תורת הקומפילציה הרצאה 4 ניתוח תחבירי )Parsing( של דקדוקי LR(0) ו-( LR(1 )חזרה + המשך(

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "תורת הקומפילציה הרצאה 4 ניתוח תחבירי )Parsing( של דקדוקי LR(0) ו-( LR(1 )חזרה + המשך("

Transcript

1 תורת הקומפילציה הרצאה 4 ניתוח תחבירי )Parsing( של דקדוקי LR(0) ו-( LR(1 )חזרה + המשך( 1

2 תזכורת: סוגי הניתוח התחבירי )predictive מהשורש לעלים )נקרא גם s "ניתוח תחזית" top-down x y bottom-up מהעלים לשורש מעבירים למחסנית, או מחליפים צד ימין בסימן מהצד השמאלי של חוק הדקדוק reduce) (shift s 2 x y

3 היום נמשיך לדון בגזירה bottom-up מסוג LR(k) נאמר שדקדוק הוא LR(k) אם הוא ניתן לגזירה bottom-up ימנית ביותר תוך כדי סריקת הקלט משמאל לימין. שפה נקראת LR(k) אם אפשר לתאר אותה בעזרת דקדוק.LR(k) אלגוריתם LR(k) הוא אלגוריתם:,bottom-up מבוסס טבלאות, סורק את הקלט משמאל )L( לימין, מניב את הגזירה הימנית )R( וזקוק ל- lookahead בגודל k. ביותר, המקרה הפשוט ביותר הוא אלגוריתם.LR(0) 3

4 נזכיר גזירת LR(0) דקדוק לדוגמה: E E * B E + B B B 0 1 (1) E E * B (2) E E + B (3) E B (4) B 0 (5) B 1 נמספר את הכללים: 4

5 מטרתנו: לצמצם את הקלט אל המשתנה התחילי * 1 B + 0 * 1 E + 0 * 1 E + B * 1 E * 1 E * B E E E * B E + B 1 B 0 דוגמה: E E * B E + B B B 0 1 נרצה בכל שלב לאסוף את הקלט עד עתה, וברגע שגילינו צד ימין של כלל להפעיל אותו ולהחליף את המחרוזת במשתנה שבצד שמאל של הכלל. 0 5

6 E E * B E + B B B 0 1 עבודה בשיטת shift & reduce בכל שלב נעביר (shift) סימבול מהקלט למחסנית, לפי אחד הכללים. בדוגמה: או נבצע reduce E E * B E + B 1 B Stack Input action 0+0*1$ shift 0 +0*1$ reduce B +0*1$ reduce E +0*1$ shift E+ 0*1$ shift E+0 *1$ reduce E+B *1$ reduce E *1$ shift E* 1$ shift E*1 $ reduce E*B $ reduce E $ accept

7 המחסנית המחסנית ב- LR מכילה מצבים. לצורך ק ר יאוּת, נכלול במחסנית גם משתנים ואסימונים. המחסנית ההתחלתית מכילה רק את המצב "q0". טבלת הפעולות טבלה זו מכתיבה את הפעולה לביצוע בכל שלב. לכל מצב ואסימון: הוראות ביצוע:.shift, reduce, accept, error טבלת Goto זיהינו גזירה של כלל, מחליפים חלק מהמחסנית במשתנה, נניח. M לפני שמכניסים את M, קוראים מראש המחסנית את המצב q ועוברים לכלל.goto(q,M) 7

8 8 למשל... (1) E E * B (2) E E + B (3) E B (4) B 0 1 B (5) טבלת הפעולות טבלת goto q0 q1 q2 q3 q4 q5 q6 q7 q8 * r4 r5 s5 r3 r1 r2 + r4 r5 s6 r3 r1 r2 0 s1 r4 r5 r3 s1 s1 r1 r2 1 s2 r4 r5 r3 s2 s2 r1 r2 $ r4 r5 acc r3 r1 r2 E 3 B 4 7 8

9 האלגוריתם אתחול המחסנית: מצב q. 0 מצא את [q )q action[t, בראש המחסנית, t אסימון הקלט הבא(: אם מצאת :shift n הסר את האסימון t מהקלט, ואח"כ את t הוסף את q n אם מצאת :reduce m למחסנית. יהי w מספר התווים בצד ימין של כלל הגזירה מספר m. הסר ערכים מהמחסנית. 2w יהי q המצב בראש המחסנית כרגע, למחסנית, M דחוף את ואח"כ את המצב ויהי M המשתנה שגוזר כלל m..goto[q, M] אם מצאת :acc סיום בהצלחה. אחרת: סיום בשגיאה. המשך עד לעצירה. 9

10 (1) E E * B (2) E E + B (3) E B (4) B 0 (5) B 1 דוגמת הרצה: * טבלת הפעולות טבלת goto * $ E B q0 s1 s2 3 4 q1 r4 r4 r4 r4 r4 q2 r5 r5 r5 r5 r5 q3 s5 s6 acc q4 r3 r3 r3 r3 r3 q1 q5 s1 s2 7 0 q6 s1 s2 8 q0 q0 q7 q8 r1 r2 r1 r2 r1 r2 r1 r2 r1 r2 10

11 (1) E E * B (2) E E + B (3) E B (4) B 0 (5) B 1 דוגמת הרצה: * q6 q1 q4 q3 + q3 0 B E E q0 q0 q0 q0 q0 11

12 בניית הטבלה: מצבים ופריטי LR(0) פריט מסמל את מצבו של ה- parser. למשל, הפריט: E E + B מסמן כי ה- parser זיהה מחרוזת המתאימה ל- E בקלט, והוא כעת מצפה למצוא "+" ואחר-כך מחרוזת המתאימה ל- B. בד"כ מצב ה- parser מתואר ע"י קבוצת פריטים. למשל, אחד המצבים של ה- parser הוספנו גם.closure יהיה הקבוצה: q = {E E + B, E E * B} אם המצב הנוכחי מאפשר את הפריט E, E + B אז בעצם באפשרויות של המשך הגזירה צריך לכלול גם נגזרות של B, למשל 0 או 1. 12

13 קבוצת הסגור Closure באופן כללי: אם קבוצת הפריטים הנוכחית כוללת מצב שבו הנקודה נמצאת לפני משתנה, נוסיף את כל הכללים שנגזרים ממנו, עם נקודה בהתחלה. הגדרה: קבוצת הסגור של קבוצת פריטים היא קבוצת פריטים שבה, עבור כל פריט בקבוצה מהצורה A α B β ועבור כל כלל מהצורה B δ בדקדוק, גם הפריט נמצא בקבוצה. בניית קבוצת הסגור היא איטרטיבית, משום שגם B δ δ עשוי להתחיל במשתנה. 13

14 סגור של קבוצת פריטים דוגמא C = { E E + B } E E * B E + B B B 0 1 למשל, עבור קבוצת הפריטים: ובהנתן הדקדוק clos(c) = { E E + B, B 0, B 1 } קבוצת הסגור היא: וזה יהיה המצב שבו נשתמש לגזירה. 14

15 דקדוק מורחב הגדרה: דקדוק מורחב הוא דקדוק שהוסיפו לו כלל יחיד, המבטיח שהגזירה האחרונה )כלומר, העליונה( היא חד-משמעית בהיותה אחרונה. (0) S E (1) E E * B; (2) E E + B (3) E B (4) B 0 (5) B 1 המצב ההתחלתי q0 הוא הסגור של הפריט הנובע מהכלל שהוספנו בבניית הדקדוק המורחב עם נקודה בהתחלה. S E בדוגמא שלנו. clos({s E }) = {S E, E E * B, E E + B, E B, B 0, B 1} 15

16 המצבים הבאים q 0 המצב בדוגמא שלנו הוא: clos({s E }) = {S E, E E * B, E E + B, E B, B 0, B 1}.1.2 נבדוק לאילו מצבים אפשר להגיע ממנו. לכל קלט אפשרי x )אסימון או משתנה(, ומצב נתון q )קבוצת סגור של פריטים(: מצא את כל הפריטים במצב הנוכחי, שבהם הנקודה נמצאת לפני x. נסמן קבוצת פריטים זו ב- q x )תת-קבוצה של המצב q(. הזז את הנקודה צעד אחד ימינה עבור כל הפריטים ב- S. 3. מצא את הסגור של הקבוצה שהתקבלה. זהו המצב שאליו עוברים מהמצב הנתון, כאשר בקלט מופיע x. 16

17 למשל: מצבים שניתן להגיע אליהם ממצב q 0 בדוגמא מצב q2: x = 1 q 0 1= { B 1 } q 2 = { B 1 } clos(q 2 ( = { B 1 } מצב q1: x = 0 q 0 0= { B 0 } q 1 = { B 0 } clos(q 1 ) = { B 0 } מצב q4: x = B q 0 B = { E B } q 4 = { E B } clos(q 4 ( = {E B } x = E q 0 E= {S E, E E * B, E E + B} q 3 = {S E, E E * B, E E + B} clos(q 3 ( ={S E, E E *B, E E + B} מצב q3: 17

18 ממשיכים... ממשיכים למצוא את כל המצבים שניתן להגיע אליהם מכל אחד מהמצבים שמצאנו עד כה. ממצבים q2 q1, ו- q4 בדוגמאות עד כה אין מצבי המשך )משום שהנקודה תמיד נמצאת בסוף כל פריט בקבוצות סגור אלה(. ממצב q3 ניתן להגיע למצבים חדשים: x = * q 3 * = { E E * B } q 5 = { E E * B } clos(q 5 ) = { E E * B, B 0, B 1 } מצב q5: 18 clos(q 6 ( = { E E + B, B 0, B 1 } מצב q6:

19 ומסיימים... ממצב q5 ניתן להתקדם בעזרת הסימנים 1 0, ו- B )כערכים עבור x(. אבל עבור = 0 x ועבור = 1 x נגיע שוב למצבים q1 ו- q2, בהתאמה. עבור :x=b מצב q7: clos(q 7 ( = { E E * B } באופן דומה, ממצב 6, עבור,x=B נקבל את: clos(q 8 ) = { E E + B } מצב q8: למצבים אלה אין מצבי המשך )מדוע?( 19

20 בניית הטבלאות: טבלת המעברים הראשונית שורה עבור כל מצב. בשורה של מצב,q i בעמודה שהיא ה- x ששימש לבניית מצב,q j רושמים את j. מצב q0 q1 q2 q3 q4 q5 * 5 טבלת הפעולות $ טבלת goto E B q q7 q8 20

21 בניית הטבלאות: מצבי הסיום מוסיפים acc בעמודה $ עבור כל מצב, שקבוצת הפריטים שלו כוללת את הפריט S E מצב q0 q1 q2 q3 q4 q5 * 5 טבלת הפעולות $ acc טבלת goto E B q q7 q8 21

22 בניית הטבלאות: shift פעולות כל ערך מספרי n בטבלת הפעולות הופך להוראת.sn מצב q0 q1 * טבלת הפעולות s1 s2 $ טבלת goto E B 3 4 q2 q3 s5 s6 acc q4 q5 s1 s2 7 q6 s1 s2 8 q7 q8 22

23 בניית הטבלאות: פעולות reduce q0 q1 q2 q3 q4 q5 q6 q7 q8 23 עבור כל מצב, שקבוצת הפריטים שלו כוללת את A α כך שקיים בדקדוק כלל A α שמספרו m :)m>0( ממלאים את השורה של מצב זה )בטבלת הפעולות( בערך.rm מצב * r4 r5 s5 r3 r1 r2 טבלת הפעולות s1 s2 r4 r4 r4 r5 r5 r5 s6 r3 r3 r3 s1 s2 s1 s2 r1 r1 r1 r2 r2 r2 $ r4 r5 acc r3 r1 r2 טבלת goto E B

24 קונפליקטים בטבלאות בדקדוקים יותר מורכבים הבנייה יכולה ליצור תאים בטבלה עם שני ערכים )או יותר( ונוצרים קונפליקטים. קונפליקט reduce/reduce נוצר כשבתא אחד יש אפשרויות שונות ל- reduce. למשל, נסו ליצור את הטבלה עבור הדקדוק הבא: E A 1 B 1 A 1 B 1 כשבתא אחד יש גם הוראת reduce וגם הוראת,shift מקבלים קונפליקט.shift/reduce למשל, עבור הדקדוק הבא: E 1 E 1 24

25 בנית טבלה עבור הדוגמא הראשונה: S E E A 1 B 1 A 1 B 1 מצב {S E, E B1, E A1, A 1, B 1} q 0 {S E } מצב q 1, for x=e {A 1, B 1 } מצב q 2, for x=1 כלומר, בטבלה עבור מצב יש לרשום reduce לפי שני כללים שונים... q 2 25

26 בניית טבלה עבור הדוגמה השניה )עבורה LR(0) אינו מספיק( כזכור, הדקדוק הוא: הבעיה בגזירה bottom-up ללא :lookahead לדעת איזה מהכללים רלוונטי. לאחר ראיית 1 E 1 E E 1 בקלט, לא ניתן (0) S E (1) E 1 E (2) E 1 הדקדוק מורחב וממוספר: 26

27 (0) S E (1) E 1 E (2) E 1 ייצור המצבים מצב q0 )התחלתי( מצב q1 clos){s E}( = {S E, E 1 E, E 1} E מצב q2 1 q0 1 1 $ clos){e 1 E, E 1 }( = {E 1 E, E 1, E 1 E, E 1} E 2 E מצב q3 1 clos){s E }( = {S E } 27 q1 q2 q3 1 3 clos){e 1 E }( = {E 1 E }

28 בניית טבלאות action ו- goto q0 q1 q2 פעולות 1 $ s1 r2/s1 r2 acc goto E 2 3 מתחילים מטבלת המעברים. מוסיפים acc במקום המתאים. כל מעבר על-סמך אסימון הופך לפעולת.shift לכל מצב עם פריט A α מוסיפים reduce מתאים לכל השורה. מזהים קונפליקט. q3 r1 r1 28

29 (0) S E (1) E 1 E (2) E 1 ממה נובע הקונפליקט? הקונפליקט קיים כשהמכונה במצב q1 וקיים האסימון 1 בקלט. מצב q1 כולל את הפריטים: E 1 E, E 1, E 1 E, E 1 מאפשר גם shift וגם.reduce 29 הפיתרון במקרה זה: נסתכל ב-( follow(e. אינו כולל את 1. לכן אם רואים את 1 מבצעים shift ולא.reduce goto פעולות 1 $ E q0 s1 2 q1 s1 r2 3 q2 acc q3 r1 r1

30 תיקון פשוט ל-( LR(0 Simple LR(1) -- נתקן את LR(0) כך: צעד ה- reduce המקורי בבניית הטבלה: לכל מצב עם פריט לכל השורה. בשורה זו, לכל α,a מוסיפים reduce מתאים הופך להיות: לכל מצב עם פריט α A, מוסיפים reduce מתאים עמודה שהאסימון שבראשה שייך ל-( follow(a. האלגוריתם המשופר נקרא LR(1) Simple בקיצור:,SLR(1) ועוד יותר בקיצור:.SLR יכול לזהות יותר שפות מ-( LR(0 ללא קונפליקטים.... אבל עדיין לא מספיק חזק עבור מרבית שפות התכנות. 30

31 דוגמא אותה SLR לא פותר (0) S S (1) S L = R (2) S R (3) L * R (4) L id (5) R L נתבונן בדקדוק הבא: )ניתן לחשוב עליו כעל דקדוק להשמות בשפת C, כאשר L ו- R הם l-value,r-value בהתאמה. הוסיפו R EXPR להשלמת התמונה(. ו- 31

32 מצב 0 S S S L = R S R L * R L id R L S R L מצב 3 S R מצב 1 S S מצב 2 S L = R R L = מכונת המצבים מצב 9 S L = R R * מצב 4 L * R R L L * R L id 32 * id id R מצב 5 L id L מצב 7 L * R * id מצב 6 S L = R R L L * R L id L מצב 8 R L

33 מצב 2 S L = R R L = הקונפליקט נתבונן במצב 2: מצב 6 אם יש = בקלט, ניתן לבצע.shift 6.S L = R לפריט S L = לעבור מפריט R אבל ניתן גם לבצע reduce לפי כלל גזירה 5: L R. קונפליקט.shift/reduce האסימון = נמצא ב-( follow(r )כי,)S L = R * R = R הקונפליקט קיים גם ב-( SLR(1. ולכן 33

34 איך מתגברים על הקונפליקט? SLR מתייחס רק ל- follow של המשתנה A שיתקבל לאחר ה- reduce. אבל לפני A יש תבנית פסוקית שלמה שכבר ראינו )ונמצאת במחסנית(. אם בראש המחסנית נמצאת המחרוזת β, וקיים כלל SLR A, β בודק את follow(a) מול האסימון שבקלט. )"ראש המחסנית" בדיון זה מתייחס לסמלים שבמחסנית ומתעלם מהמצבים שבה(. אבל אולי בתחילת המחסנית, מעבר ל- β, נמצאים סמלים שעומדים בסתירה לאסימון שבקלט? כלומר, נניח שבמחסנית יש q0 E q3 + q6 0 q1 האות הבאה בקלט היא *, וצריך להחליט אם לעשות reduce לפי הכלל B. 0 יבדוק אם * נמצא ב-( follow(b. SLR * נמצא ב-( follow(e+b, כלומר כל התבנית הפסוקית 34 CLR יבדוק אם האסימון שבמחסנית.

35 CLR מתחשב בכל המידע הנתון על האסימון הבא שיתקבל לאחר ה- reduce. A המשתנה של מתייחס רק ל- follow SLR CLR מסתכל בכל התבנית σa שנוצרת במחסנית אם מבצעים את ה-.reduce אם האסימון הבא בקלט לא שייך ל-( follow(σa, אז לא נרצה לבצע A. β לפי כלל מהסוג reduce שימו לב שמתחשבים ביותר מידע, ובפרט, follow(σa) follow(a) 35

36 (0( S S (1) S L = R (2) S R (3) L * R (4) L id (5) R L מצב 0 S S S L = R S R L * R L id R L נחזור לבעיה בדוגמא בדוגמא שלנו, אפשר להגיע למצב 2 רק ישירות ממצב 0: L מצב 2 S L = R R L ;S R L L R S 36 כלומר ההקשר לביצוע reduce לפי R L במצב הזה המחסנית נראית כך: במצב 2, הוא הגזירות

37 (0( S S (1) S L = R (2) S R (3) L * R (4) L id (5) R L מצב 0 S S S L = R S R L * R L id R L נחזור לבעיה בדוגמא בדוגמא שלנו, אפשר להגיע למצב 2 רק ישירות ממצב 0: L מצב 2 S L = R R L נרצה להוסיף למצב 2: אם רואים $ אז reduce ואם רואים = אז.shift כלומר ההקשר לביצוע reduce לפי R L במצב,2 הוא הגזירות ;S R L במצב הזה R הוא לבדו במחסנית. זה יכול לקרות רק אם בצענו S R ואז חייבים לראות $ כאסימון הבא. בנוסף, אין שום תבנית המתחילה ב-... = R; אם נבצע reduce נתקע עם =. בתבנית שמגיעה מהגזירה S L = R * R = R תמיד יהיה * במחסנית לפני ה- R, וזה לא יהיה במצב 2. 37

38 )CLR( אלגוריתם Canonical LR זו הצורה הכללית ביותר לבניית טבלאות עבור דקדוקי.LR הרעיון: לפרק את המצבים של LR(0) למצבים "עדינים" יותר, המכילים יותר מידע, ובפרט.lookahead לשם כך נגדיר מהו פריט,LR(1) ונגדיר את פונקצית הסגור עבור פריטי.LR(1) מעבר לכך, שאר האלגוריתם נותר ללא שינוי. 38

39 פריט LR(1) הגדרה: פריט LR(1) מורכב מזוג סדור: פריט LR(0) ואסימון )או סימן סוף הקלט, $(. מכלל גזירה עם n רכיבים מצד ימין, בדקדוק בו קיימים t אסימונים, ניתן לקבל.LR(1) פריטי (n+1) (t+1) למשל מהכלל L id מהדקדוק הקודם נקבל 8 פריטי :LR(1) [L id, *] [L id, =] [L id, id] [L id, $] [L id, *] [L id, =] [L id, id] [L id, $] 39

40 מה משמעותו של פריט?LR(1) גם הפעם, פריט מסמל את מצבו של ה- parser. משמעותו: זיהינו את מה שנמצא משמאל לנקודה; אנו מצפים כעת למצוא את מה שנמצא מימין לה, ולאחר מכאן את האסימון המצורף לפריט. למשל, הפריט: [S L = R, id] פירושו: פגשנו L, אנו מצפים ל- = ולאחר מכן ל- R )כלומר, סדרה הנגזרת מ-.id ואח"כ ל- R(, איך מייצרים את המצבים עכשיו? ההתחלה קלה. המצב הראשון הוא: ($, S S) אבל אז צריך לבצע סגור. איך הוא נראה? 40

41 (0( S S (1) S L = R (2) S R (3) L * R (4) L id (5) R L (S S, $) הסגור של $), S (S נרצה להוסיף כללים המתחילים ב- S, אבל לדעת איזה אסימונים יכולים לבוא אח"כ. כללים עבור (S L = R, $) :S (S R, $) כללים עבור (L * R, = ) :L (L id, = ) כללים עבור (R L, $ ) :R עוד כללים עבור (L id, $ ) :L (L * R, $ ) 41

42 סגור של פריטי LR(1) הגדרה: קבוצת הסגור של קבוצת פריטי :LR(1) קבוצת פריטי LR(1) שבה, עבור כל פריט LR(1) מהצורה [A α Bβ, c] בקבוצת הסגור, ועבור כל כלל מהצורה B δ וכל אסימון b בדקדוק )כולל $(, כך ש- FIRST(βc) b, גם הפריט [B δ, b] נמצא בקבוצת הסגור. 42

43 * מצב 0 )S S, $( )S L = R, $) )S R, $( )L * R, = ) )L id, = ) )R L, $ ( )L id, $ ( )L * R, $ ( * מצב 4 )L * R, =( )R L, =( )L * R, =) )L id, =) )L * R, $( )R L, $( )L * R, $) )L id, $) 43 R S L id id L R מצב 3 )S R, $( מצב 1 (S S, $( מצב 2 )S L = R, $) )R L, $( מצב 5 )L id, $( )L id, =( מצב 7 )L * R, =( )L * R, $( = מכונת המצבים (0) S S (1) S L = R (2) S R (3) L * R (4) L id (5) R L מצב 6 (S L = R, $) (R L, $( (L * R, $) (L id, $) מצב 8 )R L, =( )R L, $(

44 * מצב 0 (S S, $( (S L = R, $) (S R, $( (L * R, = ) (L id, = ) (R L, $ ( (L id, $ ( (L * R, $ ( * מצב 4 )L * R, =( )R L, =( )L * R, =) )L id, =) )L * R, $( )R L, $( )L * R, $) )L id, $) 44 R S L id id L R מצב 3 )S R, $( מצב 1 (S S, $( מצב 2 (S L = R, $) (R L, $( מצב 5 )L id, $( )L id, =( מצב 7 )L * R, =( )L * R, $( = מכונת המצבים מצב 9 )S L = R, $( מצב 6 )S L = R, $( )R L, $( )L * R, $) )L id, $) מצב 8 )R L, =( )R L, $( L R מצב 12 מצב 10 id * מצב 11

45 R מצב 3 )S R, $( מכונת המצבים S L id R L id 45 מצב 1 )S S, $( מצב 2 )S L = R, $) )R L, $( מצב 5 )L id, $( )L id, =( מצב 7 )L * R, =( )L * R, $( = id מצב 9 )S L = R, $( R מצב 6 )S L = R, $( )R L, $( )L * R, $) )L id, $) מצב 8 )R L, =( )R L, $( id L * מצב 11 (L id, $( מצב 12 (R L, $( L מצב 10 (L * R, $( (R L, $( (L * R, $) (L id, $) R מצב 13 (L * R, $( id *

46 נחזור למצב 2: האם יודעים לבחור בין ל- reduce? shift מצב 2 )S L = R, $) )R L, $( = מצב 6 )S L = R, $( )R L, $( )L * R, $) )L id, $) 46

47 בניית הטבלאות כמו ב- SLR, מתחילים מטבלת המעברים של האוטומט. הופכים כל מעבר בעמודה של אסימון לפעולת.shift עמודות המשתנים הן טבלת ה- goto. ה- acc מושם בעמודת $, בשורה של כללים המכילים את הפריט [$, S S]. עבור כל מצב המכיל פריט מהצורה β,a] A], וכלל A β שמספרו m a. בשורה של מצב זה, בעמודה של אסימון reduce m שמים )0<m(, 47

48 48 הלבטה תיינב תלבט goto תולועפה תלבט L R S $ = * id s4 s5 0 acc 1 r5 s6 2 r s4 s5 4 r4 r s10 s11 6 r3 r3 7 r5 r5 8 r s10 s11 10 r4 11 r5 12 r1 13

49 שאלות מדוע יש יותר מצבים ב- CLR לעומת?SLR איך נראה CLR(k) עבור 1<k? האם כל דקדוק חד-משמעי חסר-הקשר ניתן לניתוח ע"י מנתח?CLR(k) 49

50 שיטה לחסוך במצבים: LALR CLR יוצר המון מצבים, אבל SLR לא מטפל במספר מבנים המועילים באופן מעשי. האם ניתן לחסוך מצבים ב- CLR? ונאחד את ה- lookahead שווים נמצא מצבים שבהם פריטי ה-( LR(0 :LALR שלהם, כל עוד לא נוצרים קונפליקטים. LALR מצליח גם לחסוך במצבים וגם לטפל בכל המבנים המעניינים בפועל. נלמד אותו בתירגולים. לשפה כמו C: SLR לא מצליח לטפל במספר מבנים ודורש מאות מצבים לטיפול )כמעט מלא(. LALR מצליח לעבוד עם דקדוק נח הדורש מאות מצבים )בערך כמו.)SLR CLR יכול לטפל בכל הבעיות אבל דורש אלפי מצבים. 50

51 לסיכום ראינו גזירת.bottom-up גזירת LR(k) חייבת לזהות כלל לאחר שראתה את החלק הימני שלו ו- lookahead של k אסימונים נוספים. ראינו פריטי LR(0) השומרים את המיקום האפשרי כרגע בגזירה. ראינו כיצד מייצרים מהם טבלאות פעולה, וכיצד גוזרים מילה עם הטבלאות. פריטי LR(1) Simple בודקים אם האסימון שב- lookahead יכול לבוא לאחר המשתנה שאנו מייצרים ב- reduce הנוכחי. פריטי LR(1) Canonical בודקים אם האסימון שב- lookahead יכול לבוא לאחר כל התבנית הפסוקית שזיהינו עד עתה. בתירגול נעבור על LALR שחוסך מצבים ב- CLR ומאפשר מימוש של שפות מודרניות בעלות סבירה. 51

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

גירסה תורת הקומפילציה

גירסה תורת הקומפילציה גירסה 1.00 24.3.2009 תורת הקומפילציה -1- 1. תוכן עניינים.1.2 תוכןעניינים... 2 פתיחה...5.3.1.3.2.3.3.3.3.1.3.3.2.3.3.3.3.3.4.3.3.5.3.4.3.4.1.3.4.2.3.4.3.3.4.4.4.1.4.2.4.2.1.4.2.2.4.2.3.3.4 אוטומטיםושפותפורמליות

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X D FF-0 q 0 q 1 Z D FF-1 output clk 424 מצב המכונה מוגדר על ידי יציאות רכיבי הזיכרון. נסמן את המצב הנוכחי q

Διαβάστε περισσότερα

חלק 1 כלומר, פונקציה. האוטומט. ) אותיות, אלפבית, א"ב (.

חלק 1 כלומר, פונקציה. האוטומט. ) אותיות, אלפבית, אב (. תוכן עניינים תקציר מודלים חישוביים ערך יגאל הינדי 2 2 2 3 4 6 6 6 7 7 8 8 9 11 13 14 14 15 16 17 17 18 19 20 20 20 20 - האוטומט הסופי - אוטומט סופי דטרמניסטי 2 פרק - מושגים ומילות מפתח 2.1 - הגדרת אוטומט

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

מודלים חישוביים פתרון תרגיל 5

מודלים חישוביים פתרון תרגיל 5 מודלים חישוביים פתרון תרגיל 5 כתוב אוטומט דטרמיניסטי לשפות הבאות מעל הא"ב.Σ={,} א. *Σ. q, ב. q, ג. {ε}, q, q ד. } = 3 {w w mod, q, q,, ה. ''} {w w does not contin the sustring q 4 q 3 q q כתוב אוטומט דטרמיניסטי

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

אוטומטים, שפות פורמליות ו ח ישוּב יוּת

אוטומטים, שפות פורמליות ו ח ישוּב יוּת אוטומטים, שפות פורמליות וחישוביות (202-1-2011) סיכום מאת תומר גודינגר אוטומטים, שפות פורמליות ו ח ישוּב יוּת פרטים אדמיניסטרטיביים המרצים בקורס: ברנד, ברפמן, קנטורוביץ' ואבו-עפאש אתר הקורס: http://csbguacil/~auto141/ain

Διαβάστε περισσότερα

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת

תאריך עדכון אחרון: 27 בפברואר ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת תרגול 3 ניתוח לשיעורין תאריך עדכון אחרון: 27 בפברואר 2011. ניתוח לשיעורין analysis) (amortized הוא טכניקה לניתוח זמן ריצה לסדרת פעולות, אשר מאפשר קבלת חסמי זמן ריצה נמוכים יותר מאשר חסמים המתקבלים כאשר

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 7

מודלים חישוביים תרגולמס 7 מודלים חישוביים תרגולמס 7 13 באפריל 2016 נושאי התרגול: מכונת טיורינג. 1 מכונת טיורינג נעבור לדבר על מודל חישוב חזק יותר (ובמובן מסוים, הוא מודל החישוב הסטנדרטי) מכונות טיורינג. בניגוד למודלים שראינו עד

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

ניתן לקבל אוטומט עבור השפה המבוקשת ע "י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות:

ניתן לקבל אוטומט עבור השפה המבוקשת ע י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות: שאלה 1 בנה אוטומט המקבל את שפת כל המילים מעל הא"ב {,,} המכילות לפחות פעם אחת את הרצף ומיד אחרי כל אות מופיע הרצף. ניתן לפרק את השפה לשתי שפות בסיס מעל הא"ב :{,,} שפת כל המילים המכילות לפחות פעם אחת את

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

Regular Expressions (RE)

Regular Expressions (RE) Regular Expressions (RE) ביטויים רגולריים עד כה דנו במספר מודלים חישוביים להצגת (או ליצור) שפות רגולריות וראינו שכל המודלים האלה הם שקולים מבחינת כוח החישובי שלהם. בסעיף זה נראה עוד דרך להצגת (או ליצור)

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r ל' ' פונקציות פרימיטיביות רקורסיביות חישוביות הרצאה 4 האם כל פונקציה מלאה היא פרימיטיבית רקורסיבית? לא נראה שתי הוכחות: פונקציות רקורסיביות (המשך) זיהוי שפות ע''י מכונות טיורינג הוכחה קיומית: קיימות פונקציות

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

אוטומטים- תרגול 8 שפות חסרות הקשר

אוטומטים- תרגול 8 שפות חסרות הקשר אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S

Διαβάστε περισσότερα

שפות פורמאליות אוטומטים

שפות פורמאליות אוטומטים שפות פורמאליות אוטומטים תורת הקומפילציה אהרון נץ מבוסס על השקפים של עומר ביהם שמבוססים על שקפי הרצאה מהקורס אוטומטים ושפות פורמאליות בטכניון, פרופ' שמואל זקס 1 הנושאים שנעבור שפות פורמאליות מכונות/אוטומטים

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

ביטויים רגולריים הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) הרצאה 5

ביטויים רגולריים הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) הרצאה 5 הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) ביטויים רגולריים הרצאה 5 המצגת מבוססת על ספרם של פרופ' נסים פרנסיז ופרופ' שמואל זקס, "אוטומטים ושפות פורמליות", האוניברסיטה הפתוחה, 1987. גרסה ראשונה

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

שפות פורמאליות אוטומטים

שפות פורמאליות אוטומטים הנושאים שנעבור שפות פורמאליות אוטומטים שפות פורמאליות מכונות/אוטומטים דקדוקים תורת הקומפילציה אהרון נץ מבוסס על השקפים של עומר ביהם שמבוססים על שקפי הרצאה מהקורס אוטומטים ושפות פורמאליות בטכניון, פרופ'

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

אוטומטים ושפות פורמליות תרגולים

אוטומטים ושפות פורמליות תרגולים אוטומטים ושפות פורמליות תרגולים מבוסס על תרגולים של מר גולדגביכט עומר, אוניברסיטת בר אילן 2012. שיעור 1 הגדרות: א"ב: אוסף סופי ולא ריק של סימנים/אותיות/תווים. נסמן אותו באות. דוגמאות: 9},... 1,,{0, {א,..,.

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

תורת הגרפים - סימונים

תורת הגרפים - סימונים תורת הגרפים - סימונים.n = V,m = E בהינתן גרף,G = V,E נסמן: בתוך סימוני ה O,o,Ω,ω,Θ נרשה לעצמנו אף להיפטר מהערך המוחלט.. E V,O V + E כלומר, O V + E נכתוב במקום אם כי בכל מקרה אחר נכתוב או קשת של גרף לא

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה.

חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. חשבון אינפיניטסימלי 1 סיכום הרצאות באוניברסיטה חיפה, חוג לסטטיסטיקה. מרצה: למברג דן תוכן העניינים 3 מספרים ממשיים 1 3.................................. סימונים 1. 1 3..................................

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעד (2014) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

מודלים חישוביים, חישוביות וסיבוכיות

מודלים חישוביים, חישוביות וסיבוכיות מודלים חישוביים, חישוביות וסיבוכיות סשה גולדשטיין, sashag@cs 20 ביוני 2011 תקציר הסיכום להלן מהווה תקציר של חומר הקורס ואיני נוטל עליו כל אחריות. אתם יכולים להיעזר גם בהקלטות השיעורים וכמובן בספר הלימוד.

Διαβάστε περισσότερα

קובץ שאלות ופתרונות של שאלות ממבחנים מנושאים שונים

קובץ שאלות ופתרונות של שאלות ממבחנים מנושאים שונים אוטומטים ושפות פורמליות 236353 סמסטר אביב 2016 קובץ שאלות ופתרונות של שאלות ממבחנים מנושאים שונים קובץ ונערך ע"י אורן אשכנזי ומיכל הורוביץ תכונות סגור ודקדוקים רגולריים. עבור שפות L 1, L 2 מעל א"ב Σ נגדיר

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

הרצאה נושאי הקורס 0.2 א"ב ומילים 0.3 שפות 1. מהו חישוב? 2. מהו מחשב? 3. מהו אלגוריתם? 4. מה ניתן לחשב? מה לא ניתן?

הרצאה נושאי הקורס 0.2 אב ומילים 0.3 שפות 1. מהו חישוב? 2. מהו מחשב? 3. מהו אלגוריתם? 4. מה ניתן לחשב? מה לא ניתן? הרצאה 1 0.1 נושאי הקורס 1. מהו חישוב? 2. מהו מחשב? 3. מהו אלגוריתם? 4. מה ניתן לחשב? מה לא ניתן? בקורס זה נעסוק בבעיות חישוב הנקראות בעיות הכרעה. בהינתן קלט, אנו נבצע "חישוב" ובסופו נחזיר תשובה האם הקלט

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

ניתוח סיבוכיות - פונקציות רקורסיביות פיתוח טלסקופי

ניתוח סיבוכיות - פונקציות רקורסיביות פיתוח טלסקופי ניתוח סיבוכיות - פונקציות רקורסיביות פיתוח טלסקופי ננסה להשתמש בכך שהפונקציה היא רקורסיבית על מנת לרשום גם עבור הסיבוכיות ביטוי רקורסיבי. factorial() 3 מתחילים מכתיבת ביטוי לא מפורש ל-( T( ביטוי רקורסיבי

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

r. כלומר התחיל במצב ההתחלתי, סיים במצב מקבל, ובדרך עבר בצורה חוקית. ניתן להגדיר

r. כלומר התחיל במצב ההתחלתי, סיים במצב מקבל, ובדרך עבר בצורה חוקית. ניתן להגדיר מודלים חישוביים סיכום למבחן אוטומטים: שפות / מחרוזות / הגדרות בסיסיות: א"ב: Σ הוא אוסף סופי של תווים, סימנים. מחרוזת / מילה: רצף סופי של אותיות מא"ב מסוים, כאשר מספר האותיות הוא אורכה המחרוזת הריקה: ε

Διαβάστε περισσότερα

הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה.

הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה. 1 לוגיקה סיכום הגדרות משפטים ודברים חשובים אחרים תודה רבה לניצן פומרנץ על הסיכום הכולל של החומר הקדמה הגדרה 0.1 טיעון הוא תקף אם בכל פעם שההנחות נכונות גם המסקנה נכונה. הערה 0.2 נשים לב שלכל שפה יש רובד

Διαβάστε περισσότερα

A-PDF Merger DEMO : Purchase from to remove the watermark

A-PDF Merger DEMO : Purchase from  to remove the watermark A-PDF Merger DEMO : Purchase from wwwa-pdfcom to remove the watermark סוכם על ידי אבי שוע shuaav@gmalcom http://wwwcshujacl/~shuaav אני מקווה שהסיכומים יעזרו לכם ולעוד רבים טעויות אני (ואף אחד אחר) לא

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות

תורת המספרים 1 פירוק לגורמים ראשוניים סיכום הגדרות טענות ומשפטים אביב הגדרות 1.2 טענות תורת המספרים סיכום הגדרות טענות ומשפטים אביב 017 1 פירוק לגורמים ראשוניים 1.1 הגדרות חוג A C נקראת חוג אם: היא מכילה את 0 ואת 1 סגורה תחת חיבור, חיסור, וכפל הפיך A חוג. a A נקרא הפיך אם 0,a.a 1 A קבוצת

Διαβάστε περισσότερα

מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת)

מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת) מכונת טיורינג לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת) דטרמיניסטי שפות חופשיות הקשר (שפת ראי מסומנת) סגירות:איחוד,שרשור,היפוך, חיתוך עם שפה רגולרית אוטומט סופי דטרמיניסטי שפות רגולריות סגירות:חיתוך,איחוד,שרשור,משלים,היפוך

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

אלגוריתמים בתורת הגרפים חלק ראשון

אלגוריתמים בתורת הגרפים חלק ראשון גירסה 1. 11.11.22 אלגוריתמים בתורת הגרפים חלק ראשון מסמך זה הינו הראשון בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα

שיעור 1. זוויות צמודות

שיעור 1. זוויות צמודות יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

תרגול מס' 1 3 בנובמבר 2012

תרגול מס' 1 3 בנובמבר 2012 תרגול מס' 1 3 בנובמבר 2012 1 מערכת המספרים השלמים בשיעור הקרוב אנו נעסוק בקבוצת המספרים השלמים Z עם הפעולות (+) ו ( ), ויחס סדר (>) או ( ). כל התכונות הרגילות והידועות של השלמים מתקיימות: חוק הקיבוץ (אסוציאטיביות),

Διαβάστε περισσότερα

במשחקים בצורה אסטרטגית: השחקנים בוחרים אסטרטגיות במקביל ובצורה בלתי תלויה. מייד לאחר מכן מסתיים המשחק. נרצה לדון במשחקים מסוג אחר: השחקנים משחקים לפי

במשחקים בצורה אסטרטגית: השחקנים בוחרים אסטרטגיות במקביל ובצורה בלתי תלויה. מייד לאחר מכן מסתיים המשחק. נרצה לדון במשחקים מסוג אחר: השחקנים משחקים לפי 1 משחקים בצורה רחבה במשחקים בצורה אסטרטגית: השחקנים בוחרים אסטרטגיות במקביל ובצורה בלתי תלויה. מייד לאחר מכן מסתיים המשחק. נרצה לדון במשחקים מסוג אחר: השחקנים משחקים לפי תורות. לכל שחקן יש מספר תורות.

Διαβάστε περισσότερα

לוגיקה למדעי המחשב תרגולים

לוגיקה למדעי המחשב תרגולים לוגיקה למדעי המחשב תרגולים ניצן פומרנץ 17 ביוני 2015 אתר הקורס: במודל בשבוע הראשון התרגילים ייועלו גם ל www.cs.tau.ac.il/~shpilka/teaching לירון כהן: liron.cohen@math.tau.ac.il (לא לשלוח שאלות על החומר

Διαβάστε περισσότερα

מודלים חישוביים, חישוביות וסיבוכיות 67521

מודלים חישוביים, חישוביות וסיבוכיות 67521 מודלים חישוביים, חישוביות וסיבוכיות 67521 חיים שחור סיכומי תרגולים של שאול אלמגור 21 ביוני 2012 תוכן עניינים 1 אוטומטים........................................................... 1 2 למת הניפוח......................................................

Διαβάστε περισσότερα

אוטומטים מעל עצמים אינסופיים 67663

אוטומטים מעל עצמים אינסופיים 67663 אוטומטים מעל עצמים אינסופיים 67663 חיים שחור סיכומי הרצאות של אורנה קופרמן י"ח אדר תשע"ג (שעור 1) הערה 0.1 מי שמעוניין לסייע בשרטוט האוטומטים מתבקש לפנות אלי. בחישוביות דיברנו על אוטומטים ושפות רגולריות.

Διαβάστε περισσότερα

מבחן סוף סמסטר מועד ב'

מבחן סוף סמסטר מועד ב' 13.03.2012 מבחן סוף סמסטר מועד ב' מרצה אחראי: פרופ"ח ארז פטרנק מתרגלים: עדי סוסנוביץ מיה ארבל הוראות: א. ב. ג. ד. ה. ו. ז. ח. ט. י. המבחן אנונימי! נא לרשום רק מספר זהות ולא את השם. בטופס המבחן 11 עמודים

Διαβάστε περισσότερα

"שקר". במקום המילים "אמת" או "שקר" משתמשים באותיות T ו- F (באנגלית truth אמת, false שקר (

שקר. במקום המילים אמת או שקר משתמשים באותיות T ו- F (באנגלית truth אמת, false שקר ( . חלק : 1 תחשיב הפסוקים. 1) פסוקים. משתנים פסוקיים. ערכי האמת. בדיבור יום-יומי אנו משתמשים במשפטים שונים. לדוגמא: " יורם סטודנט ", "בישראל בקיץ חם.", "מה השעה?", "דג כרפיון עף בשמיים.", "לך הביתה!", "פרות

Διαβάστε περισσότερα

אוגרים: Registers מונים: Counters

אוגרים: Registers מונים: Counters תרגול מס פר 5 6, מעגלי ם ספרתיים נבנה מעגלים עם זיכרון. נכיר 3 סוגי רכיבים: דלגלגים: FlipFlops אוגרים: Registers מונים: Counters Flip Flops נכיר 4 סוגים: SR-FF T-FF D-FF JK-FF כל FF מהווה יחידת זיכרון

Διαβάστε περισσότερα

CHAIN MATRIX MULTIPLICATION וגיא בן-חורין

CHAIN MATRIX MULTIPLICATION וגיא בן-חורין CHAIN MATRIX MULTIPLICATION פנוש אורי וגיא בן-חורין CHAIN MATRIX MULTIPLICATION חזרה קצרה על הכפלת מטריצות הגדרת בעיית הכפלת שרשרת מטריצות פתרון רקורסיבי לבעיה ייעול הפתרון הרקורסיבי ע"י memoization הצגת

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי הנושא: פתרון בעיות באמצעות שיטת הנסיגה הוכן ע"י: תמר זמיר תקציר: בחומר מוגדר המושג רקורסיה

Διαβάστε περισσότερα

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט

אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשסט 467 אלגברה א', סמסטר חורף תשס"ט, פתרונות לשיעורי הבית, עמוד מתוך 6 467 אלגברה א' - פתרונות לשיעורי הבית סמסטר חורף תשס"ט תוכן עניינים : גליון שדות... גליון מרוכבים 7... גליון מטריצות... גליון 4 דירוג,

Διαβάστε περισσότερα

אלגברה לינארית 1 יובל קפלן

אלגברה לינארית 1 יובל קפלן אלגברה לינארית 1 יובל קפלן מחברת סיכום הרצאות ד"ר אלי בגנו בקורס "אלגברה לינארית 1" (80134) באוניברסיטה העברית, 7 2006 תוכן מחברת זו הוקלד ונערך על-ידי יובל קפלן אין המרצה אחראי לכל טעות שנפלה בו סודר

Διαβάστε περισσότερα

אלגוריתמים בתורת הגרפים חלק שני

אלגוריתמים בתורת הגרפים חלק שני גירסה 1.00 5.12.2002 אלגוריתמים בתורת הגרפים חלק שני מסמך זה הינו השני בסדרת מסמכים אודות תורת הגרפים, והוא חופף בחלקו לקורס "אלגוריתמים בתורת הגרפים" בטכניון (שאינו מועבר יותר). ברצוני להודות תודה מיוחדת

Διαβάστε περισσότερα