ITU-R P (2012/02)
|
|
- Δεσποίνη Δημητρακόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ITU-R P.56- (0/0 P
2 ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp:// (ttp:// ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
3 ITU-R P.56- ITU-R P.56- (ITU-R 0/3 ( (..(.(ITU-R P.83.km
4 ITU-R P.56- (Fresnel B A M B A : (. λ λ AM MB AB n n n. (LoS. : ( (3 R n n λ (km (MHz f.(m n.. n n n Rn 550 ( f (. (W (.. : ( w λa e π /3.(m m (m :λ :a e
5 3 ITU-R P.56- w P %60 (5 [ ] / 3.. (LoS. (R Δ Δ 0.0 Rλ m (m :R.(m :λ. :. - 0, (ITU-R P.30 Δ ( R 0,R..(3
6 ITU-R P (6 ITU-R P.56.. F c ν 0 πs ( ν ep j s C( ν js( ν : S(ν C(ν ( ( 7. : j ( 7 ( 7 ν ν 0 ν 0 πs C( ν cos s πs S( ν sin s F c (ν : ( 8 F ( ν c ep( j n 0 ( a n n jbn for 0 < ( 8 F ( ν c j ep( j n 0 ( c n j n n for (9 0.5π ν (Boersma n c n b n a n, a 0, b 0-0, c 0 0, ,9970 a -0, b, c -0, , a -6, b -0, c 0, , a 3-0, b 3-7, c 3 0, , a 6, b -0, c 0, , a 5-0, b 5 5, c 5-0, , a 6-3, b 6-0,38397 c 6 0, ,079 a 7-0, b 7 -,36379 c 7-0, , a 8 0, b 8-0, c 8 0, , a 9-0, b 9 0,7006 c 9 0, , a 0-0, b 0-0,69599 c 0-0, , a 0, b 0, c 0, ,
7 5 ITU-R P.56- : ν S(ν C(ν ( 0 ( 0 C( ν C(ν S( ν S(ν.. (ITU GRWAVE ITU-R P.368.(. MHz GRWAVE MHz MHz B G R G T F.( K...3 : ( / K H for orizontal polarization λ /3 πa ( e [( ε (60λ σ ] ( [ ] / K K ε ( 60 λ σ for vertical polarization V H /3 ( K 0.36( a f [( ε (8000σ / f ] H ( [ ] / KV e KH ε ( 8000σ / f /
8 ITU-R P.56-6 (km (S/m.(MHz :a e :ε :σ :f. K 0 K 5 5 ε 80 σ 5 K 0 5 ε 30 σ 0 ε 5 σ 0 3 ε 3 σ ε 3 σ 0 ε 5 σ 0 3 ε 30 σ khz 5 00 khz 5 MHz 5 0 MHz 5 00 MHz 5 GHz 5 0 GHz P.056-0
9 7 ITU-R P.56- K. 0,00 K K...3 0, K GRWAVE.K GRWAVE khz 00 MHz : E E (3.( 0 log E E 0 E 0 log F( X G( Y G( Y E 0 Y Y B X ( X β π λ a e /3 (5 Y β π λ a e /3 ( X.88 β f / 3 /3 ae ( 5 Y β f /3 ae / 3 (km (km (m.(mhz : :a e : :f : K. β (6 β.6 K.5 K 0.67 K.53 K. MHz 300 β MHz 0
10 ITU-R P.56-8 β MHz 300 : MHz 0 ε.k ( 6 K 6.89 k /3 σ f 5/3. k (MHz f S/m σ : ( 7 F(X 0 log (X 7.6 X for X.6 ( 7 F(X 0 log (X 5.688X.5 for X <.6 : G(Y (8 / G( Y 7.6( B. 5log( B. 8 for B > ( 8 3 G ( Y 0log( B 0.B for B If G( Y < 0 log K, set G(Y to te value 0log K ( 8 B βy (3 : Y Y X B (3. (9 / / ( X βy Δ( Y, K (βy Δ( Y, K > X lim ( 9 X ( β lim ( 9 Δ ( Y, K Δ( Y,0.779 ( β[ Δ( Y, Δ( Y,0] Δ(Y, Δ(Y,0 ( 9 Δ( Y, log(βy tan ( 9 Δ( Y, 0.5 : 0.5 log(βy tan 0.5 ( min ( 9 X min X lim / / ( βy Δ( Y, K (βy Δ( Y, K.( X min min
11 9 ITU-R P.56- : (..3 (0 E 0 log F( H( H( B E0. : E : E 0 : : ( H ( F k (6 3 k. MHz 30 /3 k k.itu-r P.30 f / k 5 3 f / k k.6.. AB 6. AB.A (0. ( AB -
12 ITU-R P GHz GHz k GHz GHz /3 k (km (B MHz MHz ( P
13 ITU-R P k Frequency for /3k k k /3 5 5 Heigt of antenna above groun (m (m GHz GHz (B GHz GHz MHz MHz P.056-0
14 ITU-R P GHz GHz k.5 GHz GHz /3 k (km (B MHz MHz ( P
15 3 ITU-R P k /3k (m (B - P
16 ITU-R P.56- MHz 0.MHz : (. (7...3 ( los ae los :.3 ( ae a e ( ( b ( ( b m cos 3m π 3 3 arccos 3c 3m ( m 3 ( c ( m ae ( : req (3 req λ req <
17 5 ITU-R P.56- ( a em : a em a em A a e. : (B A A (5 [ req ] A A /.....(MHz 30 < f (VHF 7 P :P P
18 ITU-R P.56-6 ( 8 8 : ν. (6 v λ (7 v θ λ (8 ν θ λ ( ν as te sign of an θ (9 ν λ αα ( ν as tesign of α an α. ra 0, α α θ. (ra...(9 (6 λ : : : :θ :α α -
19 7 ITU-R P.56-8 R (.. α α θ (For efinitions of θ, α, α,,, an R, see. an. θ > 0 α > 0 α ( a α < 0 θ < 0 α ( b R α α c P
20 ITU-R P.56-8.(B J(v v 9 : J(v (30 J ( ν 0 log [ C( ν S( ν ] [ C( ν S( ν ].7. F(v S(ν : 0,78- v C(ν (3 J ( ν log ( ν 0. ν 0. B J( ν (B ν P
21 9 ITU-R P.56-.R 8c. (3 A J( v T( m, n B Fresnel-Kircff J(v (.(9 (6 v. (6. (33 v 0, 036 ( λ. λ.(3 9 J(v. (3 v : T(m,n ( / 3/ ( 3 T( m, n 7.m (.5n m 3.6m 0.8m B for mn / 3/ ( 3 T( m, n 6 0 log ( mn 7.m ( 7n m 3.6m 0.8m B for mn > (35 m R πr λ /3 (36 π R n λ /3 R (3 T(m,n. λ R R.. 0. (37 i yi r i
22 ITU-R P i r i : N (38 r N N i y i 0 y i i P b a.( c b.(b L (B L c.. L L.(B L : L c. b 3. (39 (0 :. L c 0log ( a b ( b c ba ( b c B 5 L L L L c L L.
23 ITU-R P.56- ' ' a b c P.056- b c a. c (. b M ' T a b c R P.056- /r. r TR M (MR.( (B T c. : (B T c. ( q Tc 0log0 a p π p
24 ITU-R P.56- ( ( ( ( a b c p λ ( b c a / / ( a b c q λ ( a b c b( a b c tan α ac / (3.3. L L L.- : : N N : " " i-t.j-t i-t i-t. " ".. T c : i : i : ij.
25 3 ITU-R P : s (i>s i-t ( e [( i s / si ] [ si / a e ] : k 6 37 (km. :k. m (3 3 s s. 8. s 5 s :ae
26 ITU-R P.56-3 ( ( a a a 3 A B C ( a A s s B s s 3 C b ( s s P :.. :w : :y :z :v
27 5 ITU-R P.56- v y w z w v vy yz z y w. y. w z y..r s s.z y w - ( -. - B (5. z y L N i w L' L"( w i L"( y z 0logC i-t. i. N i L" N B :L' i : L"(w :L"(y z i :C N
28 ITU-R P.56-6 (6 C N (P a / P b 0.5 : C N (7 (8 N N P a s ( i i j [ s ] s j [( s ] N P b ( s ( s N i i i [( s ( s ] j.. (Bullington...3 (,... ( n, n..... (..(... : ( (..
29 7 ITU-R P.56- m/km i m km i i-t. n n i.km r km e /r e C e. rs ts.λ.. (9 S tim ma i 500Cei ( i ts [ ] i. n m/km i.5. (50 S tr rs ts m/km... S tim < S tr :ν (5 (5 (53 ( ( ( ts i rsi ν i Cei ma ma 500 i λi i. S rim. n i L uc J ( ν ma B 0,78- ν b (3 J.. S tim S tr. i 500Cei ( i rs ma m/km i. n i
30 ITU-R P.56-8 (5 (55 b rs ts S S S tim rim rim ( km : ts b rs b νb ts Stimb λb ( b ν b (56 (56 ( ν (5 B (57 L b L uc [ ep( L uc /6]( (57 L b L uc J b.5. L uc.5. B L ba. : n (58 a ( i i i ( i i masl n (59 m [ 3( ( ( ( ( ] ( 60 ( 60 ( 6 ( 6 ( 6 α obr 3 i α obt i i i i i i a i i i i m/km stip a 0. 5m srip a 0. 5 m masl masl obs ma{ } α obr obt obs obi { } ma / obi α ma / { ( } obi i i m mra mra
31 9 ITU-R P.56- ( 6 ( 6 ( 6 ( 6 ( 6 ( 6 ( 6 ( 63 ( 63 ( 63 ( 63 [ ( ] obi i ts i rs i / m. n i obs stp srp stp stip srp srip gt gr stip srip obs obs α / obt α / g t masl masl masl masl stp st obr st stp sr n sr srp g r ( α α obt obr ( α α obt obr masl masl masl masl n srp i.5. : ( 6 ' ts rs st masl ( 6 ' rs rs sr masl.(57 L b B L bs
32 ITU-R P ( 65 km.3 ' ts m ( 65.(5 ' rs A B m L sp (66 L Lba ma{ Lsp Lbs,0} B.. ( (UTD ( ν :.(9 (6.(3 j(ν 0 J(ν/0 : : J min :3 (67 J ( ν 0 log min j( ν j( ν j3( ν B : J av 5.5 : (68 J a ν ( ν 0log ( ( 3 ( j ν j ν j ν B
33 3 ITU-R P.56-. " "..5.. " " ( y y T Y X O R P R T Z y R T. y : e a (69 e a (,,y,y 0.5(C C y S S y j 0.5 (C S y S C y ( 70 C C(ν C(ν ( 70 C y C(ν y C(ν y ( 70 S S(ν S(ν ( 70 S y S(ν y S(ν y
34 (7,0 j 0,0 (7 S(ν C(ν.( 8 ( 8 ITU-R P.56-3 y y (6 v ( 7 ( 7 : L a L a 0 log (e a..5 (69 : ( e s e s,0 e a. (69 e a -.(7 (69 -. v j 0,5 0,5 S(ν C(ν -. (50 B
35 33 ITU-R P.56-6 Φ nπ s s Φ 0 0 n nπ P (UTD : ep( jks (73 s e UTD e0 D ep( jks s s( s s π/λ ( :. λ s s :e UTD :e 0 :s :s :k D : (7 D ep n ( jπ/ πk π ( Φ Φ cot F( kla ( Φ Φ n π ( Φ Φ cot F( kla ( Φ Φ n π ( Φ Φ R cot ( ( Φ Φ 0 F kla n π ( Φ Φ R cot n F( kla ( Φ Φ n
36 ITU-R P.56-3 :Φ (0 :Φ (0 :n π (nπ (ra j. F( (75 (76. (77 (78 a b c.7. (79 (80 (8 (5 : (8 t t F ep( j ep(j j ( π t t t t 0 ep( j j ( 8 ep( j ( π j ep( A t t < 0 0 oterwise j ( j ep( if j ( j ep( j ( n n n n n n n n c b a A s s s s L β π β ± ± cos ( N n a β Φ ± Φ ± N π π β n N ± ±
37 35 ITU-R P.56- : R n R 0 (83 R sin( Φ sin( Φ η η cos( Φ cos( Φ (8 R R n η η sin( Φ sin( Φ η cos( Φ η cos( Φ R 0 (S/m.(Hz :ε r :σ :f.. (7. ε (85 (86 (87 ε π β πnn for β Φ Φ ε π β πnn for β Φ Φ : ε. : ( Φ Φ π e LD (88 π ± β ± cot F( kla (β n n e LD < e e (7 UTD UTD ep( jks s Φ ( nπ Φ η ε Φ Φ r j σ / [ πkl sign(ε klε ep(jπ/ ] ep(jπ/ for for Φ Φ < Φ Φ π π. :s ( Φ Φ π.(85 f D
38 (73 (89 ITU-R P e 0 ( B (B. :s n.(9.matcad (UTD. 3 E UTD s e 0log UTD ep( jks 7. 7
39 37 ITU-R P (.3 (.3 (.. (. 3. (. ( 3. ( 5. P.056-7
40 ITU-R P (90. θ α w α z α e : z w y : α z α w (9 α w ( w w a w e (9 α z ( y yz z yz a e : z w α e (93 (9 ( 95 ( 95 (96 α e a wz e w wv w. α z αe wz z w wv for θ a e y 0 ( w wy wv for θ a e < y vz wz wv : z.
41 39 ITU-R P.56- (97 v : (98 v wv α w a e w wv 8c. ( : (99 (00 v wv a e vz ( wvz z wz wv :. p y : q p :p :q : : (0 q y y-q p- (0 p p (03 yq q y (0 pq q p q p..q p :( y-q p- (05 t ( p p ( y yq q a pq e. ae
42 ITU-R P.56-0 (06 R [ / ] [ ep( ν ] 3 t pq.(3 : v (06.(LoS. z w w. 3..z y. v u v u.v u q p v u. u p -. p p < p v > p -. - v q -. q q < q u < q -..0 q p : z /F C F. : z :F
43 ITU-R P.56- (07 (08 q min z i [( / ( F ] C F i p ( z i ( r i ( t i i (09 ( F λ / i ui iv uv : i-t v u ( r i (0 ( r i ( u iv v ui / uv v u ( t i : i-t ( ( t i i ui iv / a e ( ν.9 (3 C (L" F.. L"
ITU-R SA (2010/01)! " # $% & '( ) * +,
(010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V
! : ;, - "9 <5 =*<
ITU-R M.473- (00/0)! (TDMA/FDMA) ""# $ %!& ' " ( ) 34 --./ 0, (MSS) * * )! +, 56 78 89 : ;, - "9
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
ITU-R F.1891 (2011/05) ! "# . /) 0 1 ",MHz ,
(0/05)! "# &' () * $ + # $ %. /) 0 ",MHz 7 075-5 850, F ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS
ITU-R F (2009/10) GHz 27,5-25,25 0 1
ITU-R F.09- (009/0) ' ()*-%&-!" # $. / $ )+, )- GHz 7,-, 0 F ITU-R F.09- ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR
ITU-R M (2013/02)!! " #
(013/0) MHz 50-3!" # $!! " # M ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR BS BT F M P RA RS S SA SF SM SNG TF V
ITU-R SM (2011/01)
(2011/01) SM ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR BS BT F M P RA RS S SA SF SM SNG TF V 2011 :.ITU-R 1 ITU
; <' (* +,, -. / 0 1 2*3 4 5' = = = 4 - > ITU-R S.1856 (2010/01)
ITU-R S.856 (2/) ; S ITU-R S.856 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en.
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
ITU-R BT.2033 (2013/01) / 0) ( )
ITU-R BT. (/) & ' ( & " #$%! - ".,(UHF) ) * + (VHF) ( / ) ( ) BT ITU-R BT.8-9 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) () BO
ITU-R F (2011/04)
ITU-R F.757- (0/0) F ITU-R F.757- ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0
ITU-R P (2012/02) khz 150
(0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)
ITU-R SF ITU-R SF ( ) GHz 14,5-14,0 1,2.902 (WRC-03) 4.4. MHz GHz 14,5-14 ITU-R SF.1585 ( " " .ITU-R SF.
1 (008-003) * (ITU-R 54/4 ITU-R 6/9 ). 1. 4. 3. GHz 14,5-14,0 1,.90 (WRC-03) ( 4.4 ( - ) MHz 6 45-5 95 GHz 14,5-14 ( 4.4 " " ( ( ( ( ITU-R SF.1585 ( ( (ATPC) ( (.ITU-R SF.1650-1 " " * ITU-R SM.1448 / (
ΑΠΩΛΕΙΕΣ ΔΙΑΔΟΣΗ ΛΟΓΩ ΠΕΡΙΘΛΑΣΗΣ
ΑΠΩΛΕΙΕΣ ΔΙΑΔΟΣΗ ΛΟΓΩ ΠΕΡΙΘΛΑΣΗΣ Εισαγωγή Στο κεφάλαιο αυτό αναπτύσσεται η θεωρία των απωλειών διάδοσης ραδιοκυμάτων λόγω παρεμβολής απλού ή πολλαπλών εμποδίων διαφόρων σχημάτων. Οι σχέσεις που χρησιμοποιούνται,
ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )
(2012/01)!" # $ %& '( ) * +, - 0 1 "'./ ( ) BT ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS S SA
ITU-R BT (11/2008) ( ) * & +, '
1 ITU-R BT.35- (11/8) "#$ %&! ( ) * & +, ' ( ) BT ITU-R BT.35- ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rep/en ) () () BO BR BS BT F
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
ITU-R S (2010/01) &' (
ITU-R S.52- (200/0) $%!"# &' ( S ITU-R S.52- ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) ( ) BO BR BS BT F M P RA S RS SA SF SM
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
ITU-R BS MHz
1 (2007-2004-2003-2002-2001-1995-1994) MHz 3 000-30 (ITU-R 56/6 ) ( MHz 3 000-30 ITU-R BO.789 ITU-R BS.774 ITU-R ( ITU-R BO.789 ITU-R BS.774 ( (VLSI) ITU-R BS.774 1 A ( MHz 200 ITU-R BO.789 MHz 1 500 ITU-R
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
ITU-R SM (2012/09)
(2012/09) SM ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) () BO BR BS BT F M P RA RS S SA SF SM SNG TF V 2013 :.ITU-R 1 ITU
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
ITU-R BS (2011/12)! "# $ % &% '()
(011/1)! "# $ % &% '() MHz 3 000-30..,- * + ( $ ( ) BS ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) () BO BR BS BT F M P RA
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
Συστήματα Επικοινωνιών Ι
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμορφώσεις γωνίας Διαμόρφωση Συχνότητας Στενής Ζώνης + Περιεχόμενα n Διαμορφώσεις γωνίας n Διαμόρφωση φάσης PM n Διαμόρφωση
ITU-R M MHz ITU-R M ( ) (epfd) (ARNS) (RNSS) ( /(DME) MHz (ARNS) MHz ITU-R M.
ITU-R M.64- (007-005-003) ITU-R M.64- MHz 5-64 (epfd) (RNSS) ().MHz 5-64 MHz 5-960 (RR) ( () (RNSS) ( /(DME) MHz 5-64 (RNSS) (TACAN) ( ITU-R M.639 MHz 5-64 WRC-000 ( (RNSS) (RNSS) () RNSS WRC-03 ( MHz
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
a,b a f a = , , r = = r = T
!" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ
ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW
F21 - Σειρά 1 3θυρη 1P11 114i 1.598 102 127-132 21.900 20.470 1D11 116i 1.598 136 125-134 23.900 22.470 1D31 118i 1.598 170 129-137 27.050 25.620 1D51 125i 1.997 218 154 / 148 34.900 32.100 1N71 M135i
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2
SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y
GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c
GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)
Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Συµπίεση εικόνας (image compression) Αποκατάσταση εικόνας (Image restoration) ηµήτριος. ιαµαντίδης
Ασύρµατες Επικοινωνίες
Ασύρµατες Επικοινωνίες Στο κεφάλαιο αυτό µελετάµε τεχνικές διαµόρφωσης και αποδιαµόρφωσης που είναι κατάλληλες για κανάλια ασύρµατων επικοινωνιών, των οποίων τα χαρακτηριστικά µετάδοσης είναι χρονικά µεταβαλλόµενα.
Westfalia Bedienungsanleitung. Nr
Westfalia Bedienungsanleitung Nr. 108230 Erich Schäfer KG Tel. 02737/5010 Seite 1/8 RATED VALUES STARTING VALUES EFF 2 MOTOR OUTPUT SPEED CURRENT MOMENT CURRENT TORQUE TYPE I A / I N M A / M N Mk/ Mn %
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I ΑΣΚΗΣΕΙΣ Άσκηση 1 Προσδιορίστε τη Σειρά Fourier (δηλαδή τους συντελεστές πλάτους A n και φάσης φ n ) του παρακάτω
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Αναπαραστάσεις οµάδων και Αλγεβρες Τελεστών
6 Ιουλίου 2015 1 Οµάδες 2 3 οµάδες Οµάδες Παραδείγµατα (Z, +) (Z n, +) (R, +), (R, ), (R +, ) (T, ), T = {z C : z = 1} S n = {φ : N n N n, 1 1 και επί}, όπου N n = {1, 2,..., n}, µε πράξη την σύνθεση.
Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci
3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 72 Fringe: Season 1 Episode 10 73 Επίλυση Δ.Δ.Σ. 2 ης τάξης Έστω το γενικό
x. 8α 4 x 3-12α 3 x 2 + 6α 2 x 4-10α 2 x
ΑΣΚΗΣΕΙΣ ΣΤΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ 1. Να γραφούν ως γινόμενο οι παραστάσεις: α+ 8 i α + 6β ii α + αβ i α - α α -α v β - β vi y - y vii - y v 5-10 vi α-9α vii - 6y +y. y - y 5-4. Να γραφούν ως γινόμενο οι παραστάσεις:
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)
Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b
f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.
Σ.Παπαδόπουλος 1 1 Βασικές έννοιες ομάδας Εστω G ένα σύνολο με G. Μία πράξη στο G είναι μία συνάρτηση f : G G G. Αντί f(x, y) γράφουμε x y και αν δεν υπάρχει περίπτωση σύγχυσης xy. Είναι φανερό ότι σε
8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..
இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction
Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΕΚΧΥΛΙΣΗ ΥΓΡΟΥ- ΥΓΡΟΥ Liquid- Liquid Extraction ΕΚΧΥΛΙΣΗ ΙΣΟΡΡΟΠΙΑΣ ΓΙΑ ΜΕΡΙΚΩΣ ΑΝΑΜΙΞΙΜΑ ΣΥΣΤΗΜΑΤΑ Τριγωνικές
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ
Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές
ITU-R SM (2010/09)
ITU-R SM.202-3 (200/09) SM ii ITU-R SM.202-3.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rep/en ) ( ) () BO BR BS BT F M P RA RS S SA SF SM :.ITU-R
ALFA ROMEO. Έτος κατασκευής
145 1.4 i.e. AR33501 66 90 10/94-01/01 0802-1626M 237,40 1.4 i.e. 16V AR33503 76 103 12/96-01/01 0802-1627M 237,40 1.6 i.e. AR33201 76 103 10/94-01/01 0802-1628M 237,40 1.6 i.e. 16V AR67601 88 120 12/96-01/01