Schwarzschild spacetime

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Schwarzschild spacetime"

Transcript

1 SageManifolds. Schwazschild spacetime This woksheet demonstates a few capabilities of SageManifolds vesion., as included in SageMath 7.5) in computations egading Schwazschild spacetime. Click hee to download the woksheet file ipynb fomat). To un it, you must stat SageMath with the Jupyte notebook, via the command sage -n jupyte NB: a vesion of SageMath at least equal to 7.5 is equied to un this woksheet: In []: Out[]: vesion) 'SageMath vesion 7.5, Release Date: 27--' Fist we set up the notebook to display mathematical objects using LaTeX endeing: In [2]: %display latex Spacetime manifold We declae the Schwazschild spacetime as a 4-dimensional diffeentiable manifold: In [3]: Out[3]: In [4]: M Manifold4, 'M', '\mathcal{m}') ; M pintm) 4-dimensional diffeentiable manifold M The spacetime manifold can be split into 4 egions, coesponding to the 4 quadants in the I IV I III Kuskal diagam.let us denote by to the inteios of these 4 egions. and ae asymtotically flat egions outside the event hoizon; II is inside the futue event hoizon and IV is inside the past event hoizon. In [5]: egi M.open_subset'R_I', '\mathcal{r}_{\mathm{i}}') egii M.open_subset'R_II', '\mathcal{r}_{\mathm{ii}}') egiii M.open_subset'R_III', '\mathcal{r}_{\mathm{iii}}') egiv M.open_subset'R_IV', '\mathcal{r}_{\mathm{iv}}') egi, egii, egiii, egiv Out[5]: I, II, III, IV ) The paamete m of the Schwazschild spacetime is declaed as a symbolic vaiable: In [6]: m va'm') ; assumem>) Boye-Lindquist coodinates The standad Boye-Lindquist coodinates also called Schwazschild coodinates) ae defined on I II

2 SageManifolds. In [7]: Out[7]: In [8]: egi_ii egi.unionegii) ; egi_ii I II X.<t,,th,ph> egi_ii.chat't :,+oo) th:,pi):\theta ph:,2*pi ):\phi') pintx) Chat R_I_union_R_II, t,, th, ph)) In [9]: X Out[9]: I II, t,, θ, ϕ)) X I II We natually intoduce two subchats as the estictions of the chat to egions and espectively. Since, in tems of the Boye-Lindquist coodinates, I esp. II ) is defined by esp. ), we set > 2m < 2m In []: In []: X_I X.estictegI, >2*m) ; X_I Out[]: I, t,, θ, ϕ)) X_II X.estictegII, <2*m) ; X_II Out[]: II, t,, θ, ϕ)) At this stage, the manifold's atlas has 3 chats: In [2]: M.atlas) Out[2]: [ I II, t,, θ, ϕ)), I, t,, θ, ϕ)), II, t,, θ, ϕ))] In [3]: M.default_chat) Out[3]: I II, t,, θ, ϕ)) Thee vecto fames have been defined on the manifold: the thee coodinate fames: In [4]: Out[4]: In [5]: M.fames) [, )), I II t θ I ϕ t θ ϕ )), II, t θ ϕ ))] pintm.default_fame)) Coodinate fame R_I_union_R_II, d/dt,d/d,d/dth,d/dph)) In [6]: Out[6]: M.default_fame).domain) I II Metic tenso The metic tenso is defined as follows: 2

3 SageManifolds. In [7]: g M.loentzian_metic'g') pintg) Loentzian metic g on the 4-dimensional diffeentiable manifold M The metic tenso is set by its components in the coodinate fame associated with Schwazschild coodinates, which is the cuent manifold's default fame: In [8]: g[,], g[,] --2*m/), /-2*m/) g[2,2], g[3,3] ^2, *sinth))^2 In [9]: g.display) Out[9]: g 2 m ) dt dt + 2 m d d + 2 dθ dθ + 2 sin θ) 2 dϕ ) dϕ As an example, let us conside a vecto field defined only on I : In [2]: v egi.vecto_field'v') v[] v[] - 2*m/ # unset components ae zeo v.display) Out[2]: 2 m v + + t ) In [2]: Out[2]: v.domain) I In [22]: Out[22]: g.domain) I g v Since, it is possible to apply to : In [23]: s gv,v) ; pints) Scala field gv,v) on the Open subset R_I of the 4-dimensional diffee ntiable manifold M In [24]: s.display) # v is indeed a null vecto Out[24]: g v, v) : I t,, θ, ϕ) R Levi-Civita Connection The Levi-Civita connection associated with : g In [25]: nab g.connection) ; pintnab) Levi-Civita connection nabla_g associated with the Loentzian metic g on the 4-dimensional diffeentiable manifold M 3

4 SageManifolds. Let us veify that the covaiant deivative of with espect to vanishes identically: g In [26]: nabg) Out[26]: Tue In [27]: Out[27]: g g nabg).display) The nonzeo Chistoffel symbols of can be deduced by symmety: g with espect to Schwazschild coodinates, skipping those that In [28]: Out[28]: g.chistoffel_symbols_display) Γ t t Γ t t Γ Γ θ θ Γ ϕ ϕ Γ θ θ Γ θ ϕ ϕ Γ ϕ ϕ Γ ϕ θ ϕ 2 m 2 m 2 m2 3 m m 2 m 2 2 m 2 m ) sin θ) 2 cosθ) sinθ) cosθ) sinθ) Cuvatue The Riemann cuvatue tenso associated with : g In [29]: R g.iemann) ; pintr) Tenso field Riemg) of type,3) on the 4-dimensional diffeentiable manifold M The Weyl confomal tenso associated with : g In [3]: C g.weyl) ; pintc) Tenso field Cg) of type,3) on the 4-dimensional diffeentiable man ifold M 4

5 SageManifolds. In [3]: Out[3]: C.display) 2 2 C g) ) d dt d + ) d d 2 m 2 3 t 2 m 2 3 t m sin θ) 2 dt dθ dt dθ + dθ dθ dt dϕ t t t m sin θ) m 2 m) dt dϕ + dϕ dϕ dt dt dt t m 2 m) d + dt d dt dθ d dθ + 4 m sin θ) 2 m sin θ) 2 dθ dθ d dϕ d dϕ + dϕ dϕ 2 m 2 2 m 2 d + dt dt dθ + dt dθ 4 ) θ 4 ) θ dt + ) d d dθ + ) d dθ 2 m 2 3 θ 2 m 2 3 θ 2 m sin θ) 2 2 m sin θ) 2 d + dϕ dθ dϕ dϕ dϕ dθ θ θ 2 m 2 2 m 2 + dt dt dϕ + dt dϕ dt 4 ) ϕ 4 ) ϕ + ) d d dϕ + ) d dϕ d 2 m 2 3 ϕ 2 m 2 3 ϕ 2 2 dθ dθ dϕ + dθ dϕ dθ ϕ ϕ The Ricci tenso associated with : g In [32]: Ric g.icci) ; pintric) Field of symmetic bilinea foms Ricg) on the 4-dimensional diffeent iable manifold M Einstein equation Let us check that the Schwazschild metic is a solution of the vacuum Einstein equation: In [33]: Ric Out[33]: Tue In [34]: Out[34]: Ric g) Ric.display) # anothe view of the above Contay to the Ricci tenso, the Riemann tenso does not vanish: 5

6 SageManifolds. In [35]: R[:] Out[35]: [[ ], [ ], [ ], [ ]], [[ [[, 2 m,, ], 2 m [ ], [ ], [ ] ], 2 m m 2 3 [[,, m, ], [ ], m [ ], [ ] ], [[ m sin θ) 2 ], [ ], [ ], m sin θ) 2, [ ]]] [[[, 2 2 m 2 m),, ], 2 2 m 2 m), [ ], [ ], 4 [ 4 ] ] [[ ], [ ], [ ], [ ]], [ [ ], [,, m, ], [, m,, ], [ ] ], [ [ ], [ m sin θ) 2 ], [ ], [, m sin θ) 2,, ]]], [[[,, 2 m 2 m, ], [ ], [ 2 m 2 m ], [ ] ], 4 4 [ [ ], [,, m, ], [, m 2 m,, ], [ ] ], m 2 3 [[ ], [ ], [ ], [ ]], [ [ ], [ ], [ 2 m sin θ) 2 ], [,, 2 m sin θ) 2, ]]], [[[ 2 m 2 m ], [ ], [ ], [ 2 m 2 m ]], 4 4 [ [ ], [ m ], [ ], [, m 2 m,, ]], m 2 3 [ [ ], [ ], [ 2 m ], [,, 2 m, ]], [[ ], [ ], [ ], [ ]] ] ] 6

7 SageManifolds. In [36]: Out[36]: R.display) 2 2 Riem g) ) d dt d + ) d 2 m 2 3 t 2 m 2 3 t m sin θ) 2 d dt dθ dt dθ + dθ dθ dt t t t m sin θ) m 2 m) dϕ dt dϕ + dϕ dϕ dt dt t m 2 m) dt d + dt d dt dθ d dθ 4 m sin θ) 2 m sin θ) 2 + dθ dθ d dϕ d dϕ + 2 m 2 2 m 2 dϕ dϕ d + dt dt dθ + 4 ) θ 4 ) θ dt dθ dt + ) d d dθ + 2 m 2 3 θ 2 m 2 3 ) θ 2 m sin θ) 2 2 m sin θ) 2 d dθ d + dϕ dθ dϕ dϕ θ θ 2 m 2 2 m 2 dϕ dθ + dt dt dϕ + dt 4 ) ϕ 4 ) ϕ dϕ dt + ) d d dϕ + ) d 2 m 2 3 ϕ 2 m 2 3 ϕ 2 2 dϕ d dθ dθ dϕ + dθ dϕ dθ ϕ ϕ The nonzeo components of the Riemann tenso, skipping those that can be deduced by antisymmety: In [37]: Out[37]: R.display_componly_nonedundantTue) Riemg) t t Riemg) t θ t θ m 2 m 2 m 2 3 Riemg) t ϕ t ϕ Riemg) t t Riemg) θ θ Riemg) ϕ ϕ Riemg) θ t t θ Riemg) θ θ Riemg) θ ϕ θ ϕ Riemg) ϕ t t ϕ Riemg) ϕ ϕ Riemg) ϕ θ θ ϕ m sin θ)2 2 2 m m 2 4 m sin θ)2 2 m 2 m 4 m 2 m m sin θ) 2 2 m 2 m 4 m 2 m m m) 7

8 SageManifolds. In [38]: Ric[:] Out[38]: Since the Ricci tenso is zeo, the Weyl tenso is of couse equal to the Riemann tenso: In [39]: Out[39]: C R Tue Bianchi identity p R i jkl + k R i jlp + l R i jpk Let us check the Bianchi identity : In [4]: DR nabr) ; pintdr) Tenso field nabla_griemg)) of type,4) on the 4-dimensional diffe entiable manifold M In [4]: fo i in M.iange): fo j in M.iange): fo k in M.iange): fo l in M.iange): fo p in M.iange): pint DR[i,j,k,l,p] + DR[i,j,l,p,k] + DR[i,j,p,k,l], + Let us check that if we tun the fist sign into a one, the Bianchi identity does no longe hold: 8

9 SageManifolds. In [42]: fo i in M.iange): fo j in M.iange): fo k in M.iange): fo l in M.iange): fo p in M.iange): pint DR[i,j,k,l,p] - DR[i,j,l,p,k] + DR[i,j,p,k,l], -2*m/2*m*^3 - ^4) 2*m/2*m*^3 - ^4) -6*m/^2 6*m/^2-6 *m*sinth)^2/^2 6*m*sinth)^2/^2-6*m/^2 6*m/^2-6*m/ ^2 6*m/^2-6*m*sinth)^2/^2 6*m*sinth)^2/^2-6*m*sinth)^ 2/^2 6*m*sinth)^2/^2-2*2*m^2 - m*)/^5 2*2*m^2 - m*)/^5-6*4*m^3-4*m^2* + m*^2)/^4 6*4*m^3-4* m^2* + m*^2)/^4-6*4*m^3-4*m^2* + m*^2)*sin th)^2/^4 6*4*m^3-4*m^2* + m*^2)*sinth)^2/^4-6*m/^2 6*m/^2 6*2*m^2 - m*)*sint h)^2/ -6*2*m^2 - m*)*sinth)^2/ -6*m*sinth)^2/^2 6*m*sinth)^2/^2-6*2*m^2 - m*)*sinth)^2/ 6*2*m^2 - m*)*sin th)^2/ 6*2*m^2 - m*)/^5-6*2*m^2 - m*)/^5 6*2*m^2 - m*)/^5-6*2*m^2 - m*)/^5-6*m/2*m*^3 - ^4) 6*m/2*m*^3 - ^4) 6*m*sinth)^2/^2-6*m *sinth)^2/^2 2*m*sinth)^2 /^2-2*m*sinth)^2/^2 6*m*sinth)^2/^2-6*m*sinth)^2/^2-6*m*sinth)^2/^2 6*m*sinth) ^2/^2 6*2*m^2 - m* )/^5-6*2*m^2 - m*)/^5 6*2*m^2 - m*)/^5-6*2*m^2 - m*)/^5-6*m/2*m*^3 - ^4) 6*m/2*m*^3 - ^4) -6*m/^2 6*m/^2-2*m/^2 2*m/^2-6*m/ ^2 6*m/^2 6*m/^2-6*m/^2 Ketschmann scala Let us fist intoduce tenso R, of components R ijkl : g ip R p jkl In [43]: dr R.downg) ; pintdr) Tenso field of type,4) on the 4-dimensional diffeentiable manifold M and tenso R, of components R ijkl : g jp g kq g l R i pq 9

10 SageManifolds. In [44]: ur R.upg) ; pintur) Tenso field of type 4,) on the 4-dimensional diffeentiable manifold M K : R ijkl R ijkl The Ketschmann scala is : In [45]: K fo i in M.iange): fo j in M.iange): fo k in M.iange): fo l in M.iange): K + ur[i,j,k,l]*dr[i,j,k,l] K Out[45]: 48 m 2 6 Instead of the above loops, the Ketschmann scala can also be computed by means of the contact) method, asking that the contaction takes place on all indices positions,, 2, 3): In [46]: K ur.contact,, 2, 3, dr,,, 2, 3) K.exp) Out[46]: 48 m 2 6 The contaction can also be pefomed by means of index notations: In [47]: Out[47]: 48 m 2 K ur['^{ijkl}']*dr['_{ijkl}'] K.exp) 6 Eddington-Finkelstein coodinates Let us intoduce new coodinates on the spacetime manifold: the ingoing Eddington-Finkelstein ones: In [48]: X_EF.<v,,th,ph> egi_ii.chat'v :,+oo) th:,pi):\theta ph:,2 *pi):\vaphi') pintx_ef) ; X_EF Chat R_I_union_R_II, v,, th, ph)) Out[48]: I II, v,, θ, φ)) The change fom Schwazschild Boye-Lindquist) coodinates to the ingoing Eddington-Finkelstein ones: In [49]: ch_bl_ef_i X_I.tansition_mapX_EF, [t++2*m*ln/2*m)-),, th, ph ], estictions2>2*m) In [5]: pintch_bl_ef_i) ; ch_bl_ef_i Change of coodinates fom Chat R_I, t,, th, ph)) to Chat R_I, v,, th, ph)) Out[5]: I, t,, θ, φ)) I, v,, θ, φ))

11 SageManifolds. In [5]: Out[5]: ch_bl_ef_i.display) v θ φ 2 m log ) + + t 2 m θ φ In [52]: X_EF_I X_EF.estictegI) ; X_EF_I Out[52]: I, v,, θ, φ)) In [53]: ch_bl_ef_ii X_II.tansition_mapX_EF, [t++2*m*ln-/2*m)),, th, ph], estictions2<2*m) In [54]: pintch_bl_ef_ii) ; ch_bl_ef_ii Change of coodinates fom Chat R_II, t,, th, ph)) to Chat R_II, v,, th, ph)) Out[54]: II, t,, θ, φ)) II, v,, θ, φ)) In [55]: Out[55]: ch_bl_ef_ii.display) v θ φ 2 m log + ) + + t 2 m θ φ In [56]: X_EF_II X_EF.estictegII) ; X_EF_II Out[56]: II, v,, θ, φ)) The manifold's atlas has now 6 chats: In [57]: M.atlas) Out[57]: [ I II, t,, θ, φ)), I, t,, θ, φ)), II, t,, θ, φ)), I II, v,, θ, φ)),, v,, θ, φ)),, v,, θ, φ))] I II The default chat is 'BL': In [58]: M.default_chat) Out[58]: I II, t,, θ, φ)) The change fom Eddington-Finkelstein coodinates to the Schwazschild Boye-Lindquist) ones, computed as the invese of ch_bl_ef: In [59]: ch_ef_bl_i ch_bl_ef_i.invese) ; pintch_ef_bl_i) Change of coodinates fom Chat R_I, v,, th, ph)) to Chat R_I, t,, th, ph))

12 SageManifolds. In [6]: Out[6]: In [6]: ch_ef_bl_i.display) t 2 m log2) + 2 m logm) 2 m log2 m + ) + v θ θ φ φ ch_ef_bl_ii ch_bl_ef_ii.invese) ; pintch_ef_bl_ii) Change of coodinates fom Chat R_II, v,, th, ph)) to Chat R_II, t,, th, ph)) In [62]: Out[62]: ch_ef_bl_ii.display) t 2 m log2) 2 m log2 m ) + 2 m logm) + v θ θ φ φ At this stage, 6 vecto fames have been defined on the manifold: the 6 coodinate fames associated with the vaious chats: In [63]: Out[63]: M.fames) [, )), I II t θ I ϕ t θ ϕ )),, )) II I II, t θ ϕ v θ φ )), )) I II, v θ φ v θ φ ))] The default fame is: In [64]: Out[64]: M.default_fame) I II, t θ ϕ )) The cofames ae the duals of the defined vecto fames: In [65]: M.cofames) Out[65]: [ I II, dt, d, dθ, dϕ)), I, dt, d, dθ, dϕ)), II, dt, d, dθ, dϕ)), I II, dv, d, dθ, dφ)), I, dv, d, dθ, dφ)), II, dv, d, dθ, dφ))] If not specified, tenso components ae assumed to efe to the manifold's default fame. Fo instance, fo the metic tenso: In [66]: Out[66]: g.display) g 2 m ) dt dt + 2 m d d + 2 dθ dθ + 2 sin θ) 2 dϕ ) dϕ 2

13 SageManifolds. In [67]: g[:] Out[67]: 2 m 2 m 2 2 sin θ) 2 The tenso components in the fame associated with Eddington-Finkelstein coodinates in Region I ae obtained by poviding the fame to the function display): In [68]: Out[68]: g.displayx_ef_i.fame)) 2 m g ) dv dv + dv d + d dv + 2 dθ dθ + 2 sin θ) 2 dφ dφ They ae also etuned by the method comp), with the fame as agument: In [69]: Out[69]: g.compx_ef_i.fame))[:] 2 m 2 2 sin θ) 2 o, as a schotcut, In [7]: Out[7]: g[x_ef_i.fame),:] 2 m 2 2 sin θ) 2 Similaly, the metic components in the fame associated with Eddington-Finkelstein coodinates in Region II ae obtained by In [7]: Out[7]: g.displayx_ef_ii.fame)) 2 m g ) dv dv + dv d + d dv + 2 dθ dθ + 2 sin θ) 2 dφ dφ Note that thei fom is identical to that in Region I. Plot of the Boye-Lindquist coodinates in tems of the Eddington- Finkelstein ones Let us pefom the plot in Region I: 3

14 SageManifolds. In [72]: Out[72]: X_I.plotX_EF_I, anges{t:,8), :2.,)}, fixed_coods{th:pi/2,ph :}, ambient_coods,v), style{t:'--', :'-'}, paametes{m:}) Tetad of the static obseve Let us intoduce the othonomal tetad e α ) associated with the static obseves in Schwazschild spacetime, i.e. the obseves whose woldlines ae paallel to the timelike Killing vecto in the Region I. The othonomal tetad is defined via a tangent-space automophism that elates it to the Boye- Lindquist coodinate fame in Region I: In [73]: Out[73]: ch_to_stat egi.automophism_field) ch_to_stat[,], ch_to_stat[,] /sqt-2*m/), sqt-2*m/) ch_to_stat[2,2], ch_to_stat[3,3] /, /*sinth)) ch_to_stat[:] 2 m + 2 m + sinθ) 4

15 SageManifolds. In [74]: e X_I.fame).new_famech_to_stat, 'e') ; pinte) Vecto fame R_I, e_,e_,e_2,e_3)) At this stage, 7 vecto fames have been defined on the manifold : In [75]: Out[75]: M.fames) [, )), I II t θ I ϕ t θ ϕ )),, )) II I II, t θ ϕ v θ φ )), )) I II, v θ )), I φ v, e θ φ, e, e 2, e 3 )) ] The fist vecto of the tetad is the static obseve 4-velocity: In [76]: pinte[]) Vecto field e_ on the Open subset R_I of the 4-dimensional diffeenti able manifold M In [77]: Out[77]: e[].display) e 2 m + t As any 4-velocity, it is a unit timelike vecto: In [78]: Out[78]: ge[],e[]).exp) Let us check that the tetad e α ) is othonomal: In [79]: fo i in M.iange): fo j in M.iange): pint ge[i],e[j]).exp), pint " " - Anothe view of the above esult: In [8]: g[e,:] Out[8]: o, equivalently, 5

16 SageManifolds. In [8]: g.displaye) Out[8]: g e e + e e + e 2 e 2 + e 3 e 3 The expession of the 4-velocity and the vecto in tems of the fame associated with Eddington-Finkelstein coodinates: e e In [82]: e[].displayx_ef_i.fame)) Out[82]: e 2 m + ) v In [83]: e[].displayx_ef_i.fame)) Out[83]: e 2 m m + ) v ) Contay to vectos of a coodinate fame, the vectos of the tetad coefficients ae not identically zeo: e do not commute: thei stuctue In [84]: Out[84]: e.stuctue_coeff)[:] [[[, m 2 m +,, ], m 2 m +, [ ], [ ] 2 m 2 ) [ 2 m 2 ) ] ] [[ ], [ ], [ ], [ ]], [ [ ], [,, 2 m +, ], [, 2 m +,, ], [ ] ], 3 2 [ [ ], [ 2 m + ], [ cosθ) ], [, 2 m + sinθ), cosθ) sinθ) ] Equivalently, the Lie deivative of one vecto along anothe one is not necessaily zeo: In [85]: Out[85]: e[].lie_dee[]).displaye) m 2 m + 2 m 2 ) ) e The cuvatue 2-fom Ω associated with the tetad e α ): In [86]: Out[86]: g.connection).cuvatue_fom,,e).displayx_i.fame)) Ω 2 m dt d 3 6

17 SageManifolds. Kuskal-Szekees coodinates Let us now intoduce the Kuskal-Szekees coodinates U, V, θ, φ) on the spacetime manifold, via t,, θ, φ) the standad tansfomation expessing them in tems of the Boye-Lindquist coodinates : In [87]: In [88]: In [89]: M egi.unionegii).unionegiii).unionegiv) ; M Out[87]: I II III IV X_KS.<U,V,th,ph> M.chat'U V th:,pi):\theta ph:,2*pi):\vaphi' ) X_KS.add_estictionsV^2 < + U^2) X_KS Out[88]: I II III IV, U, V, θ, φ)) X_KS_I X_KS.estictegI, [U>, V<U, V>-U]) ; X_KS_I Out[89]: I, U, V, θ, φ)) In [9]: Out[9]: ch_bl_ks_i X_I.tansition_mapX_KS_I, [sqt/2*m)-)*exp/4*m))*c osht/4*m)), sqt/2*m)-)*exp/4*m))*s inht/4*m)), th, ph]) pintch_bl_ks_i) ch_bl_ks_i.display) Change of coodinates fom Chat R_I, t,, th, ph)) to Chat R_I, U, V, th, ph)) U V θ φ t 2 m cosh ) 2 m θ φ e 4 m ) 4 m e 4 m ) sinh ) t 4 m In [9]: X_KS_II X_KS.estictegII, [V>, V>U, V>-U]) ; X_KS_II Out[9]: II, U, V, θ, φ)) In [92]: Out[92]: ch_bl_ks_ii X_II.tansition_mapX_KS_II, [sqt-/2*m))*exp/4*m) )*sinht/4*m)), sqt-/2*m))*exp/4*m) )*cosht/4*m)), th, ph]) pintch_bl_ks_ii) ch_bl_ks_ii.display) Change of coodinates fom Chat R_II, t,, th, ph)) to Chat R_II, U, V, th, ph)) U V θ φ + 2 m e 4 m ) + t 2 m cosh ) θ φ t 4 m sinh ) 4 m e 4 m ) 7

18 SageManifolds. Plot of the Boye-Lindquist coodinates in tems of the Kuskal ones We daw the Boye-Lindquist chat in Region I ed) and Region II geen), with lines of constant being dashed: In [93]: gaphi X_I.plotX_KS, anges{t:-2,2), :2.,5)}, numbe_values {t:7, :9}, fixed_coods{th:pi/2,ph:}, ambient_coodsu,v), style{t:'--', :'-'}, paametes{m:}) gaphii X_II.plotX_KS, anges{t:-2,2), :.,.999)}, numbe_ values{t:7, :9}, fixed_coods{th:pi/2,ph:}, ambient_coodsu,v), style{t:'--', :'-'}, colo'geen', paametes{m :}) showgaphi+gaphii, xmin-3, xmax3, ymin-3, ymax3, axes_labels['$u $', '$V$']), θ, ϕ), π/2, ) 2m, θ, ϕ) fixed at 2.m, π/2, ) : We may add to the gaph the singulaity as a Boye-Lindquist chat plot with fixed at. Similaly, we add the event hoizon as a Boye-Lindquist chat plot with 8

19 SageManifolds. In [94]: gaph_ X_II.plotX_KS, fixed_coods{:, th:pi/2, ph:}, ambient_c oodsu,v), colo'yellow', thickness3, paametes{m:}) gaph_2 X_I.plotX_KS, anges{t:-4,4)}, fixed_coods{:2., th:pi/2, ph:}, ambient_coodsu,v), colo'black', thickness2, p aametes{m:}) showgaphi+gaphii+gaph_+gaph_2, xmin-3, xmax3, ymin-3, ymax3, axes_labels['$u$', '$V$']) Plot of the Eddington-Finkelstein coodinates in tems of the Kuskal ones We fist get the change of coodinates v,, θ, ϕ) U, V, θ, ϕ) v,, θ, ϕ) t,, θ, ϕ) with t,, θ, ϕ) U, V, θ, ϕ) : by composing the change In [95]: ch_ef_ks_i ch_bl_ks_i * ch_ef_bl_i ch_ef_ks_i Out[95]: I, v,, θ, φ)) I, U, V, θ, φ)) 9

20 SageManifolds. In [96]: Out[96]: ch_ef_ks_i.display) U V θ φ 2 m log2)+2 m logm)2 m log2 m+)+v 2 2 m+ cosh ) 2 m 4 m e 4 m ) 2 2 m+e 4 m ) sinh ) θ φ 2 m log2)+2 m logm)2 m log2 m+)+v 2 m 4 m In [97]: ch_ef_ks_ii ch_bl_ks_ii * ch_ef_bl_ii ch_ef_ks_ii Out[97]: II, v,, θ, φ)) II, U, V, θ, φ)) In [98]: gaphi_ef X_EF_I.plotX_KS, anges{v:-2,2), :2.,5)}, numbe_ values{v:7, :9}, fixed_coods{th:pi/2,ph:}, ambient_coodsu, V), style{v:'--', :'-'}, paametes{m:}) gaphii_ef X_EF_II.plotX_KS, anges{v:-2,2), :.,.999)}, n umbe_values{v:7, :9}, fixed_coods{th:pi/2,ph:}, ambient_coods U,V), style{v:'--', :'-'}, colo'geen', paamet es{m:}) showgaphi_ef+gaphii_ef+gaph_+gaph_2, xmin-3, xmax3, ymin-3, ymax3, axes_labels['$u$', '$V$']) 2

21 SageManifolds. Thee ae now 9 chats defined on the spacetime manifold: In [99]: M.atlas) Out[99]: [ I II, t,, θ, φ)), I, t,, θ, φ)), II, t,, θ, φ)), I II, v,, θ, φ)), I, v,, θ, φ)), II, v,, θ, φ)), I II III IV, U, V, θ, φ)),, U, V, θ, φ)),, U, V, θ, φ))] I II In []: lenm.atlas)) Out[]: 9 Thee ae 8 explicit coodinate changes the coodinate change KS fom): BL is not known in explicit In []: M.cood_changes) Out[]: { II, v,, θ, φ)), II, U, V, θ, φ))) : II, v,, θ, φ)) II, U, V, θ, φ)), II, v,, θ, φ)), II, t,, θ, φ))) : II, v,, θ, φ)) II, t,, θ, φ)), II, t,, θ, φ)), II, U, V, θ, φ))) : II, t,, θ, φ)) II, U, V, θ, φ)), I, t,, θ, φ)), I, v,, θ, φ))) : I, t,, θ, φ)) I, v,, θ, φ)), I, v,, θ, φ)), I, t,, θ, φ))) : I, v,, θ, φ)) I, t,, θ, φ)), I, t,, θ, φ)), I, U, V, θ, φ))) : I, t,, θ, φ)) I, U, V, θ, φ)), I, v,, θ, φ)), I, U, V, θ, φ))) : I, v,, θ, φ)) I, U, V, θ, φ)), II, t,, θ, φ)), II, v,, θ, φ))) : II, t,, θ, φ)) II, v,, θ, φ))} In [2]: lenm.cood_changes)) Out[2]: 8 Thee ae vecto fames among which 9 coodinate fames): In [3]: Out[3]: In [4]: M.fames) [, )), I II t θ I ϕ t θ ϕ )),, )) II I II, t θ ϕ v θ φ )), )) I II, v θ )), I φ v, e θ φ, e, e 2, e 3 )),, )), I II III IV I U V θ φ U V θ φ )), II, U V θ φ ))] lenm.fames)) Out[4]: Thee ae 4 fields of tangent space automophisms expessing the changes of coodinate bases and tetad: 2

22 SageManifolds. In [5]: lenm.changes_of_fame)) Out[5]: 4 Thanks to these changes of fames, the components of the metic tenso with espect to the Kuskal- Szekees can be computed by the method display) and ae found to be: In [6]: Out[6]: g.displayx_ks_i.fame)) 32 m 3 e g 2 m ) 32 m 3 e du du 2 m ) dv dv + 2 dθ dθ + 2 sin θ) 2 dφ dφ In [7]: g[x_ks_i.fame),:] Out[7]: 32 m 3 e 2 m ) 32 m3 e 2 m ) 2 2 sin θ) 2 In [8]: g.displayx_ks_ii.fame)) Out[8]: 32 m 3 e g 2 m ) 32 m 3 e du du 2 m ) dv dv + 2 dθ dθ + 2 sin θ) 2 dφ dφ The fist vecto of the othonomal tetad e expessed on the Kuskal-Szekees fame: In [9]: Out[9]: e[].displayx_ks_i.fame)) 2 e 4 m ) sinh 4 m ) e + 8 m 3 U 2 t 2 cosh ) 8 m 3 2 t 4 m e 4 m ) V The Riemann cuvatue tenso in tems of the Kuskal-Szekees coodinates: 22

23 SageManifolds. In []: Out[]: g.iemann).displayx_ks_i.fame)) 64 m 4 e Riem g) 2 m ) 64 m 4 e dv du dv + 2 m ) dv 4 U 4 U dv du dθ du dθ + dθ dθ du U U m sin θ) 2 m sin θ) 2 dφ du dφ + dφ dφ du U U 64 m 4 e 2 m ) 64 m 4 e du du dv + 2 m ) du dv du 4 V 4 V m sin θ) 2 dθ dv dθ + dθ dθ dv dφ V V V m sin θ) 2 32 m 4 e dv dφ + dφ dφ dv + 2 m ) du V θ 32 m 4 e du dθ 2 m ) 32 m 4 e du dθ du 2 m ) dv θ θ 4 32 m 4 e dv dθ + 2 m ) 2 m sin θ) 2 dv dθ dv + dφ θ θ 4 2 m sin θ) 2 32 m 4 e dθ dφ dφ dφ dθ + 2 m ) du θ φ 32 m 4 e du dφ 2 m ) 32 m 4 e du dφ du 2 m ) dv φ φ 4 32 m 4 e dv dφ + 2 m ) 2 dv dφ dv dθ dθ dφ 4 φ φ 2 + dθ dφ dθ φ

24 SageManifolds. In []: g.iemann).display_compx_ks_i.fame), only_nonedundanttue) Out[]: Riemg) U V U V Riemg) U θ U θ 64 m4 e 2 m ) 4 m Riemg) U φ U φ Riemg) V U U V Riemg) V θ V θ m sin θ)2 64 m4 e 2 m ) 4 m Riemg) V φ V φ Riemg) θ U U θ Riemg) θ V V θ Riemg) θ φ θ φ Riemg) φ U U φ Riemg) φ V V φ Riemg) φ θ θ φ m sin θ)2 32 m 4 e 2 m ) 4 32 m4 e 2 m ) 4 2 m sin θ) 2 32 m 4 e 2 m ) 4 32 m4 e 2 m ) 4 2 m The cuvatue 2-fom Ω associated to the Kuskal-Szekees coodinate fame: In [2]: om g.connection).cuvatue_fom,, X_KS_I.fame)) ; pintom) 2-fom cuvatue,) of connection nabla_g w..t. Coodinate fame R _I, d/du,d/dv,d/dth,d/dph)) on the Open subset R_I of the 4-dimensiona l diffeentiable manifold M In [3]: om.displayx_ks_i.fame)) Out[3]: Ω 64 m 4 e 2 m ) du dv 4 Isotopic coodinates Let us now intoduce isotopic coodinates t,, θ, φ) on the spacetime manifold: In [4]: Out[4]: In [5]: egi_iii egi.unionegiii) ; egi_iii I III X_iso.<t,i,th,ph> egi_iii.chat't i:,+oo):\ba{} th:,pi):\t heta ph:,2*pi):\vaphi') pintx_iso) ; X_iso Chat R_I_union_R_III, t, i, th, ph)) Out[5]: I III, t,, θ, φ)) 24

25 SageManifolds. In [6]: X_iso_I X_iso.estictegI, i>m/2) ; X_iso_I Out[6]: I, t,, θ, φ)) The tansfomation fom the isotopic coodinates to the Boye-Lindquist ones: In [7]: Out[7]: In [8]: assume2*i>m) # we conside only egion I ch_iso_bl_i X_iso_I.tansition_mapX_I, [t, i*+m/2*i))^2, th, ph ]) pintch_iso_bl_i) ch_iso_bl_i.display) Change of coodinates fom Chat R_I, t, i, th, ph)) to Chat R_I, t,, th, ph)) t θ φ t m 4 + 2) θ φ 2 assume>2*m) # we conside only egion I ch_iso_bl_i.set_inveset, -m+sqt*-2*m)))/2, th, ph, vebosetu e) Check of the invese coodinate tansfomation: t t i i th th ph ph t t th th ph ph In [9]: Out[9]: ch_iso_bl_i.invese).display) t θ φ t 2 2 m + + θ φ 2 m ) 2 At this stage, chats have been defined on the manifold : In [2]: M.atlas) Out[2]: [ I II, t,, θ, φ)), I, t,, θ, φ)), II, t,, θ, φ)), I II, v,, θ, φ)), I, v,, θ, φ)), II, v,, θ, φ)), I II III IV, U, V, θ, φ)), I, U, V, θ, φ)), II, U, V, θ, φ)), I III, t,, θ, φ)), I, t,, θ, φ))] In [2]: lenm.atlas)) Out[2]: 2 vecto fames have been defined on : coodinate bases and the tetad e α ): 25

26 SageManifolds. In [22]: Out[22]: In [23]: M.fames) [, )), I II t θ I ϕ t θ ϕ )),, )) II I II, t θ ϕ v θ φ )), )) I II, v θ )), I φ v, e θ φ, e, e 2, e 3 )),, )), I II III IV I U V θ φ U V θ φ )),, )) II I III, U V θ φ t θ φ )), I t θ φ ))] lenm.fames)) Out[23]: 2 The components of the metic tenso in tems of the isotopic coodinates ae given by In [24]: Out[24]: g.displayx_iso_i.fame), X_iso_I) m 2 4 m g dt dt m m ) m m m m d d 6 4 ) m m m m dθ dθ 6 2 ) m m m m ) sin θ) 2 + dφ dφ 6 2 The g component can be factoized: In [25]: In [26]: g[x_iso_i.fame),,, X_iso_I] Out[25]: m 2 4 m m m g[x_iso_i.fame),,, X_iso_I].facto) Out[26]: m 2 ) 2 m + 2 ) 2 Let us also factoize the othe components: In [27]: fo i in ange,4): g[x_iso_i.fame), i,i, X_iso_I].facto) The output of the display) command looks nice: 26

27 SageManifolds. In [28]: Out[28]: g.displayx_iso_i.fame), X_iso_I) m 2 ) 2 m + 2 ) 4 m + 2 ) 4 g dt dt + d d + dθ dθ m + 2 ) m + 2 ) 4 sin θ) 2 + dφ dφ 6 2 Expession of the tetad associated with the static obseve in tems of the isotopic coodinate basis: In [29]: Out[29]: In [3]: Out[3]: In [3]: Out[3]: In [32]: Out[32]: e[].displayx_iso_i.fame), X_iso_I) e m + 2 m 2 ) t e[].displayx_iso_i.fame), X_iso_I) e 4 2 m m ) e[2].displayx_iso_i.fame), X_iso_I) e 2 4 m m ) θ e[3].displayx_iso_i.fame), X_iso_I) e 3 4 m m ) sinθ) φ In [ ]: 27

Strain and stress tensors in spherical coordinates

Strain and stress tensors in spherical coordinates Saeanifolds.0 Stain and stess tensos in spheical coodinates This woksheet demonstates a few capabilities of Saeanifolds (vesion.0, as included in Saeath 7.5) in computations eadin elasticity theoy in Catesian

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Solutions Ph 236a Week 2

Solutions Ph 236a Week 2 Solutions Ph 236a Week 2 Page 1 of 13 Solutions Ph 236a Week 2 Kevin Bakett, Jonas Lippune, and Mak Scheel Octobe 6, 2015 Contents Poblem 1................................... 2 Pat (a...................................

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

1 Full derivation of the Schwarzschild solution

1 Full derivation of the Schwarzschild solution EPGY Summe Institute SRGR Gay Oas 1 Full deivation of the Schwazschild solution The goal of this document is to povide a full, thooughly detailed deivation of the Schwazschild solution. Much of the diffeential

Διαβάστε περισσότερα

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor VEKTORANALYS Kusvecka 4 CURVILINEAR COORDINATES (koklinjiga koodinatstem) Kapitel 10 Sido 99-11 TARGET PROBLEM An athlete is otating a hamme Calculate the foce on the ams. F ams F F ma dv a v dt d v dt

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST Slide of 8 Tensos in Mathematica 9: Built-In Capabilities eoge E. Habovsky MAST This Talk I intend to cove fou main topics: How to make tensos in the newest vesion of Mathematica. The metic tenso and how

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

General Relativity (225A) Fall 2013 Assignment 5 Solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions Univesity of Califonia at San Diego Depatment of Physics Pof. John McGeevy Geneal Relativity 225A Fall 2013 Assignment 5 Solutions Posted Octobe 23, 2013 Due Monday, Novembe 4, 2013 1. A constant vecto

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Lecture VI: Tensor calculus

Lecture VI: Tensor calculus Lectue VI: Tenso calculus Chistophe M. Hiata Caltech M/C 350-7, Pasadena CA 925, USA (Dated: Octobe 4, 20) I. OVERVIEW In this lectue, we will begin with some examples fom vecto calculus, and then continue

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

MathCity.org Merging man and maths

MathCity.org Merging man and maths MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα