A Classical Perspective on Non-Diffractive Disorder
|
|
- Μαργαρίτες Γεωργιάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 A Classical Perspective on Non-Diffractive Disorder The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms of Use Klales, Anna A Classical Perspective on Non-Diffractive Disorder. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. July 29, :28:27 AM EDT This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at (Article begins on next page)
2
3
4
5 0
6 r 5 r 5
7
8
9 R = 10MΩ
10
11
12
13 1 itp2d
14 6B;m`2 RXR, M `` v Q7 2B;2Mbi i2b rbi? +QMb2+miBp2 2M2`;B2b BM i?2 MQBbBv [mbmib+ TQi2MiB HX h?2 T`272``2/ Q`Bi2Mi ibqmb Q7 i?2 bi i2b + M #2 b22m BM i?bb `` vx k
15 Q
16 0, t
17 h (t)i t M δp t = M δp 0. δx t δx 0 ψ G (x, t) =exp{(i/ )[(x x t ) A t (x x t )+p t (x x t )+γ t ]}
18 fully resolved third recurrence second recurrence first recurrence f A t = 1 2 δp t (δx t ) 1 γ t = φ t i [ln δx t (δx 0 ) 1 ] φ t = p t dx t Et φ t t =0 ψ G (0) ψ G (t)
19 exp{ nτλ/2} λ M n n ϵ T (ω) = 1 2 π T T exp{iωt} ψ G ψ G (t) dt. λ
20 λ/ω. ω/λ 1 t
21 r r 5 r 5
22 φ =0 r 0 r 5 ψ r,m (ρ, φ) =R r,m (ρ)e imφ ψ r,m ψ r, m ψ r,m = R(r)e imφ ψ r, m = R(r)e imφ. V r,±m = ψ r,m V ψ r,m ψ r,m V ψ r, m. ψ r, m V ψ r,m ψ r, m V ψ r, m ψ + ψ 2 2 ψ + V ψ =0 ψ + cos φ ψ sin φ
23 ψ + = 1 2 (ψ r,m + ψ r, m ) ψ = 1 2 (ψ r,m ψ r, m ). ψ + cos φ ψ sin φ φ =0
24
25
26
27 , r 5
28
29 E :5 resonant set 3:7 resonant set r r m E ω. r 5
30
31 H = H 0 + λv H 0 = 2 2µ 2 + r 5 a ψ m V ψ m+a = = e imφ Ve i(m+a)φ dφ e iaφ Vdφ. V a
32 j i i ψ i V ψ j
33 W = ψi 0 V ψ 0 j. ψ 0 i V φ i. W φ 1 = ϵ 1 φ 1 W φ 2 = ϵ 2 φ 2 W φ n = ϵ n φ n. ϵ 1 > ϵ 2 >... > ϵ n ψ = i a i φ i i a i 2 =1.
34 ψ W ψ = i = i = i = i φ j a i a jw φ i j a i a j φ j W φ i j a i a j φ j ϵ i φ i j a i a jϵ i φ j φ i j i = j ψ W ψ = i a i 2 ϵ i. φ i ψ W ψ ψ φ ϵ φ i V,
35 itp2d 1:π,
36 state 3673 state 3678 state state state state state state state state state state B;m`2 RXN, ai i2b + H+mH i2/ pb /2;2M2` i2 T2`im`# ibqm i?2q`v QM bk HH bm#b2i Q7 bi i2b rbi?bm `2bQM Mi b2ix k9
37 state 3673 state 3678 state state state state state state state state state state B;m`2 RXRy, ai i2b + H+mH i2/ U HKQbiV 2t +ihv pb /B ;QM HBx ibqm QM p2`v H `;2 bm#b2i Q7 # bbb bi i2bx k8
38 y x x x V
39 itp2d itp2d
40
41
42
43 2
44 dp/dx
45 p / x
46 y p x x x
47
48
49 p n+1 = p n dv n(x) dx x n+1 = x n + p n+1 p x V n (x) x
50 V n (x) =0, V n (x)v n (x )=v 2 0e x x 2 /ξ 2. t c v 2/3 0
51 transverse position longitudinal position log( ) transverse position longitudinal position log( )
52 p x p x p x a p x p a x 2 V a x 2 a ( p x 1+ p ) 1 p a x a x. a 1 ( 1, 0]
53
54 1 0 δs = δp 2 + δx 2 = δp ( p 1+( x p) 2 = 2 δx 1+ x) δp δx p x p δs > x 0 q 1+2 p x +2 p S drift = q x 1+ p x 2 q 2 q 2 < p x < 0
