑ)ξ)ϑ) = γ ϕ)ξ)ϕ) = cotξ, γ ϕ)ϑ)ϕ) = cotϑ sinξ...4) The contactions of the Ricci otation coefficients ead γ ξ) = cotξ, Riemann-Tenso with espect to local tetad: γ ϑ) = cotϑ sinξ...5) R ξ)ϑ)ξ)ϑ) = R ξ)ϕ)ξ)ϕ) = R ϑ)ϕ)ϑ)ϕ) =...6) Ricci-Tenso with espect to local tetad: R ξ)ξ) = R ϑ)ϑ) = R ϕ)ϕ) =...7)..5 Rotating coodinates The tansfomation dϕ dϕ + ω dt bings the Minkowski metic..4) into the otating fom[rin0] with coodinates{t Ê, Ê +,ϕ [0,π),z Ê}, ds = ω c ) [cdt Ω)dϕ] + d + ω /c dϕ + dz..8) with Ω)= ω/c)/ ω /c ). Metic-Tenso: g tt = c + ω, g tϕ = ω, g = g zz =, g ϕϕ =...9)

21 .. MINKOWSKI 7 Chistoffel symbols: Γtt = ω, Γt ϕ = ω, Γ tϕ = ω, Γϕ ϕ =, Γ ϕϕ =...30) Patial deivatives Γ tt, = ω, Γ ϕ t, = ω, Γ tϕ, = ω, Γ ϕ ϕ, =, Γ ϕϕ, =...3) The local tetad of the comoving obseve is e t) = c t ω c ϕ, e ) =, e ϕ) = ϕ, e z) = z,..3) wheeas the static obseve has the local tetad e t) = c ω /c t, e ) =, e z) = z,..33a) ω ω e ϕ) = c ω /c t+ /c ϕ...33b)..6 Rindle coodinates The woldline of an obseve in the Minkowski spacetime who moves with constant pope acceleation α along the x diection eads x= c αt cosh α c, c αt ct = sinh α c,..34) whee t is the obseve s pope time. The obseve stats at x= with zeo velocity. Howeve, such an obseve could also be descibed with Rindle coodinates. With the coodinate tansfomation ct,x) τ,ρ) : ct = ρ sinhτ, x= coshτ,..35) ρ whee ρ = α/c, the Rindle metic eads ds = ρ dτ + ρ 4 dρ + dy + dz...36) Chistoffel symbols: Γ ρ ττ = ρ, Γ τ τρ = ρ, Γρ ρρ = ρ...37) Patial deivatives Γττ,ρ ρ =, Γτρ,ρ τ = ρ, Γρ ρρ,ρ = ρ...38) The Riemann and Ricci tensos as well as the Ricci and Ketschmann scala vanish identically. Local tetad: e τ) = ρ τ, e ρ) = ρ ρ, e y) = y, e z) = z...39) Ricci otation coefficients: γ τ)ρ)τ) = ρ, and γ ρ) = ρ...40)

22 8 CHAPTER. SPACETIMES. Schwazschild spacetime.. Schwazschild coodinates In Schwazschild coodinates{t Ê, Ê +,ϑ 0,π),ϕ [0,π)}, the Schwazschild metic eads ds = s ) c dt + s / d + dϑ + sin ϑdϕ ),..) whee s = GM/c is the Schwazschild adius, G is Newton s constant, c is the speed of light, and M is the mass of the black hole. The citical point = 0 is a eal cuvatue singulaity while the event hoizon, = s, is only a coodinate singulaity, see e.g. the Ketschmann scala. Chistoffel symbols: Γ tt = c s s ) 3, Γ t t = s s ), Γ = s ), s..a) Γ ϑ ϑ =, Γϕ ϕ =, Γ ϑϑ = s),..b) Γ ϕ ϑϕ = cotϑ, Γ ϕϕ = s)sin ϑ, Γϕϕ ϑ = sinϑ cosϑ...c) Patial deivatives Γ tt, = 3 s)c s 4, Γ t t, = s) s s ), Γ, = s) s s ),..3a) Γϑ, ϑ =, Γϕ ϕ, =, Γ ϑϑ, =,..3b) Γ ϕ ϑϕ,ϑ = sin ϑ, Γ ϕϕ, = sin ϑ, Γϕϕ,ϑ ϑ = cosϑ),..3c) Γ ϕϕ,ϑ = s)sinϑ)...3d) Riemann-Tenso: R tt = c s 3, R tϑtϑ = c s ) s, R tϕtϕ = s R ϑϑ =, R ϕϕ = s c s ) s sin ϑ,..4a) s sin ϑ s, R ϑϕϑϕ = s sin ϑ...4b) As aspected, the Ricci tenso as well as the Ricci scala vanish identically because the Schwazschild spacetime is a vacuum solution of the field equations. Hence, the Weyl tenso is identical to the Riemann tenso. The Ketschmann scala eads K = s 6. Hee, it becomes clea that at = s thee is no eal singulaity. Local tetad: e t) = Dual tetad: θ t) = c c s / t, e ) = s dt, θ) =..5) s, e ϑ) = ϑ, e ϕ) = sinϑ ϕ...6) d s /, θϑ) = dϑ, θ ϕ) = sinϑ dϕ...7) Ricci otation coefficients: s γ )t)t) = s /, γ ϑ))ϑ) = γ ϕ))ϕ) = s, γ ϕ)ϑ)ϕ) = cotϑ...8)

23 .. SCHWARZSCHILD SPACETIME 9 The contactions of the Ricci otation coefficients ead γ ) = 4 3 s s /, γ ϑ) = cotϑ...9) Stuctue coefficients: c t) t)) = s s /, cϑ) )ϑ) = cϕ) )ϕ) = s, ϑ)ϕ) = cotϑ...0) cϕ) Riemann-Tenso with espect to local tetad: R t))t)) = R ϑ)ϕ)ϑ)ϕ) = s 3, R t)ϑ)t)ϑ) = R t)ϕ)t)ϕ) = R )ϑ))ϑ) = R )ϕ))ϕ) = s 3. The covaiant deivatives of the Riemann tenso ead..a)..b) R t))t));) = R ϑ)ϕ)ϑ)ϕ);) = 3 s s 5 ), R t)))ϑ);ϑ) = R t))t)ϕ);ϕ) = R t)ϑ)t)ϑ);) = R t)ϕ)t)ϕ);) = = R )ϕ)ϑ)ϕ);ϑ) = 3 s 5 s ), R )ϑ))ϑ);) = R )ϑ)ϑ)ϕ);ϕ) = R )ϕ))ϕ);) = 3 s 5 s ). Newman-Penose tetad:..a)..b)..c) l= et) + e ) ), n= et) e ) ), m= eϑ) + ie ϕ) )...3) Non-vanishing spin coefficients: ρ = µ = s, γ = ε = s 4 cotϑ, α = β = s /...4) Embedding: The embedding function eads z= s s. Eule-Lagange: The Eule-Lagangian fomalism, Sec..8.4, fo geodesics in the ϑ = π/ hypeplane yields ṙ +V eff = k c, V eff = ) s h ) κc..5)..6) with the constants of motion k= s /)c ṫ, h= ϕ, and κ as in Eq..8.). Fo timelike geodesics, the effective potential has the extemal points ± = h ± h h 3c s c s,..7) whee + is a maximum and is a minimum. The innemost timelike cicula geodesic follows fom h = 3c s and eads itcg = 3 s. Null geodesics, howeve, have only a maximum at po = 3 s. The coesponding cicula obit is called photon obit. Futhe eading: Schwazschild[Sch6, Sch03], MTW[MTW73], Rindle[Rin0], Wald[Wal84], Chandasekha[Cha06], Mülle[Mül08b, Mül09].

24 0 CHAPTER. SPACETIMES.. Schwazschild in pseudo-catesian coodinates The Schwazschild spacetime in pseudo-catesian coodinatest,x,y,z) eads ds = + ) x c dt + s x + y + z s / ) ) dx s / + y + z x + + y dy s / + z ) dz +..8) s s ) xydxdy+xzdxdz+yzdydz), whee = x + y + z. Fo a natual local tetad that is adapted to the x-axis, we make the following ansatz: e 0) = c s / t, e ) = A x, e ) = B x +C y, e 3) = D x + E y + F z...9) A= gxx, B= g xy g xx g xy /g xx+ g yy, C= g xy /g xx+ g yy,..0a) D= g xyg yz g xz g yy, E = g xzg xy g xx g yz N, F =, NW NW W..0b) with N = g xx g yy g xy, W = g xx g yy g zz g xzg yy + g xz g xy g yz g xyg zz g xx g yz...a)..b)..3 Isotopic coodinates Spheical isotopic coodinates The Schwazschild metic..) in spheical isotopic coodinates t,ρ,ϑ,ϕ) eads ds = ) ρs /ρ c dt + + ρ ) 4 s [ dρ + ρ dϑ + sin ϑdϕ )],..) +ρ s /ρ ρ whee =ρ + ρ s ρ ) o ρ = s ± ) s ) 4..3) is the coodinate tansfomation between the Schwazschild adial coodinate and the isotopic adial coodinate ρ, see e.g. MTW[MTW73] page 840. The event hoizon is given by ρ s = s /4. The photon obit and the innemost timelike cicula geodesic ead ρ po = + ) 3 ρ s and ρ itcg = 5+ ) 6 ρ s...4) Chistoffel symbols: Γtt ρ = ρ ρ s)ρ 4 ρ s c ρ+ ρ s ) 7, Γ t tρ = ρ s ρ ρs, Γρρ ρ = ρ s ρ+ ρ s )ρ, Γ ϑ ρϑ = ρ ρ s ρ+ ρ s )ρ, Γ ϕ ϑϕ = cotϑ, Γϕ ρϕ = ρ ρ s ρ+ ρ s )ρ,..5a) Γρ ϑϑ = ρ ρ ρ s ρ+ ρ s,..5b) Γρ ϕϕ = ρ ρ s)ρ sin ϑ ρ+ ρ s, Γ ϑ ϕϕ = sinϑ cosϑ...5c)

25 .. SCHWARZSCHILD SPACETIME Riemann-Tenso: R tρtρ = 4 ρ ρ s) ρ s c ρ+ ρ s ) 4 ρ, R tϑtϑ = ρ ρ s) ρρ s c ρ+ ρ s ) 4,..6a) R tϕtϕ = ρ ρ s) ρc ρ s sin ϑ ρ+ ρ s ) 4, R ρϑρϑ = ρ+ ρ s) ρ s ρ 3,..6b) R ρϕρϕ = ρ+ ρ s) ρ s sin ϑ ρ 3, R ϑϕϑϕ = 4ρ+ ρ s) ρ s sin ϑ...6c) ρ The Ricci tenso and the Ricci scala vanish identically. Ketschmann scala: s s K = 9 = ρ 6 +ρ s /ρ) ρ) 6...7) Local tetad: e t) = +ρ s/ρ t ρ s /ρ c, e ) = [+ρ s /ρ] ρ, e ϑ) = ρ[+ρ s /ρ] ϑ, e ϕ) = ρ[+ρ s /ρ] sin ϑ ϕ...8a)..8b) Ricci otation coefficients: γ ρ)t)t) = γ ϕ)ϑ)ϕ) = ρ cotϑ ρ+ ρ s ). ρ s ρ ρ+ ρ s ) 3 ρ ρ s ), γ ϑ)ρ)ϑ) = γ ϕ)ρ)ϕ) = ρρ ρ s) ρ+ ρ s ) 3,..9a)..9b) The contactions of the Ricci otation coefficients ead γ ρ) = ρρ ρρ s + ρ s) ρ+ ρ s ) 3 ρ ρ s ), γ ϑ) = ρ cotϑ ρ+ ρ s )...30) Riemann-Tenso with espect to local tetad: R t)ρ)t)ρ) = R ϑ)ϕ)ϑ)ϕ) = s ρ) 3, R t)ϑ)t)ϑ) = R t)ϕ)t)ϕ) = R ρ)ϑ)ρ)ϑ) = R ρ)ϕ)ρ)ϕ) = s ρ) 3...3a)..3b) Futhe eading: Buchdahl[Buc85]. Catesian isotopic coodinates The Schwazschild metic..) in Catesian isotopic coodinatest,x,y,z) eads, ds = ) ρs /ρ c dt + + ρ ) 4 s [ dx + dy + dz ],..3) +ρ s /ρ ρ whee ρ = x + y + z and, as befoe, =ρ + ρ ) s. ρ..33)

26 CHAPTER. SPACETIMES Chistoffel symbols: Γtt x = c ρ 3 ρ s ρ ρ s )x ρ+ ρ s ) 7, Γtt y = c ρ 3 ρ s ρ ρ s )y ρ+ ρ s ) 7, Γtt z = c ρ 3 ρ s ρ ρ s )z ρ+ ρ s ) 7,..34a) Γ t tx = ρ s x ρ 3 [ ρs /ρ ], Γt ty = ρ s y ρ 3 [ ρs /ρ ], Γt tz = ρ s z ρ 3 [ ρs /ρ ],..34b) Γ x xx = Γy xy = Γz xz = Γx yy = Γx zz = ρ s ρ 3 Γ y xx = Γx xy = Γy yy = Γz yz = Γy zz = ρ s ρ 3 Γ z xx = Γ x xz = Γ z yy = Γ y yz = Γ z zz = ρ s ρ 3..4 Eddington-Finkelstein x +ρ s /ρ,..34c) y +ρ s /ρ,..34d) z +ρ s /ρ...34e) The tansfomation of the Schwazschild metic..) fom the usual Schwazschild time coodinate t to the advanced null coodinate v with cv=ct+ + s ln s )..35) leads to the ingoing Eddington-Finkelstein[Edd4, Fin58] metic with coodinatesv,,ϑ,ϕ), ds = Metic-Tenso: s g vv = c s Chistoffel symbols: ) c dv + cdvd+ dϑ + sin ϑdϕ )...36) ), g v = c, g ϑϑ =, g ϕϕ = sin ϑ...37) Γ v vv = c s, Γ vv = c s s ) 3, Γ v = c s, Γϑ ϑ =,..38a) Γ ϕ ϕ =, Γv ϑϑ = c, Γ ϑϑ = s), Γ ϕ ϑϕ = cotϑ,..38b) Γ v ϕϕ = sin ϑ, Γ ϕϕ = s )sin ϑ, Γϕϕ ϑ = sinϑ cosϑ...38c) c Patial deivatives Γ v vv, = c s 3, Γ vv, = 3 s)c s 4, Γ v, = c s 3,..39a) Γ ϑ ϑ, =, Γϕ ϕ, =, Γv ϑϑ, = c,..39b) Γ ϑϑ, =, Γϕ ϑϕ,ϑ = sin ϑ, Γv ϕϕ, = sin ϑ,..39c) c Γ v sinϑ) ϕϕ,ϑ =, c Γ ϕϕ, = sin ϑ, Γ ϑ ϕϕ,ϑ = cosϑ),..39d) Γ ϕϕ,ϑ = s)sinϑ)...39e) Riemann-Tenso: R vv = c s 3, R vϑvϑ = c s s ), R vϑϑ = c s,..40a) R vϕvϕ = c s s )sin ϑ, R vϕϕ = c s sin ϑ, R ϑϕϑϕ = s sin ϑ...40b)

27 .. SCHWARZSCHILD SPACETIME 3 While the Ricci tenso and the Ricci scala vanish identically, the Ketschmann scala is K = s /6. Static local tetad: e v) = c s / v, e ) = c s / v+ s, e ϑ) = ϑ, e ϕ) = sinϑ ϕ...4) Dual tetad: θ v) = c s dv d s /, d θ) = s /, θϑ) = dϑ, θ ϕ) = sinϑdϕ...4) Ricci otation coefficients: s γ )v)v) = s /, γ ϑ))ϑ) = γ ϕ))ϕ) = s, γ ϕ)ϑ)ϕ) = cotϑ...43) The contactions of the Ricci otation coefficients ead γ ) = 4 3 s s /, γ ϑ) = cotϑ...44) Riemann-Tenso with espect to local tetad: R v))v)) = R ϑ)ϕ)ϑ)ϕ) = s 3, R v)ϑ)v)ϑ) = R v)ϕ)v)ϕ) = R )ϑ))ϑ) = R )ϕ))ϕ) = s a)..45b)..5 Kuskal-Szekees The Schwazschild metic in Kuskal-Szekees[Ku60, Wal84] coodinatest,x,ϑ,ϕ) eads ds = 43 s e / s dt + dx ) + dω,..46) whee R + \{0} is given by means of the LambetW-function W, [ )e / s = X T o = s W s X T e ) ] ) The Schwazschild coodinate time t in tems of the Kuskal coodinates T and X eads t = s actanh T X, > s,..48a) t = s actanh X T, < s,..48b) t =, = s...48c) The tansfomations between Kuskal- and Schwazschild coodinates ead X = e /s) sinh ct e /s) cosh ct s s, T = s X = e /s) cosh ct, T = s s, 0<<,..49a) s e /s) sinh ct, s...49b) s s

28 4 CHAPTER. SPACETIMES Chistoffel symbols: Γ T T T = Γ X T X = Γ T XX = T s+ s ) e / s,..50a) Γ X T T = ΓT T X = ΓX XX = X s+ s ) e / s,..50b) Γ ϑ T ϑ = s T e / s, Γ ϑ Xϑ = s X e / s,..50c) Γ T ϑϑ = s T, Γ T ϑϑ = s T sin ϑ, Γ X ϑϑ = s X, Γ X ϑϑ = s X sin ϑ,..50d)..50e) Γ ϕ ϑϕ = cotϑ, Γϑ ϕϕ = sinϑ cosϑ...50f) Riemann-Tenso: R T XT X = 6 7 s 5 e / s, R T ϕt ϕ = 4 s e / s sin ϑ, R T ϑtϑ = 4 s e / s, R XϑXϑ = 4 s e / s,..5a)..5b) R XϕXϕ = 4 s e / s sin ϑ, R ϑϕϑϕ = s sin ϑ...5c) The Ricci-Tenso as well as the Ricci-scala vanish identically. Ketschmann scala: K = s 6...5) Local tetad: e T) = e /s) T, e X) = e /s) X, e s s ϑ) = s s ϑ, e ϕ) = sin ϑ ϕ..53) Riemann-Tenso with espect to local tetad: R T)X)T)X) = R X)ϑ)X)ϑ) = R X)ϕ)X)ϕ) = R ϑ)ϕ)ϑ)ϕ) = s 3, R T)ϑ)T)ϑ) = R T)ϕ)T)ϕ) = s a)..54b)..6 Totoise coodinates The Schwazschild metic epesented by totoise coodinates t,ρ,ϑ,ϕ) eads ds = ) s c dt + ) s dρ + ρ) dϑ + sin ϑdϕ ),..55) ρ) ρ) whee s = GM/c is the Schwazschild adius, G is Newton s constant, c is the speed of light, and M is the mass of the black hole. The totoise adial coodinate ρ and the Schwazschild adial coodinate ae elated by ) ρ = + s ln s o = s {+W [ )]} ρ exp...56) s

29 .. SCHWARZSCHILD SPACETIME 5 Chistoffel symbols: Γ ρ tt = c s ρ), Γt tρ = s ρ), Γρ ρρ = s ρ),..57a) Γρϑ ϑ = ρ), Γ ϕ ρϕ = s ρ), Γ ρ ϑϑ = ρ),..57b) s Γ ϕ ϑϕ = cotϑ, Γρ ϕϕ = ρ)sin ϑ, Γ ϑ ϕϕ = sinϑ cosϑ...57c) Riemann-Tenso: R tρtρ = c s ρ) 3 R tϕtϕ = c sin ϑ R ρϕρϕ = sin ϑ s ρ) s ρ) s ρ) ), R tϑtϑ = c s ρ) ) s ρ),..58a) ) s ρ), R ρϑρϑ = ) s s..58b) ρ) ρ) ) s ρ), R ϑϕϑϕ = ρ) s sin ϑ...58c) The Ricci tenso as well as the Ricci scala vanish identically because the Schwazschild spacetime is a vacuum solution of the field equations. Hence, the Weyl tenso is identical to the Riemann tenso. The Ketschmann scala eads s K = ρ) ) Local tetad: e t) = Dual tetad: θ t) = c c s /ρ) t, e ρ) = s ρ) dt, θρ) = Riemann-Tenso with espect to local tetad: s /ρ) ρ, e ϑ) = ρ) ϑ, e ϕ) = ρ)sinϑ ϕ...60) s ρ) dρ, θϑ) = ρ)dϑ, θ ϕ) = ρ)sin ϑ dϕ...6) R t)ρ)t)ρ) = R ϑ)ϕ)ϑ)ϕ) = s ρ) 3, R t)ϑ)t)ϑ) = R t)ϕ)t)ϕ) = R ρ)ϑ)ρ)ϑ) = R ρ)ϕ)ρ)ϕ) = s ρ) 3...6a)..6b) Futhe eading: MTW[MTW73]..7 Painlevé-Gullstand The Schwazschild metic expessed in Painlevé-Gullstand coodinates[mp0] eads ) ds = c dt s + d+ cdt + dϑ + sin ϑdϕ ),..63) whee the new time coodinate T follows fom the Schwazschild time t in the following way: ct = ct+ s + ) s ln /s /s )

30 6 CHAPTER. SPACETIMES Metic-Tenso: g TT = c s Chistoffel symbols: ) s, g T = c, g =, g ϑϑ =, g ϕϕ = sin ϑ...65) Γ T T T = c s Γ T = c s s, Γ T T = c s s ) 3, Γ T T = s, s, ΓT = s c, Γ = s s,..66a)..66b) s Γ ϑ ϑ =, Γϕ ϕ =, ΓT ϑϑ = c, Γ ϑϑ = s), Γ ϕ ϑϕ = cotϑ, ΓT ϕϕ = s c sin ϑ,..66c)..66d) Γ ϕϕ = s)sin ϑ, Γϕϕ ϑ = sinϑ cosϑ...66e) Riemann-Tenso: R TT = c s 3, R TϑTϑ = c s s ), R Tϑϑ = c s R TϕT ϕ = c s s )sin ϑ, R Tϕϕ = c s s sin ϑ, R ϑϑ = s, s,..67a)..67b) R ϕϕ = s sin ϑ, R ϑϕϑϕ = s sin ϑ...67c) The Ricci tenso and the Ricci scala vanish identically. Ketschmann scala: K = s /6...68) Fo the Painlevé-Gullstand coodinates, we can define two natual local tetads. Static local tetad: ê T) = c s / s T, ê ) = c T + s s, ê ϑ) = ϑ, ê ϕ) = sinϑ ϕ,..69) Dual tetad: ˆθ T) = c s dt d /s, ˆθ ) = d s /, ˆθ ϑ) = dϑ, ˆθ ϕ) = sin ϑ dϕ...70) Feely falling local tetad: e T) = c s T, e ) =, e ϑ) = ϑ, e ϕ) = sinϑ ϕ...7) Dual tetad: θ T) = cdt, θ ) s = c dt + d, θϑ) = dϑ, θ ϕ) = sin ϑdϕ...7) Riemann-Tenso with espect to local tetad: R T))T)) = R ϑ)ϕ)ϑ)ϕ) = s 3, R T)ϑ)T)ϑ) = R T)ϕ)T)ϕ) = R )ϑ))ϑ) = R )ϕ))ϕ) = s a)..73b)

31 .. SCHWARZSCHILD SPACETIME 7..8 Isael coodinates The Schwazschild metic in Isael coodinatesx,y,ϑ,ϕ) eads[skm + 03] ds = s [ ) 4dx dy+ y dx ++xy) dϑ + sin ϑdϕ )],..74) +xy whee the coodinates x and y follow fom the Schwazschild coodinates via t = s +xy+ln y ) and = s +xy)...75) x Chistoffel symbols: Γ x xx = y+xy) +xy), Γ ϑ xϑ = y +xy, Γy xx = y3 3+xy) +xy) 3, Γϕ xϕ = y +xy, Γy xy = y+xy) +xy), Γϑ yϑ = x +xy,..76a)..76b) Γ ϕ xϕ = x +xy, Γx ϑϑ = x +xy), Γy ϑϑ = y xy),..76c) Γ ϕ ϑϕ = cotϑ, Γx ϕϕ = x +xy)sin ϑ, Γ y ϕϕ = y xy)sin ϑ,..76d) Γ ϑ ϕϕ = sinϑ cosϑ...76e) Riemann-Tenso: s R xyxy = 4 +xy) 3, R y s xϑxϑ = +xy), R xϑyϑ = s +xy, R xϕxϕ = s y sin ϑ +xy), R xϕyϕ = s sin ϑ +xy, R ϑϕϑϕ =+xy) s sin ϑ...77a)..77b) The Ricci tenso as well as the Ricci scala vanish identically. Hence, the Weyl tenso is identical to the Riemann tenso. The Ketschmann scala eads K = Local tetad: 4 s +xy)6...78) +xy y +xy e 0) = x + y, e s y s +xy ) = x, s y e ) = s +xy) ϑ, e 3) = s +xy)sinϑ ϕ...79a)..79b) Dual tetad: θ 0) = s +xy dy, y θ ) = sy dx+ s +xy dy, +xy y..80a) θ ) = s +xy)dϑ, θ 3) = s +xy)sinϑ dϕ...80b)

32 8 CHAPTER. SPACETIMES.3 Alcubiee Wap The Wap metic given by Miguel Alcubiee[Alc94] eads whee ds = c dt +dx v s f s )dt) + dy + dz.3.) v s = dx st), dt s t)= x x s t)) + y + z,.3.a).3.b) f s )= tanhσ s+ R)) tanhσ s R))..3.c) tanhσr) The paamete R>0 defines the adius of the wap bubble and the paamete σ > 0 its thickness. Metic-Tenso: g tt = c + v s f s ), g tx = v s f s ), g xx = g yy = g zz =..3.3) Chistoffel symbols: Γ t tt = f f x v 3 s c, Γ z tt = f f zv s, Γy tt = f f y v s,.3.4a) Γ x tt = f 3 f x v 4 s c f f x v s c f t v s c, Γ t tx = f f xv s c, Γ x tx = f f x v 3 s c,.3.4b) Γ y tx = f yv s, Γz tx = f zv s, Γt ty = f f yv s c,.3.4c) Γ x ty = f f y v 3 s + c f y v s c, Γ t tz = f f zv s c, Γx tz = f f z v 3 s + c f z v s c,.3.4d) Γ t xx = f xv s c, Γ x xy = f f yv s c, Γt xz = f zv s c, with deivatives f t = d f s) = v sσx x s t)) dt s tanhσr) f x = d f s) = σx x st)) dx s tanhσr) f y = d f s) dy f z = d f s) dz σy = s tanhσr) σz = s tanhσr) Γx xx = f f xv s c, Γ t xy = f yv s c, [ ] sech σ s + R)) sech σ s R)) [ sech σ s + R)) sech σ s R)) [ ] sech σ s + R)) sech σ s R)) [ ] sech σ s + R)) sech σ s R)).3.4e) Γx xz = f f zv s c,.3.4f) ].3.5a).3.5b).3.5c).3.5d) Riemann- and Ricci-tenso as well as Ricci- and Ketschman-scala ae shown only in the Maple woksheet. Comoving local tetad: e 0) = c t + v s f x ), e ) = x, e ) = y, e 3) = z..3.6) Static local tetad: e 0) = c v s f v s f c t, e ) = c c v s f t + v s f x, e c ) = y, e 3) = z..3.7) Futhe eading: Pfenning[PF97], Clak[CHL99], Van Den Boeck[Bo99]

33 .4. BARRIOLA-VILENKIN MONOPOL 9.4 Baiola-Vilenkin monopol The Baiola-Vilenkin metic descibes the gavitational field of a global monopole[bv89]. In spheical coodinatest,, ϑ, ϕ), the metic eads ds = c dt + d + k dϑ + sin ϑ dϕ ),.4.) whee k is the scaling facto esponsible fo the deficit/suplus angle. Chistoffel symbols: Γ ϑϑ = k, Γ ϕϕ = k sin ϑ, Γ ϑ ϑ =,.4.a) Γϕϕ ϑ = sinϑ cosϑ, Γϕ ϕ =, Γϕ ϑϕ = cotϑ..4.b) Patial deivatives Γ ϑ ϑ, =, Γϕ ϕ, =, Γ ϑϑ, = k,.4.3a) Γ ϕ ϑϕ,ϑ = sin ϑ, Γ ϕϕ, = k sin ϑ, Γϕϕ,ϑ ϑ = cosϑ),.4.3b) Γ ϕϕ,ϑ = k sinϑ)..4.3c) Riemann-Tenso: R ϑϕϑϕ = k )k sin ϑ..4.4) Ricci tenso, Ricci and Ketschmann scala: R ϑϑ = k ), R ϕϕ = k )sin ϑ, R = k k, K = 4 k ) k ) Weyl-Tenso: C tt = c k ) 3k, C tϑtϑ = c 6 k ), C tϕtϕ = c 6 k )sin ϑ,.4.6a) C ϑϑ = 6 k ), C ϕϕ = 6 k )sin ϑ, C ϑϕϑϕ = k 3 k )sin ϑ..4.6b) Local tetad: e t) = c t, e ) =, e ϑ) = k ϑ, e ϕ) = Dual tetad: k sinϑ ϕ..4.7) θ t) = cdt, θ ) = d, θ ϑ) = k dϑ, θ ϕ) = k sin ϑ dϕ..4.8) Ricci otation coefficients: γ ϑ))ϑ) = γ ϕ))ϕ) =, The contactions of the Ricci otation coefficients ead γ ) =, γ ϕ)ϑ)ϕ) = cotϑ k..4.9) γ ϑ) = cotϑ k..4.0)

34 30 CHAPTER. SPACETIMES Riemann-Tenso with espect to local tetad: R ϑ)ϕ)ϑ)ϕ) = k k..4.) Ricci-Tenso with espect to local tetad: R ϑ)ϑ) = R ϕ)ϕ) = k k..4.) Weyl-Tenso with espect to local tetad: C t))t)) = C ϑ)ϕ)ϑ)ϕ) = k 3k, C t)ϑ)t)ϑ) = C t)ϕ)t)ϕ) = C )ϑ))ϑ) = C )ϕ))ϕ) = k 6k..4.3a).4.3b) Embedding: The embedding function, see Sec..7, fo k< eads z= k..4.4) Eule-Lagange: The Eule-Lagangian fomalism, Sec..8.4, fo geodesics in the ϑ = π/ hypeplane yields ṙ +V eff = h c, V eff = ) h k κc,.4.5) with the constants of motion h = c ṫ and h = k ϕ. The point of closest appoach pca fo a null geodesic that stats at = i with y=±e t) +cosξ e ) +sinξ e ϕ) is given by = i sinξ. Hence, the pca is independent of k. The same is also tue fo timelike geodesics. Futhe eading: Baiola and Vilenkin[BV89], Pelick[Pe04].

35 .5. BERTOTTI-KASNER 3.5 Betotti-Kasne The Betotti-Kasne spacetime in spheical coodinatest,,ϑ,ϕ) eads[rin98] ds = c dt + e Λct d + Λ dϑ + sin ϑdϕ ),.5.) whee the cosmological constant Λ must be positive. Chistoffel symbols: Γ t = c Λ, Γ t = Patial deivatives Λ Λct c e, Γ ϕ ϑϕ = cotϑ, Γϑ ϕϕ = sinϑ cosϑ..5.) Γ t,t = Λe Λct, Γ ϕ ϑϕ,ϑ = sin ϑ, Γϑ ϕϕ,ϑ = cosϑ)..5.3) Riemann-Tenso: R tt = Λc e Λct, R ϑϕϑϕ = sin ϑ Λ..5.4) Ricci-Tenso: R tt = Λc, R = Λe Λct, R ϑϑ =, R ϕϕ = sin ϑ..5.5) The Ricci and Ketschmann scalas ead R = 4Λ, K = 8Λ..5.6) Weyl-Tenso: C tt = 3 Λc e Λct, C tϑtϑ = c 3, C tϕtϕ = Λct 3 e, C ϑϑ = 3 e Λct, C ϕϕ = 3 e Λct sin ϑ, C ϑϕϑϕ = 3 Local tetad: e t) = c t, e ) = e Λct, e ϑ) = Λ ϑ, e ϕ) = Dual tetad: θ t) = cdt, θ ) = e Λct d, θ ϑ) = dϑ, Λ.5.7a) sin ϑ Λ..5.7b) Λ sinϑ ϕ..5.8) θ ϕ) = sinϑ Λ dϕ..5.9) Ricci otation coefficients: γ t))) = Λ, γ ϑ)ϕ)ϕ) = Λcotϑ..5.0) The contactions of the Ricci otation coefficients ead γ t) = Λ, γ ϑ) = Λcotϑ..5.) Riemann-Tenso with espect to local tetad: R t))t)) = R ϑ)ϕ)ϑ)ϕ) = Λ..5.)

36 3 CHAPTER. SPACETIMES Ricci-Tenso with espect to local tetad: R t)t) = R )) = R ϑ)ϑ) = R ϕ)ϕ) = Λ..5.3) Weyl-Tenso with espect to local tetad: C t))t)) = C ϑ)ϕ)ϑ)ϕ) = Λ 3, C t)ϑ)t)ϑ) = C t)ϕ)t)ϕ) = C )ϑ))ϑ) = C )ϕ))ϕ) = Λ a).5.4b) Eule-Lagange: The Eule-Lagangian fomalism, Sec..8.4, fo geodesics in the ϑ = π/ hypeplane yields c ṫ = h e Λct + Λh κ.5.5) with the constants of motion h = ṙe Λct and h = ϕ/λ. Thus, +qt) λ = c qt i ) ln Λ Λh κ qt) +qt i ) Λct ), qt)= h e whee t i is the initial time. We can also solve the obital equation: t)=wt) wt i )+ i, wt)= whee i is the initial adial position. h e Λct + Λh κ Λh +,.5.6) κ h Λ,.5.7) Futhe eading: Rindle[Rin98]: Evey spheically symmetic solution of the genealized vacuum field equations R i j = Λg i j is eithe equivalent to Kottle s genealization of Schwazschild space o to the [...] Betotti-Kasne space fo which Λ must be necessaily be positive).

Catalogue of Spacetimes

Catalogue of Spacetimes Catalogue of Spacetimes e e x = x = x = q 0 x 0 x 00 0 x = x = 0 x = 0 M Authos: Thomas Mülle Visualisieungsinstitut de Univesität Stuttgat VISUS) Allmanding 9, 70569 Stuttgat, Gemany Thomas.Muelle@vis.uni-stuttgat.de

Διαβάστε περισσότερα

Catalogue of Spacetimes

Catalogue of Spacetimes Catalogue of Spacetimes e e x = x = x = q 0 x 0 x 00 0 x = x = 0 x = 0 M Authos: Thomas Mülle Visualisieungsinstitut de Univesität Stuttgat VISUS Allmanding 9, 70569 Stuttgat, Gemany Thomas.Muelle@vis.uni-stuttgat.de

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

1 Full derivation of the Schwarzschild solution

1 Full derivation of the Schwarzschild solution EPGY Summe Institute SRGR Gay Oas 1 Full deivation of the Schwazschild solution The goal of this document is to povide a full, thooughly detailed deivation of the Schwazschild solution. Much of the diffeential

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ Γιουνανλής Παναγιώτης Επιβλέπων: Γ.Βουγιατζής Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

Problems in curvilinear coordinates

Problems in curvilinear coordinates Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture VI: Tensor calculus

Lecture VI: Tensor calculus Lectue VI: Tenso calculus Chistophe M. Hiata Caltech M/C 350-7, Pasadena CA 925, USA (Dated: Octobe 4, 20) I. OVERVIEW In this lectue, we will begin with some examples fom vecto calculus, and then continue

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

A Short Introduction to Tensors

A Short Introduction to Tensors May 2, 2007 Tensors: Scalars and Vectors Any physical quantity, e.g. the velocity of a particle, is determined by a set of numerical values - its components - which depend on the coordinate system. Studying

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Schwarzschild spacetime

Schwarzschild spacetime SageManifolds. Schwazschild spacetime This woksheet demonstates a few capabilities of SageManifolds vesion., as included in SageMath 7.5) in computations egading Schwazschild spacetime. Click hee to download

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Obital angula momentum and the spheical hamonics Apil 2, 207 Obital angula momentum We compae ou esult on epesentations of otations with ou pevious expeience of angula momentum, defined fo a point paticle

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2 Theoetical Competition: July Question Page of. Ένα πρόβλημα τριών σωμάτων και το LISA μ M O m EIKONA Ομοεπίπεδες τροχιές των τριών σωμάτων. Δύο μάζες Μ και m κινούνται σε κυκλικές τροχιές με ακτίνες και,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

1. Consider the three dimensional space with the line element. Determine the surface area of the sphere that corresponds to r = R.

1. Consider the three dimensional space with the line element. Determine the surface area of the sphere that corresponds to r = R. Physics 43: Relativity Homework Assignment 4 Due 26 March 27 1. Consider the three dimensional space with the line element 2 = 1 1 r/r dr2 + r 2 (dθ 2 + sin 2 θ dφ 2 ) Determine the surface area of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Geometry of the 2-sphere

Geometry of the 2-sphere Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Parallel transport and geodesics

Parallel transport and geodesics Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα