מודלים חישוביים תרגולמס 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "מודלים חישוביים תרגולמס 7"

Transcript

1 מודלים חישוביים תרגולמס 7 13 באפריל 2016 נושאי התרגול: מכונת טיורינג. 1 מכונת טיורינג נעבור לדבר על מודל חישוב חזק יותר (ובמובן מסוים, הוא מודל החישוב הסטנדרטי) מכונות טיורינג. בניגוד למודלים שראינו עד כה, שקריאת הקלט התבצעה פעם אחת בלבד, והיה ניתן לשמור מידע נוסף רק בצורה מוגבלת (אוטומט מחסנית), במודל של מכונת טיורינג (מ ט) אין לנו את המגבלות האלו. במ ט, הקלט כתוב ע ג סרט העבודה, שהוא דו כיווני. בכל שלב, המכונה כותבת תו מסוים על הסרט ויכולה לזוז אחורה או קדימה בהתאם למצבי הבקרה שלה. פורמלית: הגדרה 1.1 מ ט היא שביעיה ) r,m =(Q, Σ, Γ,δ,q 0,q a,q כאשר: Q קבוצה סופית של מצבים. Σ א ב הקלט (לא מכיל את הסימן )..( Γ ו Σ Γ) Γ א בהסרט R} δ :(Q \{q a,q r }) Γ Q Γ {L, היא פונקצית המעברים. Q q 0 הוא המצב ההתחלתי. Q q a הוא המצב המקבל. Q q r הוא המצב הדוחה. המשמעות של (L δ:,q) (a,r)=,b במצב q אם הראש הוא על a, המכונה כותבת b במקום a, עוברת למצב r והראש זז שמאלה (אם R ימינה). בתחילת החישוב, הקלט נכתב ע ג סרט העבודה ובשאר הסרט יש. הראש נמצא על תחילת הסרט. החישוב מסתיים כאשר המכונה מגיעה ל q a או ל q, r ואז נגיד שהמכונה קיבלה את הקלט או דחתה אותו. שימו לב שמ ט יכולה, אם כך, גם לא לעצור לעולם. הגדרה 1.2 קונפיגורציה של מ ט Mהיאמצברגעי (snapshot) של החישוב: uq i v כך ש Γ,q i Q,u, v המצב הנוכחי הוא q, i המחרוזת u כתובה משמאל לראש ו v כתובה מימינו (כך שהתו הראשון ב v הוא התו שאותו קורא כרגע הראש). לדוגמא, אם,c,L) δ q) i,b)=(q j אז הקונפיגורציה uaq i bv עוברת לקונפיגורציה.uq j acv הגדרה 1.3 מ ט M מקבלת קלט w אם קיימת סדרת קונפיגורציות חוקית אשר מתחילה מקונפיגורציה תחילית.L (M),M מקבלת היא השפה של M אוסף כל המילים ש.w 0 q a ומגיעה לקונפיגורציה מקבלת w 1 q 0 w הגדרה 1.4 שפה L ניתנת למניה רקורסיבית Enumerable) (RE Recursively אם קיימת מ ט המקבלת אותה. במצב זה, נגיד ש M מקבלת את L. אם בנוסף, M עוצרת על כל קלט (פורמלית מגיעה לקונפיגורציה דוחה או מקבלת) נגיד ש M מכריעה את L. נגידששפההיארקורסיבית Recursive) R) אם קיימת מ ט המכריעה אותה. ראינו בהרצאה גם מודלים שקולים למודל שהצגנו כאן: מ ט שיכולה להשאר במקום, מ ט רב סרטית ומ ט אי דטרמיניסטית. 1

2 דוגמא 1 עבור הפונקציה 1+ x= f, (x) בנה מ ט המקבלת קלט x ביצוג בינארי (כך שה LSB בתחילת הסרט) ומסיימת כאשר (x) f רשום על הסרט ולאחריו (במקרה זה, נגיד ש M מחשבת את f). M =({q 0,q f }, {0, 1}, {0, 1, },δ,q 0,q f ) כך ש 1,R) δ (q 0, 1) = (q 0, 0,R),δ (q 0, 0) = (q f, ו 1,R).δ (q 0, )=(q f, בתרשים: 1 0,R q 0 0 1,R, 1,R q f שימו לב שכאן לא היה לנו מצב דוחה מכיוון שזוהי מ ט שמחשבת פונקציה, ולא שמקבלת שפה. אם הקלט היה נתון לנו כך ש MSB בתחילת הסרט, וכך גם היינו צריכים להחזיר את התשובה? היינו מזיזים את הקלט ימינה, כותבים $ בתו הראשון ופועלים כמו קודם. תרגיל 1 בנו מ ט המכריעה את השפה 0} n.l 1 = {a n b n c n נשתמש בתו מיוחד, $, כדי לציין תו מחוק. הרעיון הוא לעבור פעם אחר פעם על הקלט ובכל פעם למחוק,a b ו c בודדים. נקבל אם ם נוכל לעשות זאת ולסיים עם מחרוזת שכולה $. אם כך, האלגוריתם שנרצה ליישם: 1. כל עוד התו הנוכחי הוא $, המשך לזוז ימינה. 2. אם התו הנוכחי הוא, קבל. אם התו הנוכחי הוא b או c, דחה. 3. החלף את ה a עם וזוז ימינה. 4. כל עוד התו הנוכחי הוא a או $, זוז ימינה. אם ראית c או, דחה. אם ראית b, החלף עם $ וזוז ימינה. 5. כל עוד התו הנוכחי הוא b או $, זוז ימינה. אם ראית a או, דחה. אם ראית c, החלף עם $ וזוז ימינה. 6. כל עוד התו הנוכחי הוא c, זוז ימינה. אם ראית a או b, דחה. אם ראית, חזור שמאלה עד ל הראשון שתראה, זוז ימינה וחזור לסעיף 1. בתרשים: 2

3 a a, L, b b, L, c c, L, $ $,L,R q L,L $ $,R a a, R, $ $,R b b, R, $ $,R c c, R q 0 q a q b q c a,r b $,R c $,R,R b b, R, c c, R,R, c c, R a a, R,,R a a, R, b b, R q acc q rej תיאור המצבים: q 0 הראש הוא בתחילת הקלט. q a קראנו לפחות a אחד ולא b ים או c ים. q b קראנו לפחות a אחד ו b אחד, אך לא c ים. q c קראנו לפחות a אחד, b אחד ו c אחד. q L חוזרים שמאלה. אבחנות חשובות בדרך להוכיחה פורמלית: עבור מילה בשפה, תוכן סרט העבודה הוא תמיד מהצורה.a j $ i b j $ i c j ניתן להגיע למצב מקבל אם כל ה a ים שנמחקו (ע י למספר ה c ים שנמחקו (ע י $). ( שווה למספר ה b ים שנמחקו (ע י $), ששווה לא ניתן לקבל מילים שאינן בשפה. כל מילה שאינה בשפה מובילה למצב דוחה. תרגיל 2 בנו מ ט המכריעה את השפה } (w).l 2 = { w {a, b, c} # a (w) =# b (w) =# c נשתמש במודל רב סרטי (ונאפשר לראשים גם להשאר במקום): 1. סרט קלט. 2. סרט עבודה מס 1 לספירת ה a ים. 3

4 3. סרט עבודה מס 2 לספירת ה b ים. 4. סרט עבודה מס 3 לספירת ה c ים. נקרא פעם אחת את הקלט, נעדכן את הסרטים, ובסוף נבדוק שכל סרטי העבודה באותו גודל. המכונה, אך לא נוכיח פורמלית נכונות. נתאר את חלק ראשון אתחול כתוב $ על שלושת סרטי העבודה וזוז ימינה בשלושת הסרטים. עבור לחלק השני. חלק שני קריאה בצע: 1. אם הראשים הם במצב ),,, ), עבור לחלק השלישי. 2. אם הראשים הם במצב ),,,a), כתוב ),,a,a) ועבור ימינה בסרט הקלט וסרט עבודה מס אם הראשים הם במצב ),,,b), כתוב ),b,,b) ועבור ימינה בסרט הקלט וסרט עבודה מס אם הראשים הם במצב ),,,c), כתוב (c,,c), ועבור ימינה בסרט הקלט וסרט עבודה מס 3. חלק שלישי בדיקה בצע:.1 אם הראשים הם במצב ),,,,( כתוב ),,, ( ועבור שמאלה בכל סרטי העבודה. 2. אם הראשים הם במצב,a,b,c) ), כתוב ),,, ( ועבור שמאלה בכל סרטי העבודה..3 אם הראשים הם במצב $) $, $,,,( קבל. 4. אם הראשים הם במצב המכיל $ אחד או שניים דחה. תרגיל 3 הראו כי מודל חד סרטי שבו הסרט הוא אינסופי לשני הכיוונים (מודל דו צדדי) שקול למודל החד סרטי הרגיל. כיוון ראשון תהא M מ ט במודל הרגיל. נבנה מ ט דו צדדית שקולה M. M על קלט w: 1. הזז את הראש לתא הראשון שמשמאל ל w. 2. כתוב שם תו חדש / Γ. 3. החזר את הראש לתחילת הקלט ועבור למצב q 0 של M. 4. רוץ כמו M, עם הסייג הבא: בקריאת התו, זוז ימינה והשאר באותו מצב. כלומר, לכל מצב q של M,.δ (q, ) =(q,,r) הרעיון: במודלרגיל,לאניתן לזוז שמאלה מהתא הראשון ופקודות המזיזות שמאלה מהתא הראשון יגרמו לראשלהשארבמקום. כדי לסמלץ את זה במודל דו צדדי, נסמן את התא הראשון ונכפה שלא ניתן יהיה לזוז שמאלה ממנו. 4

5 כיוון שני ראשון תהא ) r M =(Q, Σ, Γ,δ,q 0,q a,q מ ט דו צדדית. נבנה מ ט שקולה ) r M =(Q, Σ, Γ,δ,s,q a,q במודל הרגיל. כל תא יכיל זוג תווים את הערך שכתוב בתא ה i (כלומר, i צעדים מימין לאמצע) וזה שכתוב בתא ה i (כלומר, i צעדים משמאל לאמצע). עבור התא ה 0 נסמן $ במקום השני. לדוגמא, כאשר ב M יש a בתא השני מימין להתחלה ו b בתא השני משמאל להתחלה, ב M יהיה כתוב (b,a) בתא השני. אם כך, Γ =Γ (Γ {$}) המצב ב M ישמור את המידע של האם הראש ב M הוא בחצי הימני או השמאלי של הסרט הדו צדדי. אם כך, Q =(Q {+, }) {s} נתאר כעת את פונקציות המעברים. עבור D) δ (q, a) =(r, x, (כאשר R},(D {L, נוסיף: δ ((q, +), (a, b)) = ((r, +), (x, b),d) δ ((q, ), (b, a)) = ((r, ), (b, x), D) δ ((q, +/ ), (a, $)) = ((r, h (D)), (x, $),R) כך ש D הופך R ל L ולהיפך, = (L) h ו += (R) h. לפני המעבר הראשון נסמן את התא האמצעי (כלומר, את התא שהחל ממנו כתוב הקלט): δ (q 0,a)=(r, x, D) δ (s, (a, )) = ((r, h (D)), (x, $),R) כיוון שני שני נראה כעת נוסף (השלימו לבד את כתיבת המעברים באופן פורמלי). תהא M מ ט דו צדדית. נבנה מ ט שקולה M במודל הרגיל. M על קלט w: 1. הזז את הקלט תא אחד ימינה. 2. סמן את התא השמאלי ביותר בתו חדש /L Γ והתא הימני ביותר בתו חדש R. / Γ 3. החזר את הראש לתחילת הקלט ועבור למצב q 0 של M. 4. רוץ כמו M, עם הסייג הבא: בקריאת התו L, (א) זכור את המצב הנוכחי q. (ב) העבר את תוכן הסרט (פרט לתו L) תא אחד ימינה והשאר אחד לפני L. (ג) חזור ל q. הרעיון: כשמכונהדו צדדית תרצה לגלוש שמאלה, נפנה לה מקום ע י הזזת כל הסרט תא אחד ימינה וכך נבטיחשהוא תוכל לבצע את הצעד המקורי, וחוזר חלילה. אם כך, למה היינו צריכים את R? תרגיל 4 הראו כי השפות המתקבלות ע י מ ט סגורות תחת סגור קליני. תהא M מ ט המקבלת את L. נבנה מ ט M א ד המקבלת את L. ל M יהיו שני סרטים: סרט הקלט וסרט עבור סמלוץ M.M על קלט :w = w 1 w n.1 אם,w = ϵ קבל. 2. כל עוד ראש הקלט הוא על i w: 5

6 (א) העתק את w i לסרט הסמלוץ וזוז ימינה בסרט הקלט. 3. קבל. (ב) כל עוד ראש הקלט הוא על j w: i. באופן א ד בחר האם להעתיק את w j לסרט הסמלוץ או לעצור את ההעתקה. (ג) הרץ את M על הקלט שבסרט הסמלוץ. (ד) אם M דחתה, דחה. (ה) רוקן את סרט הסמלוץ. הרעיון הוא לנחש חלוקה של w לתתי מחרוזות ולהריץ את M על כל תת מחרוזת בנפרד. צריך להוכיח: טענה 1.5 אם L w אזי ) (M,w L כלומר שקיים מסלול חישוב של M שמקבל, ואם L w / אזי ) (M,w / L כלומר M דוחה או אינה עוצרת. האם השפות המוכרעות ע י מ ט סגורות תחת סגור קליני? 6

אוטומטים- תרגול 10: מכונות טיורינג.

אוטומטים- תרגול 10: מכונות טיורינג. אוטומטים- תרגול 10: מכונות טיורינג. מודל מכונת טיורינג מכונת טיורינג מורכבת מהרכיבים הבאים: 1. מספר סופי של מצבים.. סרט עבודה אינסופי בעל קצה שמאלי. הסרט המחולק לתאים ובכל תא כתוב תו מ- Γ. 3. ראש קורא/כותב

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r

חישוביות הרצאה 4 לא! זיהוי שפות ע''י מכונות טיורינג הוכחה: הגדרת! : f r ל' ' פונקציות פרימיטיביות רקורסיביות חישוביות הרצאה 4 האם כל פונקציה מלאה היא פרימיטיבית רקורסיבית? לא נראה שתי הוכחות: פונקציות רקורסיביות (המשך) זיהוי שפות ע''י מכונות טיורינג הוכחה קיומית: קיימות פונקציות

Διαβάστε περισσότερα

{ : Halts on every input}

{ : Halts on every input} אוטומטים - תרגול 13: רדוקציות, משפט רייס וחזרה למבחן E תכונה תכונה הינה אוסף השפות מעל.(property המקיימות תנאים מסוימים (תכונה במובן של Σ תכונה לא טריביאלית: תכונה היא תכונה לא טריוויאלית אם היא מקיימת:.

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה:

אוטומט סופי דטרמיניסטי מוגדר עי החמישייה: 2 תרגול אוטומט סופי דטרמיניסטי אוטומטים ושפות פורמליות בר אילן תשעז 2017 עקיבא קליינרמן הגדרה אוטומט סופי דטרמיניסטי מוגדר ע"י החמישייה: (,, 0,, ) כאשר: א= "ב שפת הקלט = קבוצה סופית לא ריקה של מצבים מצב

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

חישוביות הרצאה 6 אותה מ M תקודד ע''י מחרוזת רווח ! מכונת טיורינג אוניברסלית

חישוביות הרצאה 6 אותה מ M תקודד ע''י מחרוזת רווח ! מכונת טיורינג אוניברסלית לשיה ספציפית ול ל שיה כללית חישוביות הרצאה 6 כונת טיורינג כונת טיורינג אוניברסלית פונקציות שאינן ניתנות לחישוב עד כה נקטנו בגישה שלכל שיה יש לבנות שלה שבצעת את השיה הספציפית הזו אך בציאות לא בונים חשב

Διαβάστε περισσότερα

חישוביות, אוטומטים ושפות מכונה סיכומי הרצאות

חישוביות, אוטומטים ושפות מכונה סיכומי הרצאות חישוביות, אוטומטים ושפות מכונה סיכומי הרצאות 6 ביוני 2011 מרצה: גיא קינדלר מתרגל: רועי פוקס סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmail.com אתר הסיכומים שלי: http://bit.ly/huji_notes 1 תוכן

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

הגדרה: מצבים k -בני-הפרדה

הגדרה: מצבים k -בני-הפרדה פרק 12: שקילות מצבים וצמצום מכונות לעי תים קרובות, תכנון המכונה מתוך סיפור המעשה מביא להגדרת מצבים יתי רים states) :(redundant הפונקציה שהם ממלאים ניתנת להשגה באמצעו ת מצבים א חרים. כיוון שמספר רכיבי הזיכרון

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות

מינימיזציה של DFA מינימיזציה של הקנוני שאותה ראינו בסעיף הקודם. בנוסף, נוכיח את יחידות האוטומט המינימלי בכך שנראה שכל אוטומט על ידי שינוי שמות מינימיזציה של DFA L. הוא אוטמומט מינימלי עבור L של שפה רגולרית A ראינו בסוף הסעיף הקודם שהאוטומט הקנוני קיים A DFA בכך הוכחנו שלכל שפה רגולרית קיים אוטומט מינמלי המזהה אותה. זה אומר שלכל נקרא A A לאוטומט

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

חלק 1 כלומר, פונקציה. האוטומט. ) אותיות, אלפבית, א"ב (.

חלק 1 כלומר, פונקציה. האוטומט. ) אותיות, אלפבית, אב (. תוכן עניינים תקציר מודלים חישוביים ערך יגאל הינדי 2 2 2 3 4 6 6 6 7 7 8 8 9 11 13 14 14 15 16 17 17 18 19 20 20 20 20 - האוטומט הסופי - אוטומט סופי דטרמניסטי 2 פרק - מושגים ומילות מפתח 2.1 - הגדרת אוטומט

Διαβάστε περισσότερα

מודלים חישוביים, חישוביות וסיבוכיות 67521

מודלים חישוביים, חישוביות וסיבוכיות 67521 מודלים חישוביים, חישוביות וסיבוכיות 67521 חיים שחור סיכומי תרגולים של שאול אלמגור 21 ביוני 2012 תוכן עניינים 1 אוטומטים........................................................... 1 2 למת הניפוח......................................................

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)

לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשעו (2016) לוגיקה ותורת הקבוצות פתרון תרגיל בית 4 אביב תשע"ו (2016)............................................................................................................. חלק ראשון: שאלות שאינן להגשה 1. עבור

Διαβάστε περισσότερα

מודלים חישוביים, חישוביות וסיבוכיות

מודלים חישוביים, חישוביות וסיבוכיות מודלים חישוביים, חישוביות וסיבוכיות סשה גולדשטיין, sashag@cs 20 ביוני 2011 תקציר הסיכום להלן מהווה תקציר של חומר הקורס ואיני נוטל עליו כל אחריות. אתם יכולים להיעזר גם בהקלטות השיעורים וכמובן בספר הלימוד.

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

A-PDF Merger DEMO : Purchase from to remove the watermark

A-PDF Merger DEMO : Purchase from  to remove the watermark A-PDF Merger DEMO : Purchase from wwwa-pdfcom to remove the watermark סוכם על ידי אבי שוע shuaav@gmalcom http://wwwcshujacl/~shuaav אני מקווה שהסיכומים יעזרו לכם ולעוד רבים טעויות אני (ואף אחד אחר) לא

Διαβάστε περισσότερα

אוטומטים- תרגול 8 שפות חסרות הקשר

אוטומטים- תרגול 8 שפות חסרות הקשר אוטומטים- תרגול 8 שפות חסרות הקשר דקדוק חסר הקשר דקדוק חסר הקשר הנו רביעיה > S

Διαβάστε περισσότερα

r. כלומר התחיל במצב ההתחלתי, סיים במצב מקבל, ובדרך עבר בצורה חוקית. ניתן להגדיר

r. כלומר התחיל במצב ההתחלתי, סיים במצב מקבל, ובדרך עבר בצורה חוקית. ניתן להגדיר מודלים חישוביים סיכום למבחן אוטומטים: שפות / מחרוזות / הגדרות בסיסיות: א"ב: Σ הוא אוסף סופי של תווים, סימנים. מחרוזת / מילה: רצף סופי של אותיות מא"ב מסוים, כאשר מספר האותיות הוא אורכה המחרוזת הריקה: ε

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

הקדמה קצרה: מהות הקורס ומטרתו

הקדמה קצרה: מהות הקורס ומטרתו הקדמה קצרה: מהות הקורס ומטרתו עד כה, רוב הקורסים שנתקלתם בהם במדעי המחשב עסקו בעיקר בשאלות כמו "איך אפשר לפתור בעיות בעזרת מחשב?", "איך אפשר להעריך 'איכות' של אלגוריתם לפתרון בעיה", או "באילו שיטות ניתן

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

אוטומטים ושפות פורמליות תרגולים

אוטומטים ושפות פורמליות תרגולים אוטומטים ושפות פורמליות תרגולים מבוסס על תרגולים של מר גולדגביכט עומר, אוניברסיטת בר אילן 2012. שיעור 1 הגדרות: א"ב: אוסף סופי ולא ריק של סימנים/אותיות/תווים. נסמן אותו באות. דוגמאות: 9},... 1,,{0, {א,..,.

Διαβάστε περισσότερα

שפות פורמאליות אוטומטים

שפות פורמאליות אוטומטים הנושאים שנעבור שפות פורמאליות אוטומטים שפות פורמאליות מכונות/אוטומטים דקדוקים תורת הקומפילציה אהרון נץ מבוסס על השקפים של עומר ביהם שמבוססים על שקפי הרצאה מהקורס אוטומטים ושפות פורמאליות בטכניון, פרופ'

Διαβάστε περισσότερα

Regular Expressions (RE)

Regular Expressions (RE) Regular Expressions (RE) ביטויים רגולריים עד כה דנו במספר מודלים חישוביים להצגת (או ליצור) שפות רגולריות וראינו שכל המודלים האלה הם שקולים מבחינת כוח החישובי שלהם. בסעיף זה נראה עוד דרך להצגת (או ליצור)

Διαβάστε περισσότερα

ניתן לקבל אוטומט עבור השפה המבוקשת ע "י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות:

ניתן לקבל אוטומט עבור השפה המבוקשת ע י שימוששאלה 6 בטכניקתשפה המכפלה שנייה כדי לבנות אוטומט לשפת החיתוך של שתי השפות: שאלה 1 בנה אוטומט המקבל את שפת כל המילים מעל הא"ב {,,} המכילות לפחות פעם אחת את הרצף ומיד אחרי כל אות מופיע הרצף. ניתן לפרק את השפה לשתי שפות בסיס מעל הא"ב :{,,} שפת כל המילים המכילות לפחות פעם אחת את

Διαβάστε περισσότερα

ביטויים רגולריים הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) הרצאה 5

ביטויים רגולריים הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) הרצאה 5 הפקולטה למדעי המחשב אוטומטים ושפות פורמליות (236353) ביטויים רגולריים הרצאה 5 המצגת מבוססת על ספרם של פרופ' נסים פרנסיז ופרופ' שמואל זקס, "אוטומטים ושפות פורמליות", האוניברסיטה הפתוחה, 1987. גרסה ראשונה

Διαβάστε περισσότερα

שפות פורמאליות אוטומטים

שפות פורמאליות אוטומטים שפות פורמאליות אוטומטים תורת הקומפילציה אהרון נץ מבוסס על השקפים של עומר ביהם שמבוססים על שקפי הרצאה מהקורס אוטומטים ושפות פורמאליות בטכניון, פרופ' שמואל זקס 1 הנושאים שנעבור שפות פורמאליות מכונות/אוטומטים

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

הרצאה נושאי הקורס 0.2 א"ב ומילים 0.3 שפות 1. מהו חישוב? 2. מהו מחשב? 3. מהו אלגוריתם? 4. מה ניתן לחשב? מה לא ניתן?

הרצאה נושאי הקורס 0.2 אב ומילים 0.3 שפות 1. מהו חישוב? 2. מהו מחשב? 3. מהו אלגוריתם? 4. מה ניתן לחשב? מה לא ניתן? הרצאה 1 0.1 נושאי הקורס 1. מהו חישוב? 2. מהו מחשב? 3. מהו אלגוריתם? 4. מה ניתן לחשב? מה לא ניתן? בקורס זה נעסוק בבעיות חישוב הנקראות בעיות הכרעה. בהינתן קלט, אנו נבצע "חישוב" ובסופו נחזיר תשובה האם הקלט

Διαβάστε περισσότερα

logn) = nlog. log(2n

logn) = nlog. log(2n תכנוןוניתוחאלגוריתמים סיכוםהתרגולים n log O( g( n)) = Ω( g( n)) = θ ( g( n)) = תרגול.3.04 סיבוכיות { f ( n) c> 0, n0 > 0 n> n0 0 f ( n) c g( n) } { f ( n) c> 0, n0 > 0 n> n0 0 c g( n) f ( n) } { f ( n)

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

מודלים חישוביים, חישוביות וסיבוכיות 67521

מודלים חישוביים, חישוביות וסיבוכיות 67521 מודלים חישוביים, חישוביות וסיבוכיות 67521 חיים שחור סיכומי שיעורים של ד"ר גיא קינדלר 21 ביוני 2012 תוכן עניינים 2.................................................. אוטומטים ושפות רגולריות 1 3........................................................

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

3-9 - a < x < a, a < x < a

3-9 - a < x < a, a < x < a 1 עמוד 59, שאלהמס', 4 סעיףג' תיקוני הקלדה שאלון 806 צריך להיות : ג. מצאאתמקומושלאיברבסדרהזו, שקטןב- 5 מסכוםכלהאיבריםשלפניו. עמוד 147, שאלהמס' 45 ישלמחוקאתהשאלה (מופיעהפעמיים) עמוד 184, שאלהמס', 9 סעיףב',תשובה.

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

רשימת משפטים והגדרות

רשימת משפטים והגדרות רשימת משפטים והגדרות חשבון אינפיניטיסימאלי ב' מרצה : למברג דן 1 פונקציה קדומה ואינטגרל לא מסויים הגדרה 1.1. (פונקציה קדומה) יהי f :,] [b R פונקציה. פונקציה F נקראת פונקציה קדומה של f אם.[, b] גזירה ב F

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעב (2012) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ב (2012) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

מודלים חישוביים פתרון תרגיל 5

מודלים חישוביים פתרון תרגיל 5 מודלים חישוביים פתרון תרגיל 5 כתוב אוטומט דטרמיניסטי לשפות הבאות מעל הא"ב.Σ={,} א. *Σ. q, ב. q, ג. {ε}, q, q ד. } = 3 {w w mod, q, q,, ה. ''} {w w does not contin the sustring q 4 q 3 q q כתוב אוטומט דטרמיניסטי

Διαβάστε περισσότερα

מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת)

מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת) מכונת טיורינג לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת) דטרמיניסטי שפות חופשיות הקשר (שפת ראי מסומנת) סגירות:איחוד,שרשור,היפוך, חיתוך עם שפה רגולרית אוטומט סופי דטרמיניסטי שפות רגולריות סגירות:חיתוך,איחוד,שרשור,משלים,היפוך

Διαβάστε περισσότερα

2 שאלות )בחירה מ - 4( סה"כ 25 נקודות לכל שאלה 22 נקודות

2 שאלות )בחירה מ - 4( סהכ 25 נקודות לכל שאלה 22 נקודות מבחן 0225 פרטים כלליים מועד הבחינה: בכל זמן מספר השאלון: 1 משך הבחינה: 3 שעות חומר עזר בשימוש: הכל )ספרים ומחברות( המלצות: קרא המלצות לפני הבחינה ובדיקות אחרונות לפני מסירה )עמודים 7-9( מבנה השאלון פרק

Διαβάστε περισσότερα

תורת הקומפילציה הרצאה 4 ניתוח תחבירי )Parsing( של דקדוקי LR(0) ו-( LR(1 )חזרה + המשך(

תורת הקומפילציה הרצאה 4 ניתוח תחבירי )Parsing( של דקדוקי LR(0) ו-( LR(1 )חזרה + המשך( תורת הקומפילציה 236360 הרצאה 4 ניתוח תחבירי )Parsing( של דקדוקי LR(0) ו-( LR(1 )חזרה + המשך( 1 תזכורת: סוגי הניתוח התחבירי )predictive מהשורש לעלים )נקרא גם s "ניתוח תחזית" top-down x y bottom-up מהעלים

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

סדרות - תרגילים הכנה לבגרות 5 יח"ל

סדרות - תרגילים הכנה לבגרות 5 יחל סדרות - הכנה לבגרות 5 יח"ל 5 יח"ל סדרות - הכנה לבגרות איברים ראשונים בסדרה) ) S מסמן סכום תרגיל S0 S 5, S6 בסדרה הנדסית נתון: 89 מצא את האיבר הראשון של הסדרה תרגיל גוף ראשון, בשנייה הראשונה לתנועתו עבר

Διαβάστε περισσότερα

מבחן במודלים חישוביים + פתרון מוצע

מבחן במודלים חישוביים + פתרון מוצע מבחן במודלים חישוביים + פתרון מוצע סמסטר ב' התשס"ט, מועד ב' תאריך: 1.9.2009 מרצים: ד"ר מירי פרייזלר, פרופ' בני שור מתרגלים: יהונתן ברנט, רני הוד מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני תחילת

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב

אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב אי שלמות ואי כריעות בשפות פורמליות ד ר אסף חסון, אוניברסיטת בן גוריון בנגב יובל אדם Young man, in mathematics you don t understand things. You just get used to them. - John von Neumann תוכן עניינים 2 פרולוג....................................

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר

לוגיקה ותורת הקבוצות מבחן סופי אביב תשעד (2014) דפי עזר לוגיקה ותורת הקבוצות מבחן סופי אביב תשע"ד (2014) דפי עזר תורת הקבוצות: סימונים.N + = N \ {0} קבוצת המספרים הטבעיים; N Z קבוצת המספרים השלמים. Q קבוצת המספרים הרציונליים. R קבוצת המספרים הממשיים. הרכבת

Διαβάστε περισσότερα

מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת)

מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת) מכונת טיורינג אוטומט מחסנית לא דטרמיניסטי שפות חופשיות הקשר (שפת ראי לא מסומנת) אוטומט מחסנית דטרמיניסטי שפות חופשיות הקשר (שפת ראי מסומנת) סגירות:איחוד,שרשור,היפוך, חיתוך עם שפה רגולרית אוטומט סופי דטרמיניסטי

Διαβάστε περισσότερα

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS

כלליים זמן: S מחסנית, top(s) ראש המחסנית. (Depth First Search) For each unmarked DFS(v) / BFS(v) רקורסיבי. אלגוריתם :BFS כלליים שיטות חיפוש בבגרפים שיטה 1: חיפוש לרוחב S (readth irst Search) זמן: ) Θ( V + הרעיון: שימוש בתור.O שיטה 2: חיפוש לעומק S (epth irst Search) Θ( V + ) יהי =(V,) גרף כלשהו, V הוא צומת התחלת החיפוש.

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015)

מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מודלים חישוביים מבחן מועד א', סמסטר א' תשע''ה (2015) מרצה: פרופ' בני שור מתרגלים: אורית מוסקוביץ' וגל רותם 28.1.2015 הנחיות: 1. מומלץ לקרוא את כל ההנחיות והשאלות בתחילת המבחן, לפני כתיבת התשובות. 2. משך

Διαβάστε περισσότερα

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות

הגדרה: קבוצת פעילויות חוקית היא קבוצה בה כל שתי פעילויות אלגוריתמים חמדניים אלגוריתם חמדן, הוא כזה שבכל צעד עושה את הבחירה הטובה ביותר האפשרית, ולא מתחרט בהמשך גישה זו נראית פשטנית מדי, וכמובן שלא תמיד היא נכונה, אך במקרים רבים היא מוצאת פתרון אופטימאלי בתרגול

Διαβάστε περισσότερα

מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב

מערך תרגיל קורס סמסטר ב תשע ה בחשבון אינפיניטסימלי 2 למדעי המחשב מערך תרגיל קורס 89-33 סמסטר ב תשע ה בחשבון אינפיניטסימלי למדעי המחשב יוני 05, גרסה 0.9 מבוא נתחיל עם כמה דגשים: דף הקורס נמצא באתר.www.math-wiki.com שאלות בנוגע לחומר הלימודי מומלץ לשאול בדף השיחה באתר

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן.

תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשעא, מיום 31/1/2011 שאלון: מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן. בB בB תשובות מלאות לבחינת הבגרות במתמטיקה מועד חורף תשע"א, מיום 31/1/2011 שאלון: 035804 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1 מכונית נסעה מעיר A לעיר B על כביש ראשי

Διαβάστε περισσότερα

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח.

החשמלי השדה הקדמה: (אדום) הוא גוף הטעון במטען q, כאשר גוף B, נכנס אל תוך התחום בו השדה משפיע, השדה מפעיל עליו כוח. החשמלי השדה הקדמה: מושג השדה חשמלי נוצר, כאשר הפיזיקאי מיכאל פרדיי, ניסה לתת הסבר אינטואיטיבי לעובדה שמטענים מפעילים זה על זה כוחות ללא מגע ביניהם. לטענתו, כל עצם בעל מטען חשמלי יוצר מסביבו שדה המשתרע

Διαβάστε περισσότερα

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A )

1 תוחלת מותנה. c ארזים 3 במאי G מדיד לפי Y.1 E (X1 A ) = E (Y 1 A ) הסתברות למתמטיקאים c ארזים 3 במאי 2017 1 תוחלת מותנה הגדרה 1.1 לכל משתנה מקרי X אינטגרבילית ותת סיגמא אלגברה G F קיים משתנה מקרי G) Y := E (X המקיים: E (X1 A ) = E (Y 1 A ).G מדיד לפי Y.1.E Y

Διαβάστε περισσότερα

אוטומטים, שפות פורמליות ו ח ישוּב יוּת

אוטומטים, שפות פורמליות ו ח ישוּב יוּת אוטומטים, שפות פורמליות וחישוביות (202-1-2011) סיכום מאת תומר גודינגר אוטומטים, שפות פורמליות ו ח ישוּב יוּת פרטים אדמיניסטרטיביים המרצים בקורס: ברנד, ברפמן, קנטורוביץ' ואבו-עפאש אתר הקורס: http://csbguacil/~auto141/ain

Διαβάστε περισσότερα

תורת הקבוצות תרגיל בית 2 פתרונות

תורת הקבוצות תרגיל בית 2 פתרונות תורת הקבוצות תרגיל בית 2 פתרונות חיים שרגא רוזנר כ"ה בניסן, תשע"ה תזכורות תקציר איזומורפיזם סדר, רישא, טרנזיטיביות, סודרים, השוואת סודרים, סודר עוקב, סודר גבולי. 1. טרנזיטיבות וסודרים קבוצה A היא טרנזיטיבית

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk

נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X. q 0 q 1. output D FF-0 D FF-1. clk נספח לפרק 10 דוגמא לאנליזה של מכונת מצבים ננסה להבין את פעולתה של מ כונת המצבים הבאה : Input X D FF-0 q 0 q 1 Z D FF-1 output clk 424 מצב המכונה מוגדר על ידי יציאות רכיבי הזיכרון. נסמן את המצב הנוכחי q

Διαβάστε περισσότερα

אוטומטים מעל עצמים אינסופיים 67663

אוטומטים מעל עצמים אינסופיים 67663 אוטומטים מעל עצמים אינסופיים 67663 חיים שחור סיכומי הרצאות של אורנה קופרמן י"ח אדר תשע"ג (שעור 1) הערה 0.1 מי שמעוניין לסייע בשרטוט האוטומטים מתבקש לפנות אלי. בחישוביות דיברנו על אוטומטים ושפות רגולריות.

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z.

פרק 5 טורי חזקות 5.5 טור לורן. (z z 0 ) m. c n = 1. 2πi γ (ξ z 0 ) n+1dξ, .a 1 = 1 f(z)dz בפרט,.a 2πi γ m וגם 0 0 < z z 0 < r בעיגול הנקוב z. פרק 5 טורי חזקות 5.5 טור לורן הגדרה 5. טורלורןסביבקוטב z מסדרm שלפונקציה( f(z הואמהצורה n m a n(z z m. למשל,טורלורן שלהפונקציה e z /z 2 סביב הוא + 2./z 2 +/z+/2+/3!z+/4!z משפט 5. תהי f פונקציה אנליטית

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

1 סכום ישר של תת מרחבים

1 סכום ישר של תת מרחבים אלמה רופיסה :הצירטמ לש ןדרו'ג תרוצ O O O O O O ןאבצ זעוב סכום ישר של תת מרחבים פרק זה כולל טענות אלמנטריות, שהוכחתן מושארת לקורא כתרגיל הגדרה: יהיו V מרחב וקטורי, U,, U k V תת מרחבים הסכום W U + U 2 +

Διαβάστε περισσότερα

מבנים אלגבריים II 27 במרץ 2012

מבנים אלגבריים II 27 במרץ 2012 מבנים אלגבריים 80446 II אור דגמי, or@digmi.org 27 במרץ 2012 אתר אינטרנט: http://digmi.org סיכום הרצאות של פרופ אלכס לובוצקי בשנת לימודים 2012 1 תוכן עניינים 1 שדות 3 1.1 תזכורת מהעבר....................................................

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

קובץ שאלות ופתרונות של שאלות ממבחנים מנושאים שונים

קובץ שאלות ופתרונות של שאלות ממבחנים מנושאים שונים אוטומטים ושפות פורמליות 236353 סמסטר אביב 2016 קובץ שאלות ופתרונות של שאלות ממבחנים מנושאים שונים קובץ ונערך ע"י אורן אשכנזי ומיכל הורוביץ תכונות סגור ודקדוקים רגולריים. עבור שפות L 1, L 2 מעל א"ב Σ נגדיר

Διαβάστε περισσότερα

אימות חומרה תוכנה אלי דיין 1 6 בדצמבר

אימות חומרה תוכנה אלי דיין 1 6 בדצמבר אימות חומרה תוכנה אלי דיין 1 6 בדצמבר 2013 1 תקציר מסמך זה יביא את סיכומי השיעורים מהקורס אימות חומרה תוכנה, שהועבר על ידי פרופ אלכסנדר רבינוביץ בסמסטר א בשנה ל תשע ד. תוכן עניינים

Διαβάστε περισσότερα

אוגרים: Registers מונים: Counters

אוגרים: Registers מונים: Counters תרגול מס פר 5 6, מעגלי ם ספרתיים נבנה מעגלים עם זיכרון. נכיר 3 סוגי רכיבים: דלגלגים: FlipFlops אוגרים: Registers מונים: Counters Flip Flops נכיר 4 סוגים: SR-FF T-FF D-FF JK-FF כל FF מהווה יחידת זיכרון

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

אוטומטים ושפות פורמליות מבוא לתורת החישוביות

אוטומטים ושפות פורמליות מבוא לתורת החישוביות אוטומטים ושפות פורמליות מבוא לתורת החישוביות ד ר סמי זעפרני מוקדש לזכרו של משה בנסל חבר, עמית, ומורה דרך מהדורה June 27,2.3 הקדשה הספר מוקדש לזכרו היקר של משה בנסל (955-2), אשר במהלך שלושים שנות עבודתו

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

מבני נתונים מבחן מועד ב' סמסטר חורף תשס"ו

מבני נתונים מבחן מועד ב' סמסטר חורף תשסו TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE הטכניון - מכון טכנולוגי לישראל הפקולטה למדעי המחשב מרצים: רן אל-יניב, נאדר בשותי מבני נתונים 234218-1 מבחן מועד ב' סמסטר חורף תשס"ו

Διαβάστε περισσότερα

חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות

חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות חשבון אינפיניטסמלי מתקדם 1 סיכומי הרצאות 13 בינואר 211 מרצה: אילון לינדנשטראוס מתרגל: רון רוזנטל סוכם ע י: אור שריר פניות לתיקונים והערות: tnidtnid@gmail.com אתר הסיכומים שלי: http://bit.ly/huji_notes

Διαβάστε περισσότερα

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t.

תכנון אלגוריתמים 2016 עבודה 1 שאלה 1 פתרון נתונות שתי בעיות. יש למצוא: אורך מסלול קצר ביותר המתחיל באחד מן הקודקודים s 1,..., s k ומסתיים ב t. תכנון אלגוריתמים 2016 עבודה 1 פתרון שאלה 1 נזכר כי בגרף (E G, =,V) עבור שני קודקודים d(u, (v,u, v הוא אורך מסלול קצר ביותר מ u ל v. אם אין מסלול מ u ל.d(u, v) =,v נתונות שתי בעיות. בעיה א' מופע: גרף מכוון

Διαβάστε περισσότερα

2 יח"ל ) השלמה ל - 5 יח"ל) (50 נקודות) מעבר חוקי, ו-'שקר' אחרת.

2 יחל ) השלמה ל - 5 יחל) (50 נקודות) מעבר חוקי, ו-'שקר' אחרת. 1 6 מאי, 2004 מועד הבחינה: 2 יח"ל ) השלמה ל - 5 יח"ל) פרק ראשון (50 נקודות) :1 Ï (מקור: שירלי רוזנברג כהן) נגדיר טיפוס נתונים חדש בשם תלת-מחסנית, כמבנה המכיל 3 מחסניות S3. S2, S1, נגדיר את הפעולות הבאות

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα