Defects in Hard-Sphere Colloidal Crystals
|
|
- Αλθαία Γεννάδιος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms of Use Persson Gulda, Maria Christina Margareta Defects in Hard- Sphere Colloidal Crystals. Doctoral dissertation, Harvard University. November 13, :05:51 PM EST This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at (Article begins on next page)
2
3 µ V m =0.19V o V o S m =0.49k B T
4
5
6
7
8
9
10
11
12 φ φ φ φ φ
13 µ
14 µ µ µ µ µm 3 µ 3 µm µm µ 3 µ 3 µ 3 µ 3
15 µ 3 µ 3 µ 2 µ 2
16 1 a<11 2 > 6 µ a µ
17 µ α
18 F PK F PK F l F d
19
20 1
21
22 Σ
23 2
24 µ σ σ f RawStock f water
25 f water =0.369% f RawStock f RawStock σ d v settling g F d F g v settling F g = mg = 4 3 πa3 ρg a d ρ η v a F d =6πηav v settling v settling = 4a2 ρg 18η
26 η a 2 U thermal = 3k BT 2 U kinetic = mv2 2 v b <v b >= 3kB T m k B
27 φ F = U TS U thermal = 3 2 k BT F =( 3 2 k B S)T φ φ φ φ φ φ
28 P ρ k B P = ρk B TZ(φ) Z φ Z(β) = β β β β β β β β β β(φ) = 4(1 φ φ o ) φ o ρ SilicaRawStock 3 f RawStock
29 V RawStock = V Cell f RawStock V Cell A Cell h Cell V RawStock = A Cell h Cell f RawStock m Silica V RawStock ρ SilicaRawStock m Silica = V RawStock ρ SilicaRawStock = A Cell h Cell f RawStock ρ SilicaRawStock V Silica m Silica ρ Silica 3 V Silica = m Silica ρ Silica = A Cellh Cell f RawStock ρ SilicaRawStock ρ Silica V Crystal V Silica Φ Crystal V Crystal = V Silica Φ Crystal = A Cellh Cell f RawStock ρ SilicaRawStock ρ Silica Φ Crystal V Crystal A Cell h Crystal
30 h Crystal = h Cellf RawStock ρ SilicaRawStock ρ Silica Φ Crystal f RawStock Φ Crystal h Cell h Crystal h Crystal = h Cellf RawStock 50 mg/cm 3 Φ Crystal 2 g/cm 3 =0.025 h Cellf RawStock Φ Crystal
31 φ φ φ φ φ
32
33
34 d c U kinetic = mv2 b 2 mgd d d c = v2 b 2g
35 v b d c f RawStock h Cell
36
37 3
38 G G = H TS S H H h H = n h
39 H p V v V v = V p + V relax V p V relax H = np V v S s c s v s c S c = k B ln( (N + n)! )=k B [(N + n)ln(n + n) Nln(N) nln(n)] N! n! G = n h nt s v k B T [(N + n)ln(n + n) Nln(N) nln(n)]
40 δ G δn = h T s v k B T [ln(n + n)+ N + n N + n ln(n) n n ] n = h T s v + k B T ln( N + n ) = 0 x v x v = n N + n = h T sv e k B T Γ
41 G m = H m T S m = p V m T S m Γ= ν exp( G m k B T )=ν exp(p V m T S m ) k B T k B V m S m ν D λ ν = 6D λ 2 D η k B a D = k BT 6πηa λ 2a ν ν = k BT 4πηa 3 k B = T = 300 η = a = /2 µ ν
42 V a S a G a = p V a T S a x v x v2 x v2 x 2 v = exp( G a k B T )=exp(t S a p V a ) k B T
43 µ
44
45
46 x template y template µ
47 ax ay az x template bx by bz y template (ax δx) 2 +(ay δy) 2 +(az δz) 2 = x 2 template (bx δx) 2 +(by δy) 2 +(bz δz) 2 = y 2 template δx δy δz µ z template µ µ D Body µ D 2 Body = x2 + y 2 + z 2 z = DBody 2 x2 y 2 µ z = DBody 2 x2 y 2 = (2d) 2 2d 2 = 2d = = 2.21µ
48 ε z ε x ε y ν ε z + ε x ν + ε y ν =0 ε x,y = =4.5% ε z = 2ε x,y ν = = 3.3% z template z template = z(1 + ε z ) = 2.21 ( ) = 2.14µ (cx δx) 2 +(cy δy) 2 +(cz δz) 2 = z 2 template δx δy δz δx =0.1538µ δy =0.1553µ δz =0.1099µ
49 µ
50
51
52 µ
53
54 N particles(111) 36 3 = 108 V Box(111) V Box(111) µ 3
55
56
57 µ 3 N P articles(100) V Box(100) µm 3 µ 3 µ 3 µ 3
58 µ
59
60
61 µ µ µ ū ū = c r r 3 = c 1 r V = u ds = u4πr 2 u = V 4πr 2 u 1 u 2 = R 1 R 2 = R2 2 R 2 1 R 1 = ( )µm =0.06µm R 1 µ R 1 µ
62 µ µ R 1 µ µ 3 µ 3 µ µ
63
64 µ µ µ µ
65 µm 3 µ 3
66
67 µ µ
68 µm µm
69 µ µ 3 µ 3 µ 3
70
71
72 P (v f )= γ <v f > exp γv f <v f > v f <v f > γ µ 3 γ/< v f > <v f > µ 3 <v particle >=< v o > + <v f >= 4 3 ( )3 π/ = 2.69µm 3 v o v particle <v f >
73
74 µ 3
75 µ 3
76 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3
77 µ 3 µ 3
78 µ 3 µm 2 µ 2 V v V v = V p + V relax PVo Nk B T
79 µ 3 µ 3
80 µ 2 µ 2
81 V relax V v µ µ µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 V relax V v µ µ µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 ρ N/V p k B T = ZN V PV o Nk B T = ZV o V
82
83 G m k B T Γ= = sec 1 ν =0.6 1 Γ ν PV o Nk B T PV o Nk B T PV o Nk B T Γ ν 1021
84
85
86
87 µ 3 r v1 r v ( r i + r v2 ) = r v1 i= ( r j + r v1 ) = r v2 j=1 r i r j µm 3 µm 3
88
89
90
91 µm 3 V a H a S a G a = H a T S a G a µ 3 µ 3 V v V v = 18 ( )µm 3 =6.84µm 3 µ 3 V v V relax µ 3 Γ= = sec 1
92
93
94 4 ± ν =0.6 1 Gm k B T ±0.7
95
96 log Γ ν = p V m k B T + S m k B V o log Γ ν = pv 0 V m + S m k B T V 0 k B V m V 0 S m k B
97
98
99
100 Γ= = sec 1 4 ± ν 1 Gm k B T ±0.8 G m k B T Γ 1 Gm k B T (4.6 ± 2.3) ± 0.7 (1.2 ± 0.7) ± 0.8
101
102
103 4
104 1 6 a<11 2 > 2 2
105
106 σ y α σ y = σ o + kd 1 2
107 a ± 1 2 a[01 1] ± 1 2a[110] π ± 1 2a[101] π T 1 2 a[01 1] 1 2 a[0 11] T ± 1 2 a[110], ± 1 2a[101] a[110] 1 2 a[110] T a[11 2]
108 1 2 a[110] 1 2 a[101] T a[2 1 1] 1 2 Σ 1 6 [ 1 1 2] 1 6 a[ 1 12]
109 pv = Z(V )k B T K = V dp dv K = Zk BT V (1 V Z δz δv ) µ
110 γ µ = 1 V δ 2 F δγ 2 γ U thermal µ = T V δ 2 S δγ 2 µ o a 6 (α) α ε = bcos(α) L
111 U elastic = 1 2 Eε2 elastic h ε elastic ε 0 ε ε elastic = ε 0 ε U elastic U elastic = 1 2 E(ε 0 bcos(α) ) 2 h L U dislocation = 1 µb 2 L 4π(1 ν) ln R r o ν r o 1 L = ε 0 bcos(α) 1 4π(1 ν) µ 1 1 E cos 2 (α) h ln4h b h c h c = 1 µ 1 4π(1 ν) E ε 0 b cos(α) ln4h c b
112 E µ = 2(1 + ν) Z z o U elastic = 1 2 Eε2 0z U elastic F elastic = 1 2 LEε2 0
113 F repel = µ(bcos(α))2 4π(1 ν)z z o z o = (bcos(α))2 µ 2π(1 ν)lε 2 0 E µm µ 1.025a
114 1 6 a<11 2 >
115 a µ a A particle A particle = a2 2 µ A particle N layer = A total 2L 2 = A particle a 2 µ N layer µ
116 µ a µ
117
118 h(number of layers) = 0.022t (0 t 900min) t layer a 2 µ 2 h(µm) = 0.018t + 23 (0 t 900min) J v settling n ColloidsInSolution J = v settling n ColloidsInSolution Γ A CrossSection Γ= JA= v settling n ColloidsInSolution A CrossSection n ColloidsInSolution ρ SilicaInRawStock m colloid f RawStock n ColloidsInSolution = ρ SilicaInRawStock m colloid f RawStock Γ N layer = A CrossSection A particle = A CrossSection 2a 2 t layer
119 h T heory h T heory = Γ N layer t layer = v settlingρ SilicaInRawStock f RawStock A particle t layer m colloid ρ SilicaInRawStock v settling m colloid A particle t layer f RawStock µ ρ ColloidsInSolution o o o o
120 (ˆx, ŷ, ẑ)
121
122
123 µ
124 [ˆx00] 1 6 [ 12 1] [0ŷ0] 1 3 [ 1 1 1] [00ẑ] 1 2 [ 101] ˆx ŷ ẑ [ˆx00] 1 6 [121] [0ŷ0] 1 3 [ 11 1] [00ẑ] 1 2 [ 101]
125
126
127 ˆx ŷ ẑ a 6 [112] a 6 [112] a 6 [112] b t a 6 [112] LeftCrystalSystem = a 6 [112] LeftCrystalSystem+ a 6 [112] RightCrystalSystem+ b t bt = a 6 [112] RightCrystalSystem b t bt = [0.2556, , ]
128
129
130 bt,exp = [0.2756, , ] µ µ
131
132
133 a A perp article = 3a 2 4 µ
134
135
136 L 2 L 1 ε = b L 1 ε = b L 1 ( A hl 2 )= ba V A effective L 1 A effective = Asinα α o L 1 beffective = bcosα
137
138
139 α
140 ε = bcosαasinα V
141
142
143
144 F PK F PK b σ d s F PK =( σ b) d s F PK = F d +2F l
145
146 F PK
147 F PK F l F d
148
149 F PK = F d + F l F d = 4η π Sv S µ η µ F l = 1 2 µb2 µ =2 b =0.81µ F PK = σb S σ = µ ε = µ(ε o ε) ε = 1 2 µb2 µb S = ε ε o ε
150 S r F PK F PK r F PK 2 r F PK (3 r) =T (3 r)+2t S F PK F PK S = T S + 2T 3 r T S µb ε b ε b = (1 + 2 S 3 r ) r µ ε o ε
151
152
153 5
154 V m =0.19V o V o S m =0.49k B T
155 6
156 10 4
157 µ µ
158 2
159 o
160
161
162
163 7
164 8 µ
165
166
167
168
169
Gradient Descent for Optimization Problems With Sparse Solutions
Gradient Descent for Optimization Problems With Sparse Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen,
A Classical Perspective on Non-Diffractive Disorder
A Classical Perspective on Non-Diffractive Disorder The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
Diamond platforms for nanoscale photonics and metrology
Diamond platforms for nanoscale photonics and metrology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.
Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Robust Network Interdiction with Invisible Interdiction Assets
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2014 Robust Network Interdiction with Invisible Interdiction Assets Nail Orkun Baycik University of Arkansas, Fayetteville
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Chasandra, Mary; Tsiaousi, Louisa; Zisi, Vasiliki; Karatzaferi,
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS Learning Objective : SEO και Analytics Fabio Calefato Department of Computer
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Klausur Strömungslehre
...... Name, Matr.-Nr, Unterschrift Klausur Strömungslehre. 3.. Aufgabe a G F A G WV B + V L g G G W + V L g g B V L G g W B L p R T W p a + Wg + h R T W m L L V L m L G pa + Wg + h g W B R T W b G F A
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans
S1 of S11 Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans Eveline Dirinck, Alin C. Dirtu, Govindan Malarvannan, Adrian
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
Διαφορικός λογισµός. y(x + Δx) y(x) dy dx = lim Δy
Διαφορικός λογισµός ΦΥΣ 111 - Διαλ.5 1 Έστω y = f(x) µια συναρτησιακή σχέση της µεταβλητής y ως προς την µεταβλητή x: y = f(x) = αx 3 + bx 2 + cx + H παράγωγος του y ως προς το x ορίζεται ως το όριο των
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
14.5mm 14.5mm
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 1.119/JETCAS.218.289582,
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
Selective mono reduction of bisphosphine
Griffith Research Online https://research-repository.griffith.edu.au Selective mono reduction of bisphosphine oxides under mild conditions Author etersson, Maria, Loughlin, Wendy, Jenkins, Ian ublished
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
Liner Shipping Hub Network Design in a Competitive Environment
Downloaded from orbit.dtu.dk on: Oct 01, 2016 Liner Shipping Hub Network Design in a Competitive Environment Gelareh, Shahin; Nickel, Stefan; Pisinger, David Publication date: 2010 Document Version Publisher's
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Αστροφυσική. Οµάδα 2. v f = 0
Αστροφυσική Οµάδα 2 1 Η εξίσωση Boltzann αποτελεί τη ϐάση της κινητικής ϑεωρίας των αερίων και περιγράφει την εξέλιξη της συνάρτησης κατανοµής ταχυτήτων f x, v, t ενός αερίου πλάσµα, αστέρες, µόρια στο
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =
7. Άσκηση 1 2 1 Εστω ο πίνακας A = 1 3 2. Να δειχθεί ότι ο πίνακας είναι αντιστρέψιμοςκαιστησυνέχειαναυπολογιστείοαντίστροφος. 1 0 1 Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ
ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ 1. Η διαφήμιση της Τράπεζας για τα "Διπλά Προνόμια από την American Express" ισχύει για συναλλαγές που θα πραγματοποιηθούν από κατόχους καρτών Sunmiles American Express, American
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 2: Διαπραγμάτευση Juan Carlos Martínez Director of Projects Development Department Unit Scope Σε αυτή την ενότητα θα μελετήσουμε τα βασικά των καταστάσεων διαπραγμάτευσης winwin,
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Κλασσική Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Συστήματα πρώτης και δεύτερης τάξης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3
大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.
This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/43513/
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ
1 ιανύσµατα Ο ϕυσικός χώρος µέσα στον οποίο Ϲούµε και κινούµαστε είναι ένας τρισδιάστατος ευκλείδειος γραµµικός χώ- ϱος. Ισχύουν λοιπόν τα αξιώµατα της Γεωµετρίας του Ευκλείδη, το πυθαγόρειο ϑεώρηµα και
Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 4: Συνεργασία Juan Carlos Martínez Director of Projects Development Department Σκοπός 1. Πώς να χτίσετε και να διατηρήσετε μια αποτελεσματική ομάδα Σε αυτό πρόγραμμα, εντός
VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!!
VBA ΣΤΟ WORD Version 25-7-2015 ΗΜΙΤΕΛΗΣ!!!! Μου παρουσιάστηκαν δύο θέματα. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Εγραφα σε ένα αρχείο του Word τις
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ þÿ ¹±Çµ Á¹Ã ºÁ õɽ ÃÄ ÃÇ» Tokatzoglou,
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)
ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Decision-Making in the Dark: How Pre-Trial Errors Change the Narrative in Criminal Jury Trials
Chicago-Kent Law Review Volume 90 Issue 3 Juries and Lay Participation: American Perspectives and Global Trends Article 8 6-23-2015 Decision-Making in the Dark: How Pre-Trial Errors Change the Narrative
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade
Για να ελέγξετε το λογισμικό που έχει τώρα η συσκευή κάντε κλικ Menu > Options > Device > About Device Versions. Στο πιο κάτω παράδειγμα η συσκευή έχει έκδοση λογισμικού 6.0.0.546 με πλατφόρμα 6.6.0.207.
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10
9// ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 3 - η ΕΡΓΑΣΙΑ Προθεσµία παράδοσης 6// Άσκηση A) Θεωρούµε x την απόσταση της µάζας m από το σηµείο ισορροπίας της και x, x3 τις αποστάσεις των µαζών m και m3 από το
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Polymer hemistry This journal is The Royal Society of hemistry 2011 Phosphoric and Phosphoramidic Acids as Bifunctional atalysts for the Ring-pening Polymerization
Working Paper Series 06/2007. Regulating financial conglomerates. Freixas, X., Loranth, G. and Morrison, A.D.
Working Paper Series 06/2007 Regulating financial conglomerates Freixas, X., Loranth, G. and Morrison, A.D. These papers are produced by Judge Business School, University of ambridge. They are circulated
Reforming the Regulation of Political Advocacy by Charities: From Charity Under Siege to Charity Under Rescue?
Chicago-Kent Law Review Volume 91 Issue 3 Nonprofit Oversight Under Siege Article 9 7-1-2015 Reforming the Regulation of Political Advocacy by Charities: From Charity Under Siege to Charity Under Rescue?
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ
Page 1 of 67 Page 2 of 67 Page 3 of 67 Page 4 of 67 1. Page 5 of 67 Page 6 of 67 Page 7 of 67 2. Page 8 of 67 Page 9 of 67 Page 10 of 67 Page 11 of 67 Page 12 of 67 Page 13 of 67 Page 14 of 67 Page 15
Η χρήση των δορυφορικών εικόνων IKONOS για την παραγωγή ορθοφωτογραφιών
Η χρήση των δορυφορικών εικόνων IKONOS για την παραγωγή ορθοφωτογραφιών Μ. Μπισδάρη, Α.Μ. Ξυνταρλάκη, Χ. Ιωαννίδης, Α. Γεωργόπουλος Εργαστήριο Φωτογραµµετρίας ΣΑΤΜ, ΕΜΠ 6η Συνάντηση Χρηστών Φωτογραµµετρίας
ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation
ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied
Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1
Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1 Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 2 Dervish Abu Bekr, «Παραμύθια τησ Χαλιμϊσ, τομ. Α» Ιούνιοσ 2013 Φωτo εξωφύλλου: Βαςιλεύα Αςπαςύα Μαςούρα Επιμϋλεια ϋκδοςησ:
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
CRETAPLANT A Pilot Network of Plant Micro-Reserves in Western Crete Πιλοτικό Δίκτυο Μικρο-Αποθεμάτων Φυτών στη Δυτική Κρήτη (LIFE04NAT_GR_000104)
CRETAPLANT A Pilot Network of Plant Micro-Reserves in Western Crete Πιλοτικό Δίκτυο Μικρο-Αποθεμάτων Φυτών στη Δυτική Κρήτη (LIFE04NAT_GR_000104) Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Αναπλ. Καθηγητής
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Ορμή - Κρούσεις. ΦΥΣ Διαλ.23 1
Ορμή - Κρούσεις ΦΥΣ 111 - Διαλ.3 1 Χτύπημα καράτε ΦΥΣ 111 - Διαλ.3 q Σπάσιμο μιας σανίδας ξύλου με την ώθηση I = FΔt = Δp = mδυ Δt πολύ μικρό και Δp = σταθ. è F μεγάλη Ø Σώματα: ü Χέρι: M xεριού =3Kg,
Free Energy and Phase equilibria
Free Energy and Phase equilibria Thermodynamic integration 7.1 Chemical potentials 7.2 Overlapping distributions 7.2 Umbrella sampling 7.4 Application: Phase diagram of Carbon Why free energies? Reaction
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Scrum framework: Ρόλοι
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #2 : Ευέλικτες (Agile) μέθοδοι για την ανάπτυξη λογισμικού Learning Objective : Scrum framework: Ρόλοι Filippo