3-9 - a < x < a, a < x < a

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3-9 - a < x < a, a < x < a"

Transcript

1 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה. ס"מ צריך להיות : ב. עמוד 44, טבלהבמרכזהעמוד צריך להיות : x f '(x) f(x) x < 0 - ց 0 0 < x < 3 - ց 3 0 min x > 3 + ր עמוד 80, שאלהמס' 1, סעיףד- 1 ) וסעיףה', תשובות ד. (1 (0;1) ה., סעיפים ב- 5 ) ו- 6), תשובות עמוד 85, שאלהמס' ( a < x < a, a < x < a 5) תחום עלייה: עמוד 97, שאלהמס' 17, סעיףב- 4 ), תשובות x > 0 -, תחוםירידה: 3 < x < 0 4) תחום עלייה: עמוד 317, שאלהמס', סעיףד'. מעצביםחלוןראווהשלחנותחדשהבצורת מלבן ומעליוחציעיגול. החלוןעשויכולוזכוכיתעם מסגרתדקהממתכת. הזכוכיתממנה עשויחצי

2 העגולהיא צבעוניתויקרהיותרמן הזכוכיתממנה עשויהמלבן. מחירהזכוכיתעבור המלבןהוא 100 ש"חלמ"רואילומחיר הזכוכיתעבור חציהעיגול הוא 140 ש"חלמ"ר. פסהמתכתהמיועד עבורמסגרת החלון (המודגשתבציור), הואבאורך של 1 מטר. מההמחירהמקסימלישלחלוןהראווההבנויעלפינתוניםאלה? תשובה: עמוד 37, מבחןמס', 1 שאלהמס' 9, סעיףד' ד. חשבאתהשטחהמוגבלביןגרףהפונקציה g(x), צירה-, x צירה- y וישר מקביללצירה- y העוברדרךהנקודה A. ד. תשובה: 3 - עמוד 335, מבחןמס', 3 שאלהמס' 1, סעיףג' ג. באיזושעההחלושניהאופיםאתעבודתם? עמוד 341, מבחןמס', 4 שאלהמס' 5, סעיףג' m ג. נתון: = 50 β. α = 70, הבעבעזרת המשולש ABC. אתמרחקהקדקודC מנקודתהמפגששלתיכוני ג. תשובה: 1.53m עמוד 350, מבחןמס', 6 שאלהמס' טליצאבשעה 9 מביתוורכבעלהאופנועשלובמהירותקבועהלעבר מקוםA הנמצא במרחק 140 ק"ממביתו. לאחרשעברמרחקשל 40 ק"מ, התגלהתקרבאחדמגלגליו והואנאלץלהתעכב 5 דקות לתיקונו. אחר-כךהמשיךלרכבבמהירותהגבוההב- 0 קמ"שממהירותוהקודמת. טלהגיעליעדובאותוזמןבוהיהמגיעלורכבכלהדרך במהירותבהרכבלפניהתקר. א. באיזושעההתגלההתקרבגלגל? ב. למחרת יצאטלמביתוברכיבהעלהאופנועבמטרהלהיפגשעםחברוניבשיצא לעברומ- A רכובעלאופנוע. טלוניביצאובו- זמניתורכבובאותהמהירות. המהירותבהרכבושניהחבריםהייתהגבוההמןהמהירותבהרכבטלביוםהקודם

3 3 לפני התקר בגלגל האופנוע ונמוכה מן המהירות בה רכב אחרי התקר. באיזה תחום מספרי נמצא מספר השעות שרכבו שני החברים עד שנפגשו? עמוד 366, מבחןמס', 9 שאלהמס' 1 תוספתסעיףג': ג. כמהספליםאורזכלאחדמןהפועליםבדקה? תשובה: ג. פועלא' אורז 50 ספליםבדקה, פועלב' אורז 0 ספליםבדקה עמוד 369, מבחןמס', 9 שאלהמס' 7, סעיףד' בשורההראשונהצריךלהיות :. f(-4) = 8, f() = 5, ד. נתון: = 0 f(0) עמוד 370, מבחןמס', 9 שאלהמס' 9, סעיףב' ב. נתונה פונקציה נוספת: a g(x) = cos x בתחום π π. - < x < מצאאתערכיa עבורםאיןלגרפיםשלשתיהפונקציות f(x) ו- g(x) אףנקודה משותפת. עמוד 38, מבחןמס', 1 שאלהמס' נתונה סדרה המוגדרת על-ידי כלל הנסיגה: a1= a = n+ 1 3 a n n. a = n 3 + an א. הוכחשלכל n טבעי מתקיים : ב. בסדרההנתונהמספרזוגישלאיברים. סכוםהאיבריםהנמצאיםבמקומותהזוגייםקטןב- 18 מסכוםהאיבריםהנמצאיםבמקומותהאי-זוגיים. מצאאתמספרהאיבריםבסדרה. ג. מגדיריםסדרהאינסופית b,b,b,b..., המקיימת: b =,b =,b =,b =, a1 a a3 a4 כאשר... a,a,a,aהםאבריהסדרה הנתונהבסעיףא'. חשבאתסכוםהסדרההאינסופית... + b. b + b + b

4 תשובות: ג. ב. 1 עמוד 397, מבחןמס', 15 שאלהמס', 1 סעיףג' 00? 15 בשורה האחרונה צריך להיות : כמהאריחיםהיומונחיםעלהרצפהבשעה עמוד 397, מבחןמס', 15 שאלהמס' בשורההשלישית הראשונה יש פתקיםובכלשורהשאחריהיששני עמוד 400, מבחןמס', 15 שאלהמס' 8.8 נתונההנגזרתשלהפונקציה :f(x).(a > 0), f '(x) = a ax - a 1 7a הישר + x y = משיקלגרףהפונקציה. 3 3 א. הבעבעזרתa את: (1 שיעורינקודתההשקה. ( הפונקציה f(x). ב. נקודתההשקהשמצאתבסעיףא- 1 ) היאהנקודההקרובהביותרעל. מןהנקודה (13;0). מצאאתa f(x) גרף הפונקציה a = 1 f(x) = ax - a ( ( 11a; 6a) תשובה: 8. א. 1) ב. עמוד 410, מבחןמס', 17 שאלהמס' 6, סעיףב' ( ישנתוןמיותר.. () חשב את הזווית FEC עמוד 430, מבחןמס', 1 שאלהמס' 5, סעיףב' בשורה הראשונה ב. נתון כי:.S ABC S. הבעבאמצעותk ו- βאת ADC = k, α = β עמוד 431, מבחןמס', 1 שאלהמס' 8 צריך למחוק סעיף ג' עמוד 437, מבחןמס', שאלהמס' 8, סעיףח' (1-, תשובות

5 5 π ( ;0), (π;0) 3 ח. 1) עמוד 446, מבחןמס', 4 שאלהמס' 8 ІІ. g(x) = x 8 - x 4 f(x) = 8x -x І 8. נתונות הפונקציות ו- א. מצאאתתחוםההגדרהשלכלאחתמןהפונקציות. ב. מצאאתנקודותקיצוןשלכלאחתמןהפונקציות. ג. בציוריםשלפניךמתואריםהגרפיםשל '(x) f ו- g'(x). איזהמןהגרפים ІאוІІהואגרף הפונקציה (x)'? f נמק. ד. שרטטסקיצהשלהגרפיםשלהפונקציות f(x) ו- g(x). ה. חשבאתהשטחהמוגבלביןגרףהפונקציה '(x) g וצירה-. x תשובה : ה. 8 יח"ר עמוד 448, מבחןמס', 4 שאלהמס' 7, סעיףב' (-, תשובות y -B A ( ;- ) A 4B -B A ) ;- )מקסימום, A 4B ( x, -B -B x < -, x > A A מקסימום, תחוםירידה: -B -B - < x < 0, 0 < x < A A תחוםעלייה: עמוד 449, מבחןמס', 5 שאלהמס', סעיףא'

6 6 א. מהסכוםהכסף שהיהבחשבוןבסוףחודשדצמבר 010? עמוד 451, מבחןמס', 5 שאלהמס' 5, סעיף א' בשורה הראשונה א. הבע באמצעות α את היחס בין שטח המעוין עמוד 458, מבחןמס', 6 שאלהמס' 8 ישלמחוקסעיףד' עמוד 459, מבחןמס', 6 שאלהמס', סעיףג' (-, תשובות ) עמוד 459, מבחןמס', 6 שאלהמס' 8 ישלמחוקסעיףד' עמ', 463 מבחןמס', 7 שאלהמס' 8 סעיףו' מיותר עמ', 476 מבחןמס', 30 שאלהמס' 4, סעיף ג' נתוןמיותר: 4.3 ס"מ= BE עמ', 479 מבחןמס', 30 שאלהמס', 5 סעיףב', תשובות r tan18 o r o tan63 או ב. עמ', 488 מבחןמס', 3 שאלהמס', 8 סעיףא' א. בטאאתאורךהאלכסוןהשניבאמצעותa ו-. x עמ', 488 מבחןמס', 3 שאלהמס', 9 סעיףג' במקוםסעיפיםג' ו- ד' 3 y = x S 1 ג. נסמן ב- את השטח המוגבל על ידי גרף הפונקציה והישר y = b x y = ax S ברביעהראשון. נסמןב- את השטח המוגבל על ידי הפונקציה

7 7 תשובה: והישר y = b x ויוצרים גופי סיבוב שנפחיהם ג. ברביע הראשון. השטחים S 1 S ו- V 1. V חשבאתהיחסשבין ו- מסתובבים סביב ציר x V 1. V ו- V1 8 = V 7 עמ', 493 מבחןמס', 33 שאלהמס' 8 ישלמחוקסעיף ג' עמ' 500 מבחןמס', 34 שאלהמס' 9 יש למחוק סעיף ה' עמ' 507 מבחן מס', 36 שאלהמס', 1 סעיףב' ב. נתון כי היחס בין מהירות המכונית למהירות המשאית אינו עולה על אםהמכוניתתגיעלנקודה A ותתחיל לחזורמיידלעבר B, בשעה במרחק 43 ק"ממאחוריהמשאיתשעדייןלאהגיעהל- B. באיזושעהתגיעהמשאיתלנקודה? B היאתימצא עמ' 533 מבחןמס', 40 שאלהמס', 9 סעיףב'- (4, תשובות A AB הואקוטרהמעגל, CD 9. נתון מעגל שרדיוסו. r C E D CD החותך את CD BCD = x הואמיתרמאונך ל- בנקודה. E סמן: B. א. בטאאתהשטח שלהמשולש ABC באמצעות r ו- x ב. מצאאת x עבורושטחהמשולש ABC מקסימלי. CE ג. שטח המשולש ABC בטאאתאורךהקטע הוא מקסימלי. באמצעותr.. r ד. בטאאתהשטחהמקסימלי שלהמשולש ABC באמצעות תשובות, סעיף ד' : Smax = 3 3r 4 ד. עמ' 534 מבחןמס', 40 שאלהמס', סעיףב'- (4, תשובות

8 8 שבהכלאיבר, החלמהאברהשלישי גדולפיm a. נתונהסדרה ,a,a 0) > (m מסכוםכלהאיבריםשלפניו. א. הוכח, כיאיבריהסדרה, החלמהאברהשלישי, מהוויםסדרההנדסיתובטא בעזרתm אתמנתה. ב. נתוןכיהאיברהשלישי בסדרההוא 4 והאיברהחמישי הוא 64. מצאאתm. bn = a n+ + 3 b המקיימת : ג. נגדיר סדרה נוספת...3 b,1 b, חשב את הסכום,לכלn טבעי.. b + b + b b b ד. הסדרה ,b,b מוגדרתלכל n טבעיגם בעזרתכללהנסיגה :. מצאאתt ו-. k n bn+1 = 6bn t 4 + k עמ' 534 מבחןמס', 40 שאלהמס', סעיףב'- (4, תשובות או (4 עמ' 534 מבחןמס', 40 שאלהמס', 7 סעיףט', תשובות ט יח"ר

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx

ושל (השטח המקווקו בציור) . g(x) = 4 2x. ו- t x = g(x) f(x) dx פרק 9: חשבון דיפרנציאלי ואינטגרלי O 9 ושל בציור שלפניך מתוארים גרפים של הפרבולה f() = נמצאת על הנקודה המלבן CD מקיים: הישר = 6 C ו- D נמצאות הפרבולה, הנקודה נמצאת על הישר, הנקודות ( t > ) OD = t נתון:

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME

תרגילים באמצעות Q. תרגיל 2 CD,BF,AE הם גבהים במשולש .ABC הקטעים. ABC D נמצאת על המעגל בין A ל- C כך ש-. AD BF ABC FME הנדסת המישור - תרגילים הכנה לבגרות תרגילים הנדסת המישור - תרגילים הכנה לבגרות באמצעות Q תרגיל 1 מעגל העובר דרך הקודקודים ו- של המקבילית ו- חותך את האלכסונים שלה בנקודות (ראה ציור) מונחות על,,, הוכח כי

Διαβάστε περισσότερα

33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות.

33 = 16 2 נקודות. נקודות. נקודות. נקודות נקודות. 1 מבחן מתכונת מס ' משך הבחינה: שלוש שעות וחצי. מבנה ה ומפתח הערכה: ב זה שלושה פרקים. פרק א': אלגברה והסתברות: נקודות. נקודות. נקודות. נקודות. 1 33 = 16 3 3 פרק ב': גיאומטריה וטריגונומטריה במישור: 1 33

Διαβάστε περισσότερα

ב ה צ ל ח ה! /המשך מעבר לדף/

ב ה צ ל ח ה! /המשך מעבר לדף/ בגרות לבתי ספר על יסודיים סוג הבחינה: מדינת ישראל קיץ תשע"א, מועד ב מועד הבחינה: משרד החינוך 035804 מספר השאלון: דפי נוסחאות ל 4 יחידות לימוד נספח: מתמטיקה 4 יחידות לימוד שאלון ראשון תכנית ניסוי )שאלון

Διαβάστε περισσότερα

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 ס"מ = CD.

שאלה 1 נתון: (AB = AC) ABC שאלה 2 ( ) נתון. באמצעות r ו-. α שאלה 3 הוכח:. AE + BE = CE שאלה 4 האלכסון (AB CD) ABCD תשובה: 14 סמ = CD. טריגונומטריה במישור 5 יח"ל טריגונומטריה במישור 5 יח"ל 010 שאלונים 006 ו- 806 10 השאלות 1- מתאימות למיקוד קיץ = β ( = ) שאלה 1 במשולש שווה-שוקיים הוכח את הזהות נתון: sin β = sinβ cosβ r r שאלה נתון מעגל

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשעא, מיום 23/5/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע"א, מיום 3/5/011 שאלון: 635860 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. שאלה מספר 1 נתון: 1. ממקום A יצאה מכונית א' וכעבור מכונית ב'. 1 שעה

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

(ספר לימוד שאלון )

(ספר לימוד שאלון ) - 40700 - פתרון מבחן מס' 7 (ספר לימוד שאלון 035804) 09-05-2017 _ ' i d _ i ' d 20 _ i _ i /: ' רדיוס המעגל הגדול: רדיוס המעגל הקטן:, לכן שטח העיגול הגדול: / d, לכן שטח העיגול הקטן: ' d 20 4 D 80 Dd 4 /:

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה. בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

חשבון דיפרנציאלי ואינטגרלי

חשבון דיפרנציאלי ואינטגרלי 0 חשבון דיפרנציאלי ואינטגרלי I גיא סלומון סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת חשבון דיפרנציאלי ואינטגרלי באוניברסיטת תל אביב, באוניברסיטה הפתוחה, במכללת שנקר ועוד. שאלות

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תשע מועד ב', מיום 14/7/2010 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. תשובות מלאות לבחינת הבגרות במתמטיקה מועד קיץ תש"ע מועד ב', מיום 14/7/2010 שאלון: 316, 035806 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 E נתון: 1 רוכב אופניים רכב מעיר A לעיר B

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2

b2n-1 ב. נשתמש בנוסחת סכום סדרה הנדסית אינסופית יורדת כדי לרשום את הנתון: 1-q = 0.8 b 1-q 1=0.8(1+q) q= 1 4 פתרון לשאלה 2 פתרון מבחן מס' פתרון לשאלה א. להוכיח כי סדרה c היא סדרה הנדסית משמע להוכיח כי היחס בין איברים סמוכים בסדרה הוא מספר n c n +n c מכיוון ש- q הוא מספר קבוע, סדרה = b n+ = bq n =q cn bn- bq n- :b n קבוע. אם

Διαβάστε περισσότερα

עבודת קיץ למואץ העולים לכיתה י' סדרות:

עבודת קיץ למואץ העולים לכיתה י' סדרות: ב( ג( א ) עבודת קיץ למואץ העולים לכיתה י' סדרות: תרגילי חימום.... בסדרה חשבונית האיבר השמיני גדול פי מהאיבר הרביעי. סכום אחד-אשר האיברים הראשונים בסדרה הוא. 0 ( מצאו את האיבר הראשון של הסדרה. ( מצאו את

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות 1-3 (לכל שאלה

פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות 1-3 (לכל שאלה שאלון - 806 מבחן פרק ראשון - אלגברה והסתברות ) ענה על שתיים מהשאלות - (לכל שאלה נק') 6 נק') A n יואב ודניאל עובדים בהעמסת ארגזים למשאיות במפעל. יואב מסוגל להעמיס לבדו 0 ארגזים בשעה. דניאל מסוגל להעמיס

Διαβάστε περισσότερα

מתמטיקה טריגונומטריה

מתמטיקה טריגונומטריה אלכס זיו מתמטיקה המדריך המלא לפתרון תרגילים טריגונומטריה 5 לתלמידי 4 ו- יחידות לימוד כ- 50 תרגילים עם פתרונות מלאים הקדמה ספר זה הוא חלק מסדרת ספרים "המדריך המלא לפתרון תרגילים" הסדרה מיועדת לשימוש כהשלמה

Διαβάστε περισσότερα

פתרון מבחן מתכונת מס' 21. פתרון שאלה 1 נסמן: x מהירות ההליכה של נועם. y מהירות ההליכה של יובל. נועם 2.5x 2.5 x יובל בתנועה יובל במנוחה משוואה I:

פתרון מבחן מתכונת מס' 21. פתרון שאלה 1 נסמן: x מהירות ההליכה של נועם. y מהירות ההליכה של יובל. נועם 2.5x 2.5 x יובל בתנועה יובל במנוחה משוואה I: פתרון מבחן מתכונת מס' פתרון שאלה נסמן: מהירות ההליכה של נועם. y מהירות ההליכה של יובל. מהירות זמן דרך נועם.5.5.5 +.5 A 5 A y y יובל בתנועה 6 יובל במנוחה A y + 6 משוואה I: נועם ויובל שהו במשך אותו זמן בדרך:.5.5

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה.

מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה. מתמטיקה שאלון 804 מבחני בגרות ובחינות חזרה הקדמה כללית: ספרי התרגילים של גול הינם פרי של שנות ניסיון רבות בהוראת חומרי הלימוד ובהגשה לבחינות הבגרות במתמטיקה הן בבתי הספר התיכוניים, הן בבתי הספר הפרטיים

Διαβάστε περισσότερα

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18

שם התלמיד/ה הכיתה שם בית הספר. Page 1 of 18 שם התלמיד/ה הכיתה שם בית הספר ה Page of 8 0x = 3x + שאלה פ תרו את המשוואה שלפניכם. x = תשובה: שאלה בבחירות למועצת תלמידים קיבל רן 300 קולות ונעמה קיבלה 500 קולות. מה היחס בין מספר הקולות שקיבל רן למספר

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

יחידתלימודבנושא " שלמשולשישרזווית" http://www.hebrewkhan.org/lesson/533 מעט היסטוריה הפרושהמילולישלהמילה "" הוא "מדידתמשולשים". משולש "טריגונו" מיוונית - "מטריה"- מיוונית - מדידה, ענףשלהמתמטיקההעוסק, ביןהיתר,

Διαβάστε περισσότερα

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3

מתמטיקה )שאלון שני לנבחנים בתכנית ניסוי, 5 יחידות לימוד( 1 מספרים מרוכבים 3#2 3 3 סוג הבחינה: בגרות לבתי ספר על יסודיים מדינת ישראל מועד הבחינה: חורף תשע"ב, 202 משרד החינוך מספר השאלון: 035807 דפי נוסחאות ל 5 יחידות לימוד נספח: א. משך הבחינה: שעתיים. מתמטיקה 5 יחידות לימוד שאלון שני

Διαβάστε περισσότερα

כאן מבנה הבחינה שתיערך השנה תשע"ד. הבחינות של מועד תשע"ג מותאמות לבחינה שתיערך השנה. כמו כן ישנן שאלות שלא רלוונטיות לתוכנית ההיבחנות החדשה.

כאן מבנה הבחינה שתיערך השנה תשעד. הבחינות של מועד תשעג מותאמות לבחינה שתיערך השנה. כמו כן ישנן שאלות שלא רלוונטיות לתוכנית ההיבחנות החדשה. לתלמידי כיתה י' אנו שמחים להציג בפניכם את חוברת מבחני המחצית של כיתה י' שנערכו בשנים האחרונות שימו לב כי לא כל הבחינות המופיעות בחוברת זו, הן במבנה של הבחינה שתיערך לכם השנה, לכן מובא לכם כאן מבנה הבחינה

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות

טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות טריגונומטריה הגדרות הפונקציות הטריגונומטריות הבסיסיות את הפונקציות הטריגונומטריות ניתן להגדיר באמצעות הקשרים בין הניצבים לבין היתר ובין הניצבים עצמם במשולש ישר זווית בלבד: לדוגמה: סינוס זווית BAC (אלפא)

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל- כתב ופתר גיא סלומון

אלגברה לינארית גיא סלומון. α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π. σ ς τ υ ω ξ ψ ζ. לפתרון מלא בסרטון פלאש היכנסו ל-  כתב ופתר גיא סלומון 0 אלגברה לינארית α β χ δ ε φ ϕ γ η ι κ λ µ ν ο π ϖ θ ϑ ρ σ ς τ υ ω ξ ψ ζ גיא סלומון לפתרון מלא בסרטון פלאש היכנסו ל- wwwgoolcoil סטודנטים יקרים ספר תרגילים זה הינו פרי שנות ניסיון רבות של המחבר בהוראת

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ

םיאלמ תונורתפ 20,19,18,17,16 םינחבמל 1 להי רחש ןולאש הקיטמתמב סוקופ פתרונות מלאים למבחנים 0,9,8,7,6 פוקוס במתמטיקה שאלון 3580 שחר יהל העתקה ו/או צילום מספר זה הם מעשה לא חינוכי, המהווה עברה פלילית. פתרון מבחן מתכונת מס' 6 פתרון שאלה א. נקודות A ו- B נמצאות על הפונקציה

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא.

א. חוקיות תשובות 1. א( קבוצות ספורט ב( עצים ג( שמות של בנות ד( אותיות שיש להן אות סופית ; ה( מדינות ערביות. 2. א( שמעון פרס חיים הרצוג. ב( לא. א. חוקיות. א( 1; ב( ; ג( השמיני; ד( ; ה( האיבר a שווה לפי - מיקומו בסדרה ; ו( = ;a ז( 9 = a ;.6 א( דוגמה: = a. +.7 א( =,1 + = 6 ;1 + ג( את המספר האחרון: הוא זה שמשתנה מתרגיל לתרגיל. 8. ב( 1 7 a, המספר

Διαβάστε περισσότερα

מבחן משווה בפיסיקה כיתה ט'

מבחן משווה בפיסיקה כיתה ט' מבחן משווה בפיסיקה כיתה ט' משך המבחן 0 דקות מבנה השאלון : שאלון זה כולל 4 שאלות. עליך לענות על כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף אותם בהגשה לטופס המבחן. חומרי עזר:.מחשבון. נספח הנוסחאות

Διαβάστε περισσότερα

שאלון 006 מיקוד במתמטיקה

שאלון 006 מיקוד במתמטיקה שאלון 006 מיקוד במתמטיקה מהדורת חורף תשס"ט 009 כתיבה: זיקרי אלברט, שמש שלמה - shemesh4@walla.co.il צוות עריכה מקצועית: ריטרבנד אוהד, נאות רז, מן מנחם, דוד ניר, ארביב עמוס, שטולבך אירית, שניידר איתן, כהן

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

שיעור 1. זוויות צמודות

שיעור 1. זוויות צמודות יחידה 11: זוגות של זוויות שיעור 1. זוויות צמודות נתבונן בתמרורים ובזוויות המופיעות בהם. V IV III II I הדסה מיינה את התמרורים כך: בקבוצה אחת שלושת התמרורים שמימין, ובקבוצה השנייה שני התמרורים שמשמאל. ש

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח

סרוקל רזע תרבוח 1 ילמיסיטיפניא ןובשח חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 חוברת עזר לקורס חשבון אינפיטיסימלי 495 עמוד חוברת עזר לקורס חשבון אינפיטיסימלי 495 יולי 4 תוכן העניינים נושא עמוד נושא כללי 3 רציפות זהויות טריגונומטריות 4

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0.

פתרון 4. a = Δv Δt = = 2.5 m s 10 0 = 25. y = y v = 15.33m s = 40 2 = 20 m s. v = = 30m x = t. x = x 0. בוחן לדוגמא בפיזיקה - פתרון חומר עזר: מחשבון ודף נוסחאות מצורף זמן הבחינה: שלוש שעות יש להקפיד על כתיבת יחידות חלק א יש לבחור 5 מתוך 6 השאלות 1. רכב נוסע במהירות. 5 m s לפתע הנהג לוחץ על דוושת הבלם והרכב

Διαβάστε περισσότερα

:ןורטיונ וא ןוטורפ תסמ

:ןורטיונ וא ןוטורפ תסמ פרק ט' -חוק קולון m m e p = 9. 0 = m n 3 kg =.67 0 7 kg מסת אלקטרון: מסת פרוטון או נויטרון: p = e =.6 0 9 מטען אלקטרון או פרוטון: חוק קולון בין כל שני מטענים חשמליים פועל כח חשמלי. הכח תלוי ביחס ישיר למכפלת

Διαβάστε περισσότερα

m 3kg משוחררת מנקודה A של משור משופע חלק בעל אורך

m 3kg משוחררת מנקודה A של משור משופע חלק בעל אורך .v A עבודה: ( גוף נזרק מגובה h 8m במהירות אופקית שווה ל- 7m/s א. מהי העבודה הנעשית על ידי כוח הכובד מנקודה A לנקודה B? השתמש במשפט עבודה - אנרגיה קינטית כדי לחשב את גודל מהירות הגוף בנקודה B. AB l m וזווית.

Διαβάστε περισσότερα

יחידה - 7 זוויות חיצוניות

יחידה - 7 זוויות חיצוניות יחידה 7: זוויות חיצוניות שיעור 1. זווית חיצונית למצולע מה המשותף לכל הזוויות המסומנות ב-? נכיר זווית חיצונית למצולע, ונמצא תכונה של זווית חיצונית למשולש. זווית חיצונית למצולע 1 כל 1. הזוויות המסומנות במשימת

Διαβάστε περισσότερα

המחלקה להוראת המדעים כל הזכויות שמורות הוא מציב בכל צד מוט אופקי לתמיכה במסגרת כמו בתמונה. 1. א. באיזה משולש הקטע המקווקו הוא קטע אמצעים?

המחלקה להוראת המדעים כל הזכויות שמורות הוא מציב בכל צד מוט אופקי לתמיכה במסגרת כמו בתמונה. 1. א. באיזה משולש הקטע המקווקו הוא קטע אמצעים? יחידה 33: קטע אמצעים שיעור 1. קטע אמצעים במשולש מוטי בונה נדנדת גן. הוא מציב בכל צד מוט אופקי לתמיכה במסגרת כמו בתמונה. המוטות, הצבועים באדום, מחברים את אמצעי העמודים. כיצד יחשב מוטי את אורך המוט האדום?

Διαβάστε περισσότερα

ˆÓ ÍÒÂÓÏ Ú Ó 50 Ï Â È Ó Ó 10 ÚÒ Â A ÔÂÂÈÎÏ ÈÓ ÊÁ ÆA Ï Í Æ Ï Ú Â ÚÈÒ Â È ÓÓ Ó 10 Ë Â È Ó

ˆÓ ÍÒÂÓÏ Ú Ó 50 Ï Â È Ó Ó 10 ÚÒ Â A ÔÂÂÈÎÏ ÈÓ ÊÁ ÆA Ï Í Æ Ï Ú Â ÚÈÒ Â È ÓÓ Ó 10 Ë Â È Ó ßÒÓ Ú Û ÂÁ ÈËÓ Ó ÁÙÒ.,,!. Â Â Æ Â Â ± Ï ÏÎÏ ÂÏ Ó ÌÈÈ ÏÚ Ú ÆÍ ÁÓ Â Â Â Â È Â ÈÈ ÂÏ È Ó ÂÈ ÏÚ Ú Ì! ÆÓ  ÌÈ Ú È ÔÈ Á Ó Æ B ÈÚ ÔÂÂÈÎÏ A ÈÚÓ ˆÈ.  ÚÈÒ ÏÈÁ Ó Ú 4  ÚÎ Ï Ô Î ÈÙÎ ÚÂ Â È Ó ÚÒ ÏÁ ÆÂ Î Ï ÈÈ ˆÓ ÍÒÂÓÏ

Διαβάστε περισσότερα

ו- 5 יחידות לימוד) חלק א' שאלונים ו (כתום אדום). ו- 806.

ו- 5 יחידות לימוד) חלק א' שאלונים ו (כתום אדום). ו- 806. מעגל- הנדסת המישור קובץ תרגילים עם מעגל לתלמידי 4 ו- 5 יח"ל עפ"י הנחיות הפיקוח על המתמטיקה צריך ללמד בכיתה י' על דמיון משולשים ובכיתה י"א צריך ללמד על המעגל. בהתאם להנחיות אלה נכתב הספר מתמטיקה (4 ו- 5

Διαβάστε περισσότερα

עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה

עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה עבודת קיץ לקראת כיתה ט' מצויינות מתמטיקה העבודה כוללת שאלות מכל הנושאים שנלמדו במהלך השנה. את חלק מהשאלות כבר פגשתם, וזו הזדמנות עבורכם לוודא שאתם יודעים כיצד לפתור אותן. את העבודה יש להגיש במהלך השבוע

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

שוקו שיעור 1. הגדרת המקבילית שילובים במתמטיקה 349 במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: בתמרורים וסימני תנועה:

שוקו שיעור 1. הגדרת המקבילית שילובים במתמטיקה 349 במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: בתמרורים וסימני תנועה: יחידה 19: מקבילית שיעור 1. הגדרת המקבילית במקביליות שלפניכם משתמשים בסביבה ובחיי היום-יום. בפסי-רכבת: בדגלים: של איזו מדינה דגל זה? של איזו מדינה דגל זה? בתמרורים וסימני תנועה: איזה תמרור זה? איזה תמרור

Διαβάστε περισσότερα

חוברת תרגול וחזרה במתמטיקה לקראת התיכון.

חוברת תרגול וחזרה במתמטיקה לקראת התיכון. חוברת תרגול וחזרה במתמטיקה לקראת התיכון. מהדורה פנימית שאינה מיועדת למטרות רווח. תלמידים יקרים, לקראת פתיחת שנה"ל הקרובה, בה תחלו את צעדיכם הראשונים בתיכון המושבה, חוברה עבורכם חוברת זו אשר תקל על השתלבותכם

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

4( מסה m תלויה על חוט בנקודה A ומשוחררת. כאשר היא עוברת בנקודה הנמוכה ביותר B, המתיחות בחוט היא: א. התשובה תלויה באורך החוט.

4( מסה m תלויה על חוט בנקודה A ומשוחררת. כאשר היא עוברת בנקודה הנמוכה ביותר B, המתיחות בחוט היא: א. התשובה תלויה באורך החוט. 1( מכונית נעה במהירות קבועה ימינה לאורך כביש מהיר ישר. ברגע בו חולפת המכונית על פני צוק, אבן נופלת כלפי מטה במערכת הייחוס של הצוק. אלו מבין העקומות הבאות מתארת באופן הטוב ביותר את המסלול של האבן במערכת

Διαβάστε περισσότερα

שיעור 1. צלעות פרופורציוניות במשולשים דומים

שיעור 1. צלעות פרופורציוניות במשולשים דומים יחידה 14: דמיון משולשים שיעור 1. צלעות פרופורציוניות במשולשים דומים A 4 40 B 80 C במשימות בשיעור זה השרטוטים הם להדגמה, 4.5 D 80 ומידות האורך נתונות בס"מ. לפניכם שני משולשים. האם המשולשים דומים? F 0 9

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B ב"ת, אזי: A, B ב "ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n.

( k) ( ) = ( ) ( ) ( ) ( ) A Ω P( B) P A B P A P B תכונות: A ו- B בת, אזי: A, B ב ת. בינומי: (ההסתברות לk הצלחות מתוך n ניסויים) n. Ω קבוצת התוצאות האפשריות של הניסוי A קבוצת התוצאות המבוקשות של הניסוי A A מספר האיברים של P( A A Ω מבוא להסתברות ח' 434 ( P A B הסתברות מותנית: P( A B P( B > ( P A B P A B P A B P( B PB נוסחאת ההסתברות

Διαβάστε περισσότερα

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה י"א(

מערכות חשמל ג' שתי יחידות לימוד )השלמה לחמש יחידות לימוד( )כיתה יא( מדינת ישראל סוג הבחינה: בגרות לבתי ספר על יסודיים משרד החינוך מועד הבחינה: קיץ תשע"ה, 2015 סמל השאלון: 845201 א. משך הבחינה: שלוש שעות. נספח: נוסחאון במערכות חשמל מערכות חשמל ג' שתי יחידות לימוד )השלמה

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25.

f ( x, y) 1 5y axy x xy ye dxdy לדוגמה: axy + + = a ay e 3 2 a e a y ( ) במישור. xy ואז dxdy למישור.xy שבסיסם dxdy וגבהם y) f( x, איור 25. ( + 5 ) 5. אנטגרלים כפולים., f ( המוגדרת במלבן הבא במישור (,) (ראה באיור ). נתונה פונקציה ( β α f(, ) נגדיר את הסמל הבא dd e dd 5 + e ( ) β β איור α 5. α 5 + + = e d d = 5 ( ) e + = e e β α β α f (, )

Διαβάστε περισσότερα

(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות

(להנדסאי מכונות) הוראות לנבחן פרק שני: בקרת תהליכים ומכשור לבקרה ולאלקטרוניקה תעשייתית 80 נקודות גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תשס"ח, 2008 מועד הבחינה: משרד החינוך 710923 סמל השאלון: מערכות מכטרוניות ה' (להנדסאי מכונות) הוראות לנבחן א. משך הבחינה: ארבע שעות. ב. מבנה השאלון

Διαβάστε περισσότερα

מבחן משווה בפיסיקה תשע"ג כיתה ט' טור א משך המבחן 90 דקות

מבחן משווה בפיסיקה תשעג כיתה ט' טור א משך המבחן 90 דקות מבחן משווה בפיסיקה תשע"ג כיתה ט' טור א משך המבחן 90 דקות מבנה השאלון : שאלון זה כולל משימות. עליך לבצע את כולן.כתוב את הפתרונות המפורטים בדפים נפרדים וצרף לטופס המבחן בעת ההגשה. חומרי עזר:.מחשבון. נספח

Διαβάστε περισσότερα

פתרוןגליוןעבודהמס. 5 בפיסיקה 2

פתרוןגליוןעבודהמס. 5 בפיסיקה 2 פתרוןגליוןעבודהמס. 5 בפיסיקה הנדסת תעשיה וניהול, אביב תשע ו לקריאה: פרק 31.1 31.4 וכן פרק 37 באתר 1. מסת כדור הארץ היא M ורדיוסו R. יורים מפני כדור הארץ קליע בניצב לפני כדור הארץ במהירות התחלתית.v (א)

Διαβάστε περισσότερα

תורת הרכב והמנוע ט' )לטכנאי "מכונאות רכב"(

תורת הרכב והמנוע ט' )לטכנאי מכונאות רכב( גמר לבתי ספר לטכנאים ולהנדסאים סוג הבחינה: מדינת ישראל אביב תש"ע, 2010 מועד הבחינה: משרד החינוך 710951 סמל השאלון: א. משך הבחינה: ארבע שעות. תורת הרכב והמנוע ט' )לטכנאי "מכונאות רכב"( הוראות לנבחן ב. מבנה

Διαβάστε περισσότερα

הפקולטה למדעי הטבע המחלקה לפיזיקה קורס : פיזיקה 1 א. ב. א. ב. א. ב. ג. עבודה: )1 גוף נזרק מגובה h 8m. במהירות אופקית שווה ל- 7m/s

הפקולטה למדעי הטבע המחלקה לפיזיקה קורס : פיזיקה 1 א. ב. א. ב. א. ב. ג. עבודה: )1 גוף נזרק מגובה h 8m. במהירות אופקית שווה ל- 7m/s .v A עבודה: )1 גוף נזרק מגובה h 8m במהירות אופקית שווה ל- 7m/s מהי העבודה הנעשית על ידי כוח הכובד מנקודה A לנקודה B? השתמש במשפט עבודה - אנרגיה קינטית כדי לחשב את גודל מהירות הגוף בנקודה B. וזווית. 36.87

Διαβάστε περισσότερα

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03 15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת

Διαβάστε περισσότερα

תרגיל 3 שטף חשמלי ומשפט גאוס

תרגיל 3 שטף חשמלי ומשפט גאוס תרגיל שטף חשמלי ומשפט גאוס הערה: אינטגרלים חיוניים מוצגים בסוף הדף 1. כדור שמסתו.5 g ומטענו 1 6- C תלוי בחוט שאורכו 1 m ונמצא בשדה חשמלי של לוח אינסופי. החוט נפרש בזווית של 1 לכיוון הלוח. מה צפיפות המטען

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה!

לוגיקה ותורת הקבוצות אביבתשס ז מבחןסופי מועדב בהצלחה! הטכניון מכון טכנולוגי לישראל הפקולטה למדעי המחשב 24/10/2007 מרצה: פרופ אורנה גרימברג מתרגלים: גבי סקלוסוב,קרן צנזור,רותם אושמן,אורלי יהלום לוגיקה ותורת הקבוצות 234293 אביבתשס ז מבחןסופי מועדב הנחיות: משךהבחינה:

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

הפקולטה למדעי הטבע המחלקה לפיזיקה קורס : פיזיקה 1

הפקולטה למדעי הטבע המחלקה לפיזיקה קורס : פיזיקה 1 א א א א קינמטיקה של מסה נקודתית 3 תרגילים רמה א' ) המהירות של חלקיק מסוים נתון ע"י. v 3 4t ידוע שחלקיק זה היה בראשית הצירים ב t. מהן המשוואות עבור ההעתק והתאוצה של החלקיק? צייר את הגרפים עבור ההעתק, מהירות

Διαβάστε περισσότερα

פולינומים אורתוגונליים

פולינומים אורתוגונליים פולינומים אורתוגונליים מרצה: פרופ' זינובי גרינשפון סיכום: אלון צ'רני הקורס ניתן בסמסטר אביב 03, בר אילן פולינומים אורתוגונאליים תוכן עניינים תאריך 3.3.3 הרצאה מרחב מכפלה פנימית (הגדרה, תכונות, דוגמאות)

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

שאלה 1. x L שאלה 2 (8 נקודות) שאלה 3. עבור.0<x<6m הסבר. (8 נקודות)

שאלה 1. x L שאלה 2 (8 נקודות) שאלה 3. עבור.0<x<6m הסבר. (8 נקודות) שאלות ממחשב שלי שאלה 1 תלמיד הכין מערכת למדידת מטענים חשמליים. הוא לקח שני כדורים מוליכים קטנים זהים. את האחד הוא תלה בקצה חוט שאורכו L, ואת השני הצמיד לקצה של מוט. הוא התקין את המערכת כך ששני הכדורים

Διαβάστε περισσότερα

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה.

-107- גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. -07- בשנים קודמות למדתם את נושא הזוויות. גיאומטריה זוויות מבוא מטרתנו בפרק זה היא לחזור על המושגים שנלמדו ולהעמיק את הלימוד בנושא זה. זווית נוצרת על-ידי שתי קרניים היוצאות מנקודה אחת. הנקודה נקראת קדקוד

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

אוסף שאלות מס. 5. שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), בשתי דרכים:

אוסף שאלות מס. 5. שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), בשתי דרכים: אוסף שאלות מס. 5 שאלה 1 בדוגמאות הבאות, נגדיר פונקציה על ידי הרכבה: y(t)).g(t) = f(x(t), חשבו את הנגזרת (t) g בשתי דרכים: באופן ישיר: על ידי חישוב ביטוי לפונקציה g(t) וגזירה שלו, בעזרת כלל השרשרת. בידקו

Διαβάστε περισσότερα

פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות)

פתרון מבחן פיזיקה 5 יחל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (100 נקודות) שאלה מספר 1 פתרון מבחן פיזיקה 5 יח"ל טור א' שדה מגנטי ורמות אנרגיה פרק א שדה מגנטי (1 נקודות) על פי כלל יד ימין מדובר בפרוטון: האצבעות מחוץ לדף בכיוון השדה המגנטי, כף היד ימינה בכיוון הכוח ולכן האגודל

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311

שיעור.1 חופפים במשולש שווה שוקיים יחידה - 31 חופפים משולשים 311 יחידה :31חופפים משולשים נחפוף משולשים ונוכיח תכונות של אלכסוני משולשים שווה שוקיים ואלכסוני המלבן. שיעור.1חופפים במשולש שווה שוקיים נחקור ונוכיח תכונות של משולש שווה שוקיים נתון משולש שווה שוקיים שבו.

Διαβάστε περισσότερα

ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple  Ó

ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ. Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â. ÈÂÒÈapple Â Ó ÈËÓ Ó ÌÈ ÂÓ ÔÂÏÈÓ ÂȈ appleâù Â Ó Â Â ÌÈËÙ Ó Â ÁÒÂapple ÌÈ Â È Â Â ÈÂÒÈapple Â Ó תוכן העניינים 7 9 6 0 8 6 9 55 59 6 מושגים בסיסיים... אינטרוולים וסביבות... מאפיינים של פונקציות... סוגי הפונקציות ותכנותיהם...

Διαβάστε περισσότερα

18 במאי 2008 פיזיקה / י"ב נקודות; 3 33 = 100 נקודות. m 2 בהצלחה! שאלה 1

18 במאי 2008 פיזיקה / יב נקודות; 3 33 = 100 נקודות. m 2 בהצלחה! שאלה 1 שם התלמיד/ה : בית הספר: המורה בחמד"ע : 8 במאי 008 פיזיקה / י"ב מבחן בפיזיקה במתכונת מבחן בגרות חשמל הוראות לנבחן ההנחיות בשאלון זה מנוסחות בלשון זכר ומכוונות לנבחנות ולנבחנים כאחד א ב ג ד משך הבחינה: 05

Διαβάστε περισσότερα

. {e M: x e} מתקיים = 1 x X Y

. {e M: x e} מתקיים = 1 x X Y שימושי זרימה פרק 7.5-13 ב- Kleinberg/Tardos שידוך בגרף דו-צדדי עיבוד תמונות 1 בעיית השידוך באתר שידוכים רשומים m נשים ו- n גברים. תוכנת האתר מאתרת זוגות מתאימים. בהינתן האוסף של ההתאמות האפשריות, יש לשדך

Διαβάστε περισσότερα