55 S kick = 1+ p x + 2 V n 2 q dx 2 p 2 q x 1+ p x 2 q 2 V n q dx 2 q. αp = p βx = x p x = α β p 0 < x < 2 α β α = β =1
56 r(t) = log M(x 0,x t ) d(x 0 ) d(x 0 ) x 0 M(x 0,x t ) x 0 x t
57 p x log( ) v 0 = 10 6 ξ =0.1 x =0 x =1 λ c λ c v 0 λ c v 2/3 o p(x) =0
58 v 0 =2 20 v 0 =2 18 v 0 =2 16 v 0 =2 14 v 0 =2 12 r t/t c v 0 t c v 0 =2 10 v 0 =2 12 v 0 =2 14 v 0 =2 16 v 0 =2 18 v 0 = c λ c v 0
59 p n+1 = p n dv n(x) dx x n+1 = x n + p n+1 p x
60 V n (x)v n (x )=v 2 0e x x 2 /ξ 2 x v 0 ξ 2 c 0 v 0 ξ 2 m = mv m 2 V 1+m V m p x V 2 V x 2 m c V c 0 V m c = c 0 c c 0 2 c 0 m c = c 1/2 0. V m
61 V,m<<1 m =(mv m 2 V )(1 m + V ) m<<m c m 2 << V m = V mm c m 2 V m = m 2 V m>>m c m 2 >> V m = m 2 m c m n (n n 0 ) 1 n 0
62 L n+1 L n = 2 = 2 (( V 1 2 dx dp) dx2 dx 2 + dp 2 ( = 2 ( V dx ) dp dx dp 2 dx V 1 2 dp dx 1+ dp 2 dx ) ) 1 2 r = r n+1 r n =ln(l n+1 /dx 0 ) ln(l n /dx 0 ) = ln(l n+1 /L n ) r = ln ( 2 = 1 2 ln V 1 2 dp dx ( 2 1+ dp 2 dx V 1 2 dp dx 1+ dp 2 dx ) )
63 dp dx = m ( r = 1 ( 2 V 2 ln 1 2 m) ) m 2 ln(x) x 1 ( r 1 ( 2 V 1 2 m) ) m 2 1 ( 1 ( 2 V 1 2 m) ) m2 2 1+m 2 ( ( 2 V V mv 1 2 V m mv m + m m2) ) m 2 ( V V mv 1 2 V m mv m + m ) 1 2 m2 1+m 2 ( ) V 2 V + m 2mV m2 1+m 2 (1 + m 2 ) 1 1 m 2 r V 2 V + m 2mV m2 r m V
64 m m 1 t t c t c r ln(t t c ) r = m +ṁ m<<m crit α = (x dx 1,p dp) β = (x, p) γ = ((x + dx 2,p+ dp)) α = (x + p dx 1 dp V 1,p dp V 1) β = (x + p V,p V ) γ = (x + p + dp + dx 2,p+ dp V 2)
65 p (x + dx 2,p+ dp) (x dx 1,p dp) (x, p) x p (x + p dx 1 dp V1 0,p dp V 0 1 ) x (x + p + dp + dx 2,p+ dp V 0 2 ) (x + p V 0,p V 0 )
66 m 2 = dp dx 2 m = dp dx 1 c = dp dx 2 dp dx 1 dx 2 = m 2 m dx 2. c = m 2 m dx 2 c = ( ) ( ) dp V 2 +V dp+v dp+dx 2 V 2 +V 1 V dx 1 +dp+v 1 V dp + dx 2 V 2 + V = 1 dx 2 m 2 V 2 m 2 +1 V 2 m V 1+m V m 2 +1 V 2 c c = 1 dx 2 = 1 dx 2 ( ( ) ( ) m2 V 2 m 2 m V +1 V 2 1+m V m 2 +1 V 2 (m 2 m) m 2 m V 2 + V (m 2 +1 V 2 )2 (1 + m V ) m 2 + m ) c c 1 ( (m2 m V 2 + V )( 2m V 2 )(1 m + V ) dx 2 m 2 + m )
67 dx 2 (c c) V V 2 +4m 2 V 2 2m 2 2 mv 2 + mm 2 2V V 2 V V m 2 2mV + m 2 + V 2 t t =6
68 d periodic potential Intensity 5.0 y y time time B;m`2 kxrk, S2`BQ/B+ #` M+?2/ ~Qr Q7 K MB7QH/ Q7 +H bbb+ H i` D2+iQ`B2b 8e
69 6B;m`2 kxrj, S2`BQ/B+ #` M+?2/ ~Qr Q7 [m MimK K2+? MB+ H TH M2 r p2 7Q` p `B2iv Q7 `2T2 i H2M;i?bX 8d
70 6B;m`2 kxr9, +QKT `BbQM Q7 i?2 /2MbBiv Q7 +H bbb+ H i` D2+iQ`B2b UH27i T M2HV rbi? r p2t +F2i H mm+?2/ BM i?2 b K2 TQi2MiB H M/ KmHiBTHB2/ #v e ie0 t/! iq ;2i i?2 `2bmHiBM; [m MimK bi i2 rbi? 2M2`;v E0 U`B;?i T M2HVX h?2 v2hhqr ``Qr BM/B+ i2b #` M+? 2pB/2Mi BM i?2 +H bbb+ H /2MbBiv i? i Bb #b2mi BM i?2 +Q``2bTQM/BM; [m MimK bi i2x "Qi? T M2Hb b?qrm 7mHH irq@/bk2mbbqm H 2pQHmiBQM 83
71 e ie0t/ E 0 E 0. 0.
72 3
73 V I R R = 10MΩ V
74 R T = V I.
75 n m = πn/v F
76 Ω n 0 n (r) n n(r) =n 0 + n (r)+n (r). L = 1 2 m(r)ṙ2 L d L =0 q i dt q i [ ] 1 2 m(r)ṙq2 t + r (m(r)ṙq) = m(r)ṙ2 = m(r) r + ṙ (ṙ m(r))
77 m(r) = π v F n(r) r = [ ṙ2 1 ) (ˆṙ m(r) 2 m(r) m(r) ˆṙ]. r B = eṙb z /m(r) r = [ ṙ2 1 ) (ˆṙ m(r) 2 m(r) m(r) ˆṙ] + eṙb z /m(r).
78 ] [ 2 + ω2 c 2 n2 (r) ψ =0. ψ = e iωs(r)/c S(r) S S = n 2 (r). n(r) dr ds = S [ d n(r) dr ] ds ds = n(r). d/ds = ˆk dr/ds = ˆk ] [ˆk n(r) ˆk + n(r) [ˆk ˆk] = n(r). ˆk = n(r)v/c F 2n(r) 2 [v n(r)] v + n(r)[v v] =c 2 F n(r)
79 2 1 y x x x x x d dt = t + v v dv dt =(v )v d 2 r dt 2 = c2 F ( ) n(r) n(r) 3 2 ( v n(r) n(r) ) v. m(r) n(r).
80 1 1 y x n 3
81 2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) x(µm) x(µm) x(µm)
82 2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) x(µm) x(µm) x(µm)
83 2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) x(µm) x(µm) x(µm)
84 n 3 n 0 R = n 3 n 0 N N n tot = N i e l i/l l i i σ(ρ) = qa 2π (ρ 2 + a 2 ) 3/2 q a ρ 2ρ =2a 2 2/3 1 σ = q 2πa 2
85
86 y(µm) x(µm) B =0.12T n =
87
88 y(µm) y(µm) B = 0.00 T B = 0.06 T B = 0.07 T B = 0.08 T B = 0.09 T B = 0.10 T B = 0.11 T B = 0.12 T B = 0.13 T T/T y(µm) x(µm) x(µm) x(µm)
89 1.0 B = 0.00 T B = 0.06 T B = 0.07 T y(µm) y(µm) B = 0.08 T B = 0.09 T B = 0.10 T B = 0.11 T B = 0.12 T B = 0.13 T T/T y(µm) x(µm) x(µm) x(µm)
90 2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) x(µm) x(µm) x(µm) x =1µ y =0
91 B =0.10T,
92 2.0 B = 0.05 T B = 0.06 T B = 0.07 T 1.0 y(µm) B = 0.08 T B = 0.09 T B = 0.10 T 1.0 y(µm) B = 0.11 T B = 0.12 T B = 0.13 T 1.0 y(µm) x(µm) x(µm) x(µm)
93
94 x
95
96 4
97
98 Ψ β (q, t) = dq G (q, q,t)ψ β (q, 0), G (q, q,t)= 1 2πi 2 S(q, q ) q q 1/2 [ ] exp is (q, q,t). S(q, q ) q 0 q t
99 ( ) ( ) S S S (q, q ) = S(q t,q 0 )+ (q q t )+ (q q 0 ) q t q 0 q 0 q t + 1 ( 2 ) S 2 qt 2 (q q t ) ( 2 ) S q 0 2 q0 2 (q q 0 ) 2 q t ( 2 ) S + (q q 0 )(q q t ) q 0 q t + 1 ( 3 ) S 6 q0 3 (q q 0 ) ( 3 ) S q t 6 qt 3 (q q t ) 3 q ( 3 ) S 2 q0 2 q (q q t )(q q 0 ) ( 3 ) S t 2 q 0 qt 2 (q q t ) 2 (q q 0 ). Ψ β (q, t) = 1 N 2πi ( 3 ) S + q 0 qt 2 dq 2 ( S 3 S + q 0 q t q0 2 q t 1/2 (q q t ) exp { i [ Ξq 3 +Υq 2 +Ωq +Λ ]} ) (q q 0 )
100 Ξ = 1 ( 3 ) S 6 q0 3, q [ t ( Υ = 1 2 ) ( S 3 ) ( S 3 ) ( S 3 ) ] S 2 q0 2 + q t q0 2 q q t q0 3 q 0 q t q0 2 q q t + A, t ( ) ( S 2 ) ( S 2 ) ( S 3 ) S Ω = + (q q t ) q 0 q t q 0 q t q0 2 q 0 + q t q0 2 q (q 0 q t qq 0 ) t + 1 ( 3 ) ( S 2 q0 3 q0 2 3 )( S 1 + q t q 0 qt 2 2 q2 t + 1 ) 2 q2 qq t 2Aq β + ξ, ( ) S Λ = q + 1 ( 2 ) S q t q 0 2 qt 2 q ( 3 ) ( ) S S q 0 6 qt 3 q 3 q 0 q 0 q 0 q t ( 2 ) S qq 0 1 ( 3 ) S q 0 q t 2 q 0 qt 2 q 2 q ( 2 ) S 2 q0 2 q0 2 q t + 1 ( 3 ) S 2 q0 2 q qq0 2 t 1 ( 3 ) ( ) ( S S 6 q0 3 q0 3 2 ) S q t q t q t q 0 qt 2 qq t 1 ( 3 ) S q 0 2 qt 3 q 2 q t q 0 ( 2 ) ( S 3 ) S + q 0 q t + q 0 q t q 0 qt 2 qq 0 q t 1 ( 3 ) S 2 q0 2 q q0q 2 t t ( 2 ) S qt 2 qt 2 q ( 3 ) S 2 qt 3 qqt 2 1 ( 3 S 2 q 0 qt 2 +Aq 2 β + S + γ ξq β. ) q 0 q 2 t 1 6 ( 3 ) S q 3 t q 0 q 3 t
101 φ Ψ 1 β (q, t) =N 2πi i dq A(q, t)exp{iφ} : φ = Ξq 3 +Υq 2 +Ωq +Λ ( = Ξ q 3 + Υ Ξ q 2 + Ω Ξ q + Λ ) Υ [ ( = Ξ q + 1 ) 3 Υ 1 3 Ξ 3 [( = Ξ q + 1 ) ( 3 Υ Ω + 3 Ξ Ξ Υ 3 Ξ ( Ω Ξ 1 3 ( Υ Ξ ( ) 2 Υ q 1 Ξ 27 ) 2 ) ( Υ Ξ 1 27 ( ) 3 Υ + Ω Ξ Ξ q + Λ Ξ ) ) 2 ( q + 1 ) Υ 3 Ξ ( ) 3 Υ + Λ ]. Ξ Ξ ] t = ( q + 1 ) Υ 3 Ξ = φ =Ξt 3 +Ξ ( Ω Ξ 1 3 ( ) ) ( Υ 2 t 13 Ξ Υ Ω Ξ 1 3 ( ) ) Υ 2 1 Υ 3 Ξ 27 Ξ 2 +Λ. Ψ β (q, t) = N 1 2πi i exp { i [ Ξq 3 +Υq 2 +Ωq +Λ ]} = N 1 2πi exp { i [ i + 1 Υ 3 Ξ [ dq 2 ( S 3 ) ( S + q 0 q t q0 2 q (q 3 ) ] 1/2 S q 0 )+ t q 0 qt 2 (q q t ) + 1 Υ 3 Ξ Ξt 3 +Ξ ( [ 2 ( S 3 S dt + q 0 q t q0 2 q t Ω Ξ 1 3 ( Υ Ξ ) 2 ) t 13 Υ ( Ω Ξ 1 3 ) ( (q 3 S q 0 )+ q 0 qt 2 ( Υ Ξ ) 2 ) ) ] 1/2 (q q t ) 1 Υ 3 27 Ξ 2 +Λ ]}.
102 q q 0 Ψ β (q, t) = N Υ 3 Ξ 2πi [ 2 S + q 0 q t { [ exp i + 1 Υ 3 Ξ t ( 3 S Ξt 3 +Ξ = N Υ 3 Ξ 2πi [ 2 S + q 0 q t { [ exp i q 0 q 2 t + 1 Υ 3 Ξ ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) ) ] 1 2 n ( 3 S (q q t ) n=0 ( Ω Ξ 1 3 t ( 3 S Ξt 3 +Ξ = N Υ 3 Ξ 2πi [ 2 S + q 0 q t n n m { [ m=0 exp i q 0 q 2 t + 1 Υ 3 Ξ n=0 ( Υ Ξ ) n (q q 0 ) n q0 2 q t ) ) ( 2 t 13 Υ Ω Ξ 1 3 ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) ) ] 1 2 n ( 3 S (q q t ) ( Ω Ξ 1 3 t ( 3 S n=0 ( Υ Ξ ) n ( t 1 Υ 3 q0 2 q t ) ) ( 2 t 13 Υ Ω Ξ 1 3 ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) ) ] 1 2 n ( 3 S (q q t ) q0 2 q t q 0 qt 2 ( 1 ) Υ n m 3 Ξ q 0 t m Ξt 3 +Ξ ( Ω Ξ 1 3 ) n ( ) ) ( Υ 2 t 13 Ξ Υ Ω Ξ 1 3 ( ) ) ]} Υ 2 1 Υ 3 Ξ 27 Ξ 2 +Λ ( Υ Ξ Ξ q 0 ) ) 2 ) n 1 Υ 3 27 Ξ 2 +Λ ]} ( ) ) ]} Υ 2 1 Υ 3 Ξ 27 Ξ 2 +Λ
103 { [ ( = N 1 1 exp i 2πi 3 Υ Ω Ξ 1 3 ( 1) n (2n)! (1 2n)(n!) 2 (4 n ) n=0 n n m=0 m { [ 1 6 ( 1)m (iξ) m 3 1 ( ( 1 ) Υ n m 3 Ξ q 0 ( ) ) Υ 2 Ξ [ 2 ( S 3 S + q 0 q t q 0 qt Υ 3 27 Ξ 2 Λ ) (q q t ) ]} ] 1 2 n ( 3 S q 2 0 q t ( ) ( m +1 m 2(iΞ) 2/3 Γ 1F ; 1 3, 2 3 ; Z 3 ) 27(iΞ) + Z 2 3 ( ) ( m +2 m (iξ)γ 1F ; 2 3, 4 3 ; Z 3 ) 27(iΞ) ( m ) ( m + ZΓ F ; 4 3, 5 3 ; Z 3 ) )] 27(iΞ) + 1 ( ) ( 6 ( (iξ)) m m +1 m 3 [2( (iξ)) 1 2/3 Γ 1F ; 1 3, 2 3 ; Z 3 ) 27(iΞ) ( ( m ) ( m + Z ZΓ F ; 4 3, 5 3 ; Z 3 ) 27(iΞ) 2 3 ( ) ( m +2 m (iξ)γ 1F ; 2 3, 4 3 ; Z 3 ) )]}. 27(iΞ) ) n Z = Ξ ( Ω Ξ 1 3 ( ) ) Υ 2, Ξ
104 x n e αx3 e px dx = 0 x n e αx3 e px dx + 0 ( x) n e α( x)3 e p( x) dx [ = L x x n e αx3] (p)+l x [( x) n e α( x)3] ( p) = 1 ( ) ( 6 ( 1)n α n n +1 n 3 {2α 1 2/3 Γ 1F ; 1 3, 2 3 ; p 3 ) 27α [ ( ) ( +p 2 3 n +2 n αγ 1F ; 2 3, 4 3 ; p 3 ) 27α ( n ) ( n +pγ F ; 4 3, 5 3 ; p 3 ) ]} 27α + 1 ( ) ( 6 ( α) n n +1 n 3 {2( α) 1 2/3 Γ 1F ; 1 3, 2 3 ; p 3 ) 27α [ ( n ) ( n +p pγ F ; 4 3, 5 3 ; p 3 ) 27α 2 3 ( ) ( n +2 n αγ 1F ; 2 3, 4 3 ; p 3 ) ]}. 27α M(t) = p t p 0 q0 q t p 0 q0 p t q 0 p0 q t q 0 p0.
105 Ṁ(t) =K(t) M(t) K(t) = 2 H q p 2 H p 2 2 H q 2 2 H p q. H = p2 2m + V (q) K(t) = 0 2 V (q) q 2 1 m 0. 2 S = 1, q 0 q t M 21 2 S = M 22, q 0 q 0 M 21 2 S = M 11, q t q t M 21 M(0) = I 2 2 Γ(t) = K(t) (p, q) ijk M(t) kl M(t) jm + K(t) ij Γ(t) jlm,
106 Γ(t) 2N 2N 2N M (p 0,q 0 ) K(t) p = 3 H q p 2 3 H p 3 3 H q 2 p 3 H q p 2, K(t) q = 3 H q 2 p 3 H p 2 q 3 H q 3 3 H q 2 p. H = p2 2m + V (q) K(t) p =0 I 2 2, K(t) q = 0 3 V (q) q S q0 3 3 S q0 2 q t 3 S q 0 qt 2 = = = = 3 S q t q t q t = 1 M 21 1 (M 21 ) 2 1 M 21 Γ 211 ( Γ 222 M 22 ) Γ 221 M ( 22 M 21 (M 21 ) 2 Γ 212 M ) 22 Γ 211, M 21 ) Γ 211, M 21 ) M ( 11 (M 21 ) 2 Γ 212 M ) 22 Γ 211, M 21 ( Γ 212 M 22 ( Γ 112 M 22 M 21 Γ 111 (M 21 ) 3, ( 1 Γ 111 M ) 11 Γ 211. M 21 M 2 21 Γ(0) = 0 I 2 2 2
107 p q
108
109
110
111
112
Defects in Hard-Sphere Colloidal Crystals
Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms
Gradient Descent for Optimization Problems With Sparse Solutions
Gradient Descent for Optimization Problems With Sparse Solutions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Chen,
Diamond platforms for nanoscale photonics and metrology
Diamond platforms for nanoscale photonics and metrology The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
2013/2012. m' Z (C) : V= (E): (C) :3,24 m/s. (A) : T= (1-z).g. (D) :4,54 m/s
( ) 03/0 - o l P z o M l =.P S. ( ) m' Z l=m m=kg m =,5Kg g=0/kg : : : : Q. (A) : V= (B) : V= () : V= (D) : V= (): : V :Q. (A) :4m/s (B) :0,4 m/s () :5m/s (D) :0,5m/s (): : M T : Q.3 (A) : T=(-z).g (B)
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2
Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 200 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 3 θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS
Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
f H f H ψ n( x) α = 0.01 n( x) α = 1 n( x) α = 3 n( x) α = 10 n( x) α = 30 ū i ( x) α = 1 ū i ( x) α = 3 ū i ( x) α = 10 ū i ( x) α = 30 δū ij ( x) α = 1 δū ij ( x) α = 3 δū ij ( x) α = 10 δū ij ( x)
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx
m r = F m r = F ( r) m r = F ( v) x F = F (x) m dv dt = F (x) d dt = dx dv dt dx = v dv dx vdv = F (x)dx 2 mv2 x 2 mv2 0 = F (x )dx x 0 K = 2 mv2 W x0 x = x x 0 F (x)dx K K 0 = W x0 x x, x 2 x K 2 K =
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max
φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z
ΤΥΠΟΛΟΓΙΟ. q e = C Φορτίο Ηλεκτρονίου 1.1. Ηλεκτρικό Πεδίο 2.1. Ηλεκτρικό Πεδίο Σημειακού Φορτίου Q Ηλεκτρικό Πεδίο Σημειακού
ΤΥΠΟΛΟΓΙΟ q e = 1.6 10 19 C Φορτίο Ηλεκτρονίου 1.1 F = k Q 1 Q 2 r 2 = 9 10 9 Q 1 Q 2 r 2 Νόμος Coulomb 1.2 E = F q E = k Q r 2 E = k Q r 2 e r E = 2kλ ρ E = 2kλ ρ e ρ ε 0 = 1/4πk = 8.85 10 12 S. I. Ε
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων
ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων 1. Έστω φορτίο Q περιέχει n ηλεκτρόνια - θα έχουμε Q = n-q e, επομέ- Q νως n =, αρα: (α) n = 0,625 10 19 e (β) n = 0,625 10 16 e (γ) n = 0,625
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
m 1, m 2 F 12, F 21 F12 = F 21
m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
apj1 SSGA* hapla P6 _1G hao1 1Lh_PSu AL..AhAo1 *PJ"AL hp_a*a
n n 1/2 n (n 1) 0/1 l 2 E x X X x X E x X g(x) := 1 g(x). X f : X C L p f p := (E x X f(x) p ) 1/p f,g := E x X f(x)g(x) x X X X X := {f : X [0, ) : f 1 =1}. X µ A A X x X µ A (x) :=α 1 1 A (x) 1 A A α
692.66:
1 69.66:6-83 05.05.05 -,, 015 .. 7... 8 1.... 19 1.1.,.. 19 1.. 8 1.3.. 1.4... 1.4.1.... 33 36 40 1.4.. 44 1.4.3. -... 48.. 53.,.. 56.1., -....... 56..... 6.3.... 71.. 76 3.,.... 77 3 3.1.... 77 3.1.1....
ψ (x) = e γ x A 3 x < a b / 2 A 2 cos(kx) B 2 b / 2 < x < b / 2 sin(kx) cosh(γ x) A 1 sin(kx) a b / 2 < x < b / 2 cos(kx) + B 2 e γ x x > a + b / 2
Σπουδές στις Φυσικές Επιστήµες ΦΥΕ 40 Κβαντική Φυσική 014-015 ΕΡΓΑΣΙΑ 3 η Υπόδειξη λύσεων ΑΣΚΗΣΗ 1 Η άρτια κυµατοσυνάρτηση θα δίνεται από (x) = A 3 e γ x x < a b / A cos(kx) B sin(kx) a b / < x < b / A
Περιεχόμενα. A(x 1, x 2 )
Περιεχόμενα A(x 1, x 2 7 Ολοκληρώματα της Μαγνητοϋδροδυναμικής και Μαγνητοϋδροδυναμικά Κύματα Σχήμα 7.1: Οι τριδιάστατες ελικοειδείς μαγνητικές γραμμές στις οποίες εφάπτεται το διάνυσμα του μαγνητικού
Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers
2 M2 Fourier Series answers in Mathematica Note the function HeavisideTheta is for x>0 and 0 for x
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
μ μ dω I ν S da cos θ da λ λ Γ α/β MJ Capítulo 1 % βpic ɛ Eridani V ega β P ic F ormalhaut 10 9 15% 70 Virgem 47 Ursa Maior Debris Disk Debris Disk μ 90% L ac = GM M ac R L ac R M M ac L J T
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
Κβαντομηχανική Ι 1o Σετ Ασκήσεων. Άσκηση 1
Χειμερινό εξάμηνο 16-17 Κβαντομηχανική Ι 1o Σετ Ασκήσεων ) ψ(x) dx Άσκηση 1 ψ ο (x) = Α (α x ), < x < = A (α x ) dx = 1 (α x ) dx = (α 4 x + x 4 )dx = α 4 dx x dx = 5 45 3 A ( 5 45 + 5 3 5 + x 4 dx + 5
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ΑΡΧΕΣ ΣΚΕ ΑΣΗΣ. Νικόλαος Ε. Ζαφειρόπουλος Τµήµα Επιστήµης και Τεχνολογίας των Υλικών, Πανεπιστήµιο Ιωαννίνων
ΑΡΧΕΣ ΣΚΕ ΑΣΗΣ Νικόλαος Ε. Ζαφειρόπουλος Τµήµα Επιστήµης και Τεχνολογίας των Υλικών, Πανεπιστήµιο Ιωαννίνων ΣΚΕ ΑΣΗ ΑΚΤΙΝΩΝ Χ Θεωρία µε παραδείγµατα Συµβατικές µέθοδοι σκέδασης (οργανολογία) Ακτινοβολία
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Υπεραγωγιμότητα. Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία :
Βασικά Φαινόμενα: Ηλεκτροδυναμική: Επιφανειακή Ενέργεια: Κβαντικά Φαινόμενα: Μικροσκοπική Θεωρία : Υπεραγωγιμότητα Μηδενική Αντίσταση Missn, Κρίσιμο Πεδίο, Θερμοδυναμική Κρίσιμο Ρεύμα Εξισώσεις London,
Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση
Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ» Ρομποτικά Συστήματα Ελέγχου: Διαφορική Κινηματική Ανάλυση Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ. Μηχ/κών
Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS Learning Objective : SEO και Analytics Fabio Calefato Department of Computer
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,
Μαθηματική Μοντελοποίηση Ι 1. Φυλλάδιο ασκήσεων Ι - Λύσεις ορισμένων ασκήσεων 1.1. Άσκηση. Ενα σωμάτιο μάζας m βρίσκεται σε παραβολικό δυναμικό V (x) = 1/2x 2. Γράψτε την θέση του σαν συνάρτηση του χρόνου,
Z = 1.2 X 1 + 1, 4 X 2 + 3, 3 X 3 + 0, 6 X 4 + 0, 999 X 5. X 1 X 2 X 2 X 3 X 4 X 4 X 5 X 4 X 4 Z = 0.717 X 1 + 0.847 X 2 + 3.107 X 3 + 0.420 X 4 + 0.998 X 5. X 5 X 4 Z = 6.56 X 1 + 3.26 X 2 + 6.72 X 3
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018
ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
Klausur Strömungslehre
...... Name, Matr.-Nr, Unterschrift Klausur Strömungslehre. 3.. Aufgabe a G F A G WV B + V L g G G W + V L g g B V L G g W B L p R T W p a + Wg + h R T W m L L V L m L G pa + Wg + h g W B R T W b G F A
Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ
Α Ρ Η Θ Μ Ο : 6.984 ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ ΔΙΑΓΩΝΙΜΟΤ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Μ α ξ η ί ν π, ε κ έ ξ α Γ ε π η έ ξ α, η ν π έ η ν π ο δ
η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Between Square and Circle
DOCTORAL T H E SIS Between Square and Circle A Study on the Behaviour of Polygonal Steel Profiles Under Compression Panagiotis Manoleas Steel Structures Printed by Luleå University of Technology, Graphic
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Constitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
ˆ ˆ Š Š ˆ ƒ Ÿ ƒ ˆ ˆŸ œ Œ ˆ ŒŠ Š ƒ ˆ ˆ ƒ.. ŠÊ Ö±,.. Ö, ƒ. ƒ. ³Ö,.. Éμ ±μ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 1.. 21Ä118 ˆ ˆ Š Š ˆ ƒ Ÿ ƒ ˆ ˆŸ œ Œ ˆ ŒŠ Š ƒ ˆ ˆ ƒ.. ŠÊ Ö±,.. Ö, ƒ. ƒ. ³Ö,.. Éμ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 22 Š ˆ ˆ 27 Ö Ö Ó μ ³ Ê²Ó Ê. 37 Ö Ö Ó μ ±μμ É. 39 ˆ ˆ œ œ ˆ Œ ˆ œ
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.
Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min.
ΠΑΡΑΡΤΗΜΑ Ι ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6 I 6/ ( + π) 4πa 6/ I nia + + / / ( a + ) a ( d ) ni a II a + ( d/ ) ai I a + ( d/) / / I,ma 75 A/m, I,min 676 A/m, ( I,ma I,min )/ I,ma,545 II,ma 75 A/m, II,min
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ ΑΠΟ ΠΗΓΕΣ ΑΝΙΧΝΕΥΣΗ ΒΑΡΥΤΙΚΩΝ ΚΥΜΑΤΩΝ
ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΤΖΩΡΤΖΗΣ ΔΗΜΗΤΡΗΣ Επιβλέπων καθηγητής:αναγνωστοπουλοσ Κ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ-ΣΕΜΦΕ 26 Σεπτεμβρίου 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΓΕΝΙΚΗ ΘΕΩΡΙΑ ΣΧΕΤΙΚΟΤΗΤΑΣ ΒΑΡΥΤΙΚΑ ΚΥΜΑΤΑ ΣΤΟ ΚΕΝΟ ΠΑΡΑΓΩΓΗ ΒΑΡΥΤΙΚΩΝ
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ Ι(ΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ- ΤΜΗΜΑ ΦΥΣΙΚΗΣ- ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ ΙΤΜΗΜΑ ΑΡΤΙΩΝ) ΔΙΔΑΣΚΩΝ: Αν. Καθηγητής Ι. ΡΙΖΟΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΦΕΒΡΟΥΑΡΙΟΥ 9 ΘΕΜΑ.4 μονάδες)
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider