arxiv: v3 [math.pr] 12 Sep 2016

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v3 [math.pr] 12 Sep 2016"

Transcript

1 On he obu Dynkin Game Ehan Bayaka, Song Yao axiv: v3 mah.p 12 Sep 216 Abac We analyze a obu veion of he Dynkin game ove a e P of muually ingula pobabiliie. We fi pove ha conevaive playe lowe and uppe value coincide Le u denoe he value by V. Such a eul connec he obu Dynkin game wih econd-ode doubly efleced backwad ochaic diffeenial equaion. Alo, we how ha he value poce V i a ubmaingale unde an appopiaely defined nonlinea expecaion E up o he fi ime τ when V mee he lowe payoff poce L. If he pobabiliy e P i weakly compac, one can even find an opimal iple P,τ,γ fo he value V. The muual ingulaiy of pobabiliie in P caue majo echnical difficulie. To deal wih hem, we ue ome new mehod including wo appoximaion wih epec o he e of opping ime. Keywod: obu Dynkin game, nonlinea expecaion, dynamic pogamming pinciple, conol in weak fomulaion, weak abiliy unde paing, maingale appoach, pah-dependen ochaic diffeenial equaion wih conol, opimal iple, opimal opping wih andom mauiy. 1 Inoducion We analyze a coninuou-ime obu Dynkin game wih epec o a non-dominaed e P of muually ingula pobabiliie on he canonical pace Ω of coninuou pah. In hi game, Playe 1, who negaively/conevaively hink ha he Naue i alo again he, will eceive he following paymen fom Playe 2 if he wo playe chooe τ T and γ T epecively o qui he game: τ,γ := τ γ g d+1 {τ γ} L τ +1 {γ<τ} U γ. Hee T denoe he e of all opping ime wih epec o he naual filaion F of he canonical poce B, and he unning payoff g, he eminal payoff L U ae F adaped pocee unifomly coninuou in ene of 1.6. A pobabiliie in P ae muually ingula, one can no define he condiional expecaion of he nonlinea expecaion inf, and hu Playe 1 lowe value poce V and uppe value poce V, in eenial exemum P P ene. Inead, we ue hifed pocee and egula condiional pobabiliy diibuion ee Secion 1.1 fo deail o define V ω:= up τ T inf inf γ T P P,ω,ω τ,γ, V ω:= inf P P,ω inf γ T up τ T,ω τ,γ,,ω,t Ω. Hee T denoe he e of all opping ime wih epec o he naual filaion F of he hifed canonical poce B on he hifed canonicalpaceω, P,ωi a pah-dependen pobabiliyewhich include all egulacondiional pobabiliy diibuion emming fom P ee P2, and,ω τ,γ:= τ γ g,ω d+1 {τ γ} L,ω τ +1 {γ<τ} Uγ,ω. We ae gaeful o Jianfeng Zhang fo inighful commen. Depamen of Mahemaic, Univeiy of Michigan, Ann Abo, MI 4819; ehan@umich.edu. E. Bayaka i uppoed in pa by he Naional Science Foundaion unde DMS , and by he Suan M. Smih Pofeohip. Any opinion, finding, and concluion o ecommendaion expeed in hi maeial ae hoe of he auho and do no neceaily eflec he view of he Naional Science Foundaion. Depamen of Mahemaic, Univeiy of Pibugh, Pibugh, PA 1526; ongyao@pi.edu. S. Yao i uppoed in pa by he Naional Science Foundaion unde DMS

2 obu Dynkin Game 2 In Theoem 4.1, we demonae ha Playe 1 lowe and uppe value pocee coincide and hu he ha a value poce V ω=v ω=v ω,,ω,t Ω in he obu Dynkin game. We alo ee in Theoem 4.1 ha he fi ime τ when V mee L i an opimal opping ime fo Playe 1, i.e. V = inf inf E P τ,γ, 1.1 γ T P P and ha pocee V + g d,,t i a ubmaingale unde he pahwie-defined nonlinea expecaion E ξω:= inf ξ,ω,,ω,t Ω up o ime τ. P P,ω Since a Dynkin game i acually a coupling of wo opimal opping poblem, he maingale appoach inoduced by Snell 55 o olve he opimal opping poblem wa lae exended o Dynkin game, ee e.g. 48, 11, 1, 43, 46. In he cuen pape, we will adop a genealized maingale mehod wih epec o he nonlinea expecaion E = {E },T. The muual ingulaiy of pobabiliie in P give ie o ome majo echnical hudle: Fi, no dominaing pobabiliy in P mean ha we do no have a dominaed convegence heoem fo he nonlinea expecaion E. Becaueofhi, onecannofollowhe claicappoachfodynkingameoobainhe E maingale popey of V + g d. Second, we do no have a meauable elecion heoem fo opping aegie, which complicae he poof of he dynamic pogamming pinciple. Ou maingale appoach a wih a dynamic pogamming pinciple DPP fo poce V. The uboluion pa of DPP Popoiion 3.1 elie on a weak abiliy unde paing aumpion P3 on he pobabiliy cla {P,ω},ω,T Ω, which allow u o conuc appoximaing meaue by paing ogehe local ε opimal pobabiliic model. We how in Secion 5 ha P3, along wih ou ohe aumpion on he pobabiliy cla, ae aified in he cae of ome pah-dependen SDE wih conol, which epeen a lage cla of model on imulaneou dif and volailiy unceainy. We demonae ha he upeoluion pa of he DPP Popoiion 3.2byemployingacounabledeneubeΓofT oconucauiableappoximaion. Thidynamicpogamming eul implie he coninuiy of poce V Popoiion 3.4, which play a cucial ole in he appoximaion cheme o be decibed in he following paagaph fo poving Theoem 4.1. The key o Theoem 4.1 i he E ubmaingaliy of poce { V + g d },T up o τ. Inpied by Nuz and Zhang 5 idea on uing opping ime wih finiely many value fo appoximaion, we define an appoximaing equence of value pocee V n o V by V n ω := inf inf P P,ω γ T up τ T n,ω τ,γ V ω,,ω,t Ω, whee T n collec all T opping ime aking value in { i2 n T } 2 n. By P3, Popoiion 3.1 ill hold i= fo V n, which lead o ha fo any δ> and k n, he poce { V n+ g d } i an E ubmaingale ove he,t gid {i2 k T} 2k i= up o he fi ime νn,δ when V n mee L+δ ee A.14. Leing k, n and hen ε, we can deduce fom lim V n =V Popoiion 3.3 and he coninuiy of V ha he poce { V + n g d },T i an E ubmaingale up o τ. Theoem 4.1 hen eaily follow. I i woh poining ou ha ou agumen doe no equie he payoff pocee o be bounded. A he co of ome addiional condiion uch a he weak compacne of P and he onge paing condiion of 56 all of which ae aified fo conol of weak fomulaion, ee Example 6.1, we can apply he main eul of 7 o find in Theoem 6.1 a pai P,γ P T uch ha V = τ,γ. 1.2 elevan Lieaue. Since i inoducion by 18, Dynkin game have been analyzed in dicee and coninuouime model fo decade. Benouan and Fiedman 24, 8, 9 fi analyzed he game in he eing of Makov diffuion pocee by mean of vaiaional inequaliie and fee bounday poblem. Bayaka and Sîbu in 4 had a feh look a hi poblem uing he Sochaic Peon mehod a veificaion appoach wihou moohne. Fo a moe geneal cla of ewad pocee maingale appoach wa developed unde Mokobodzki condiion ee e.g. 48, 1, 11, 1 and ceain egulaiy aumpion on payoff pocee ee e.g. 43, 41. Cvianić and Kaaza 16 conneced Dynkin game o backwad ochaic diffeenial equaion BSDE wih wo eflecing baie L and U. Along wih he gowh of he BSDE heoy, Dynkin game have aaced much

3 1.1 Noaion and Peliminaie 3 aenion in he pobabiliic famewok wih Bownian filaion, ee e.g. 31, 3, 27, 26, 61, 29, 33, 13, 23, 6. Among heewok,27,29, 33,13,23,6onlyequie L<U ahehanmokobodki condiionviaapenalizaionmehod. In Mahemaical Finance, he heoy of Dynkin game can be applied o picing and hedging game opion o Iaeli opion and hei deivaive, ee 39, 44, 35, 26, 22, 17 and he efeence in he uvey pape 4. Alo, 22, 2 analyzed he eniiviy of he Dynkin game value wih epec o change in he volailiy of he undelying. Thee i pleniful eeach on Dynkin game in many ohe aea: fo example, 31, 3, 26, 29, 33 added ochaic conol ino he Dynkin game o udy mixed zeo-um ochaic diffeenial game of conol and opping; 59, 37, 25, 12 and 57, 15 udied ome Dynkin game hough he aociaed ingula conol poblem and impule conol poblem epecively; 62, 54, 6, 42 conideed he Dynkin game in which he playe can chooe andomized opping ime; and 9, 51, 47, 14, 34, 28, 32 analyzed non-zeo um Dynkin game. Howeve, hee ae only a few wok on Dynkin game unde model unceainy: Hamadene and Hdhii 29 and Yin 63 udied he Dynkin game ove a e of equivalen pobabiliie, which epeen dif unceainy o Knighian unceainy. When he pobabiliy e conain muually ingula pobabiliie o equivalenly, boh dif and volailiy of he undelying can be manipulaed again Playe 1, Dolinky 17 deived dual expeion fo he upeeplicaion pice of game opion in he dicee ime, and Maoui e al. 45 elaed he Dynkin game unde G expecaion inoduced by Peng 52 o econd-ode doubly efleced BSDE. In hi pape we ubanially benefi fom he maingale echnique developed fo obu opimal opping poblem by 38, 3 which analyzed he poblem when P i dominaed, 19 P i non-dominaed bu he Naue and he oppe coopeae and 5, 5 in which P i non-dominaed and he Naue and oppe ae adveaie. Epecially he eul of 7 ae cucial fo deemining a addle poin. The lae eul alo ecenly poved o be ueful fo defining he vicoiy oluion of fully non-linea degeneae pah dependen PDE in 21. The e of he pape i oganized a follow: In Secion 1.1, we will inoduce ome noaion and peliminay eul uch a he egula condiional pobabiliy diibuion. In Secion 2, we e-up he age fo ou main eul by impoing ome aumpion on he ewad poce and he clae of muually ingula pobabiliie. Then Secion 3 deive popeie of Playe 1 uppe value pocee and appoximaing value pocee uch a pah egulaiy and dynamic pogamming pinciple. They play eenial ole in deiving ou main eul on he obu Dynkin game aed in Secion 4. In Secion 5, we give an example of pah-dependen SDE wih conol ha aifie all ou aumpion. In Secion 6, we dicu he opimal iple fo Playe 1 value unde addiional condiion. Secion 7 conain poof of ou eul while he demonaion of ome auxiliay aemen wih aed label in he coeponding equaion numbe in hee poof ae defeed o he Appendix. We alo include in he appendix a echnical lemma neceay fo he poof of Theoem Noaion and Peliminaie Thoughou hi pape, we fix d N. Le S > d BS > d le,t. he Boel σ field of S> d and fo all d d valued poiively definie maice and denoe by unde he elaive Euclidean opology. We alo fix a ime hoizon T, and We e Ω := { ω C,T; d : ω= } a he canonical pace ove peiod,t and denoe i null pah by :={ω=,,t}. Fo any,t, ω, := up ω, ω Ω define a emi-nom on Ω. In paicula,,,t i he unifom nom on Ω. The canonical poce B of Ω i a d dimenional andad Bownian moion unde he Wiene meaue P of Ω,FT. Le F = {F},T, wih F := σ B;,, be he naual filaion of B and denoe i P augmenaion by F = { F }, whee,t F := σ F N { and N := N Ω : N A fo ome A FT wih P A = }. The expecaion on Ω,F T,P will be imply denoed by E. Alo, we le P be he F pogeively meauable igma field of,t Ω and le T ep. T collec all F ep. F opping ime. Given,T, we e T :={τ T : τω, ω Ω }, T :={τ T : τω, ω Ω } and define he uncaion mapping Π fom Ω o Ω by Π ω :=ω ω,,ω,t Ω. By Lemma A.1 of 5, τπ T, τ T. 1.3

4 obu Dynkin Game 4 Fo any δ> and ω Ω, O δ ω := { ω Ω : ω ω, < δ } i an F meauable open e of Ω, 1.4 and O δω:= { ω Ω : ω ω, δ } i an F meauable cloed e of Ω ee e.g. 2.1 of 5. In paicula, we will imply denoe O T δ ω and OT δ ω by O δ ω and O δ ω epecively. Fo any n N and,t, le T n denoe all F opping ime aking value in { n i }2n i= wih n i := i2 n T, i =,,2 n, 1.5 and e T n:={τ T n: τω, ω Ω }. In paicula, we lieally e T :=T and T :=T. Le P collec all pobabiliie on Ω,FT. Fo any P P, we conide he following pace abou P: 1 Fo any ub igma-field G of FT, le L1 G,P be he pace of all eal-valued, G meauable andom vaiable ξ wih ξ L 1 G,P := ξ <. 2 Le SF,P be he pace of all eal valued, F adaped pocee {X },T wih all coninuou pah and aifying X <, whee X := X,T = up X.,T We will dop he upecip fom he above noaion if i i. Fo example, Ω,F=Ω,F. We ay ha a poce X i bounded by ome C > if X ω C fo any,ω,t Ω. Alo, a eal-valued poce X i aid o be unifomly coninuou on,t Ω wih epec o ome modulu of coninuiy funcion ρ if X 1 ω 1 X 2 ω 2 ρ d 1,ω 1, 2,ω 2, 1,ω 1, 2,ω 2,T Ω, 1.6 whee d 1,ω 1, 2,ω 2 := ω 1 1 ω 2 2,T. Fo any,t, aking 1 = 2 = in 1.6 how ha X ω 1 X ω 2 ρ ω1 ω 2,, ω1,ω 2 Ω, which implie he F meauabiliy of X. So X i indeed an F adaped poce wih all coninuou pah. Moeove, le M denoe all modulu of coninuiy funcion ρ uch ha fo ome C> and <p 1 p 2, In hi pape, we will ue he convenion inf :=. ρx Cx p1 x p2, x, Shifed Pocee and egula Condiional Pobabiliy Diibuion In hi ubecion, we fix T. The concaenaion ω ω of an ω Ω and an ω Ω a ime : ω ω := ω1 {,} + ω+ ω 1 {,T},,T define anohe pah in Ω. Se ω = and ω Ã:= { ω ω: ω Ã} fo any non-empy ube à of Ω. Lemma 1.1. If A F, hen ω Ω A fo any ω A. Fo any F meauable andom vaiable η, ince {ω Ω : ηω =ηω} F, Lemma 1.1 implie ha ω Ω {ω Ω : ηω =ηω} i.e., ηω ω=ηω, ω Ω. 1.8 To wi, he value ηω depend only on ω,. Le ω Ω. Fo any A Ω we e A,ω :={ ω Ω : ω ω A} a he pojecion of A on Ω along ω. In paicula,,ω =. Given a andom vaiable ξ on Ω, define he hif ξ,ω of ξ along ω, by ξ,ω ω:=ξω ω, ω Ω. Coepondingly, fo a poce X={X },T on Ω, i hifed poce X,ω i X,ω, ω := X,ω ω = X ω ω,, ω,t Ω. Shifed andom vaiable and hifed pocee inhei he meauabiliy of oiginal one:

5 2. Weak Sabiliy unde Paing 5 Popoiion 1.1. Le T and ω Ω. 1 If a eal-valued andom vaiable ξ on Ω i F meauable fo ome,t, hen ξ,ω i F meauable. 2 Fo any n N { } and τ T n, if τω Ω,T fo ome,t, hen τ,ω T n. 3 Given τ T, if τω, hen τω Ω τω; if τω ep. >, hen τω ω ep. >, ω Ω and hu τ,ω T. 4 If a eal-valued poce {X },T i F adaped ep. F pogeively meauable, hen X,ω i F adaped ep. F pogeively meauable. Le P P. In ligh of he egula condiional pobabiliy diibuion ee e.g. 58, we can follow Secion 2.2 of 5 o inoduce a family of hifed pobabiliie {P,ω } ω Ω P, unde which he coeponding hifed andom vaiable and hifed pocee inhei he P inegabiliy of oiginal one: Popoiion I hold fo P a.. ω Ω ha P,ω = P. 2 If ξ L 1 F T,P fo ome P P, hen i hold fo P a.. ω Ω ha ξ,ω L 1 F T,P,ω and,ω ξ,ω = ξ F ω If X S F,P fo ome P P, hen i hold fo P a.. ω Ω ha X,ω S F,P,ω. A a conequence of 1.9, a hifed P null e alo ha zeo meaue. Lemma 1.2. Fo any N N, i hold fo P a.. ω Ω ha N,ω N. Thi ubecion wa peened in 5 wih moe deail and poof. In he nex hee ecion, we will gadually povide he echnical e-up and pepaaion fo ou main eul Theoem 4.1 and Theoem 6.1 on he obu Dynkin game. 2 Weak Sabiliy unde Paing To udy he obu Dynkin game, we need ome egulaiy condiion on he payoff pocee. Sanding aumpion on payoff pocee g, L, U. A g, L and U ae hee eal-valued pocee ha ae unifomly coninuou on,t Ω wih epec o he ame modulu of coninuiy funcion ρ and aify L ω U ω,,ω,t Ω. Fo any,ω,t Ω and,,t, we echnically define,,,ω := g ωd +1 { }L ω+ 1 { <}U ω. By 1.6,,,,ω 1,,,ω 2 g ω 1 g ω 2 d+1 { } L ω 1 L ω 2 +1 { <} U ω 1 U ω 2 1+ ρ ω1 ω 2,, ω1,ω 2 Ω. 2.1 Le he obu Dynkin game a fom ime,t when he hioy ha been evolving along pah ω, fo ome ω Ω. Playe 1 and 2 make hei own choice on he exiing ime of he game. If Playe 1 elec τ T and Playe 2 elec γ T, he game ceae a τ γ. Then Playe 1 will eceive fom he opponen an accumulaed ewad τ γ U,ω γ g,ω d and a eminal payoff L,ω τ ep. U,ω mean a paymen fom Playe 1 o Playe 2. So Playe 1 oal wealh a ime τ γ i,ω τ,γ := τ γ g,ω d+1 {τ γ} L,ω τ +1 {γ<τ} U,ω γ = γ if τ γ ep. γ<τ. Hee negaive τ γ τ γ g,ω d+1 {τ γ} L,ω τ γ +1 {γ<τ} U,ω τ γ. g,ω d, L,ω τ Since Popoiion how ha g,ω, L,ω and U,ω ae F adaped pocee wih all coninuou pah, Alo, i i clea ha,ω τ,γ F τ γ, τ,γ T. 2.2,ω τ,γ ω =,τ ω,γ ω,ω ω, ω Ω. 2.3 o

6 obu Dynkin Game 6 Nex, we define Ψ := L U,,T. By 1.6, one can deduce ha Ψ ω 1 Ψ ω 2 ρ ω1 ω 2,,,T, ω1,ω 2 Ω; 2.4 Fo he eade convenience we povided a poof in Secion 7.1. I i clea ha,ω τ,γ τ γ g,ω d+ψ,ω τ γ,,ω,t Ω, τ,γ T. 2.5 The following eul how ha he inegabiliy of hifed payoff pocee i independen of he given pah hioy. Lemma 2.1. Aume A. Fo any,t and P P, if Ψ,ω SF T,P and g,ω d< fo ome ω Ω, hen Ψ,ω SF T,P and g,ω d< fo all ω Ω. We will concenae on hoe pobabiliie P in P unde which hifed payoff pocee ae inegable: Aumpion 2.1. Fo any,t, P { } := P P : Ψ, SF T,P and g, d< i no empy. emak If Ψ SF,P and T g d <, hen P P fo any,t. 2 A we will how in Popoiion 5.1, when he modulu of coninuiy ρ in A ha polynomial gowh, he law of oluion o he conolled SDE 5.1 ove peiod,t belong o P. Unde A and Aumpion 2.1, one can deduce fom Lemma 2.1 ha fo any,t and P P, Ψ,ω S F,P and T g,ω d <, ω Ω. 2.6 Nex, we need he pobabiliy cla o be adaped and weakly able unde paing in he following ene: Sanding aumpion on he pobabiliy cla. P1 Fo any,t, we conide a family {P,ω} ω Ω of ube of P uch ha P,ω 1 =P,ω 2 if ω 1, =ω 2,. 2.7 Aume fuhe ha he pobabiliy cla {P,ω},ω,T Ω aify he following wo condiion fo ome modulu of coninuiy funcion ρ : fo any < T, ω Ω and P P,ω: P2 Thee exi an exenion Ω,F,P of Ω,F T,P i.e. F T F and P F T =P and Ω F wih P Ω = 1 uch ha P, ω belong o P,ω ω fo any ω Ω. P3 weak abiliy unde paing Fo any δ Q + and λ N, le {A j } λ j= be a F paiion of Ω uch ha fo,,λ, A j O δ j ω j fo ome δ j,δ Q {δ} and ω j Ω. Then fo any P j P,ω ω j,,,λ, hee exi a P P,ω uch ha i PA A =PA A, A F T ; ii Fo any,,λ and A F, PA A j = PA A j ; iii Fo any n N { } and T, hee exi n j T,,,λ uch ha fo any A F and τ T n E P 1A Aj,ω τ, n j 1 { ω A Aj} up j,ω ω ς, + ς T n g,ω ωd + ρ δ. 2.8 emak By 2.7, one can egad P,ω a a pah-dependen ube of P. In paicula, P:=P,= P,ω, ω Ω. 2 Boh ide of 2.8 ae finie a we will how in Secion 7. In paicula, he expecaion on he igh-hand-ide ae well-defined ince he mapping ω up E P,ω ω ς, i coninuou unde nom,t fo any n N { }, ς T n P P and T.

7 3. The Dynamic Pogamming Pinciple 7 3 Analogou o P2 aumed in 5, he condiion P3 can be egaded a a weak fom of abiliy unde paing ince i i implied by he abiliy unde finie paing ee e.g of 56 : fo any < T, ω Ω, P P,ω, δ Q + and λ N, le {A j } λ j= be a F paiion of Ω uch ha fo j = 1,,λ, A j O δ j ω j fo ome δ j,δ Q {δ} and ω j Ω. Then fo any P j P,ω ω j,,,λ, he pobabiliy defined by i in P,ω. PA=PA A + 1 { ω Aj}P j A, ω, A FT 2.9 A poined ou in emak 3.6 of 49 ee alo emak 3.4 of 5, 2.9 i no uiable fo he example of pahdependen SDE wih conol ee Secion 5. Thu we aume he weak paing condiion P3, which un ou o be ufficien fo ou appoximaion cheme in poving he main eul. 3 The Dynamic Pogamming Pinciple Conide he obu Dynkin game wih payoff pocee g,l,u and ove he pobabiliy cla {P,ω},ω,T Ω a decibed in Secion 2. If Playe 1 conevaively hink ha Naue i alo again he, hen fo any,ω,t Ω, V ω := up τ T inf inf γ T P P,ω,ω τ,γ and V ω := inf P P,ω inf γ T up τ T,ω τ,γ define he lowe value and uppe value of Playe 1 a ime given he hioical pah ω,. A we will ee in Theoem 4.1 ha V coincide wih V a Playe 1 value poce V, whoe um wih g d i an E ubmaingale up o he fi ime τ when V mee L. Fo hi pupoe, we deive in hi ecion ome baic popeie of V and i appoximaing value including dynamic pogamming pinciple. Le A, P1 P3 and Aumpion 2.1 hold houghou he ecion. Fo any,ω,t Ω, following 5 idea, we echnically define appoximaing value pocee of V by V n ω := inf inf P P,ω up γ T τ T n and e in paicula V ω := V ω. Le n N { }. I i clea ha V n T,ω = inf And we can how ha inf P PT,ω γ T T,ω τ,γ inf P P,ω inf γ T up τ T,ω τ,γ = V ω, n N, 3.1 up T,ω τ,γ = inf τ T T n P PT,ω T,ω T,T = L T ω, ω Ω. 3.2 Ψ ω L ω V n ω U ω Ψ ω,,ω,t Ω. 3.3 Fo he eade convenience we povide a poof in Secion 7.1. We need he following aumpion on V n o dicu he dynamic pogamming pinciple hey aify. Aumpion 3.1. Thee exi a modulu of coninuiy funcion ρ 1 ρ uch ha fo any n N { } V n ω 1 V n ω 2 ρ1 ω1 ω 2,,,T, ω1,ω 2 Ω. 3.4 emak 3.1. If P,ω doe no depend on ω fo all,t, hen Aumpion 3.1 hold auomaically. emak 3.2. Aumpion 3.1 implie ha V n i F adaped fo any n N { }. We fi peen he ub-oluion ide of dynamic pogamming pinciple fo V n : Popoiion 3.1. Fo any n N { }, T and ω Ω, V n ω inf inf P P,ω up γ T τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + g,ω d. 3.5

8 obu Dynkin Game 8 Conveely, we only need o how he upe-oluion ide of dynamic pogamming pinciple fo V = V. Popoiion 3.2. Fo any T and ω Ω, V ω inf inf up 1 {τ γ<},ω τ,γ+1 {τ γ } V,ω P P,ω γ T + τ T g,ω d. A a conequence of Popoiion 3.1 and 3.2, he uppe value poce V of Playe 1 aifie a ue dynamic pogamming pinciple. We ely on anohe condiion o fuhe how he convegence of V n o V and hei pah egulaiie in he nex wo popoiion. Aumpion 3.2. Fo any α >, hee exi a modulu of coninuiy funcion ρ α uch ha fo any,t up ρ 1 δ + up B B ζ ρ α δ, δ,t. 3.6 ζ T up ω O α up P P,ω ζ,ζ+δ T Popoiion 3.3. Le n N,,T and α >. I hold fo any ω O α ha V ω V n ω+ρ α 2 n +2 n g ω +ρ α T. 3.7 Popoiion Fo any n N { }, all pah of poce V n ae boh lef-uppe-emiconinuou and ighlowe-emiconinuou. In paicula, he poce V ha all coninuou pah. 2 Fo any,ω,t Ω and P P,ω, V,ω SF,P. 4 Main eul In hi ecion, we ae ou fi main eul on obu Dynkin game. Le A, P1 P3 and Aumpion 2.1, 3.1, 3.2 hold houghou he ecion. Given,T, e L :={andom vaiable ξ on Ω : ξ,ω L 1 F T,P, ω Ω, P P,ω}. Clealy, L i cloed unde linea combinaion: i.e. fo any ξ 1,ξ 2 L and α 1,α 2, α 1 ξ 1 +α 2 ξ 2 L. Then we define on L a nonlinea expecaion: Fo any n N { } and τ T, E ξω := inf P P,ω ξ,ω, ω Ω, ξ L. boh V n τ and τ g d belong o L. 4.1 We demonae hi claim in Secion 7.3. Simila o he claic Dynkin game, we will how ha V coincide wih V a he value poce V of Playe 1 in he obu Dynkin game and ha V plu g d i a ubmaingale wih epec o he nonlinea expecaion E. Theoem 4.1. Le A, P1 P3 and Aumpion 2.1, 3.1, 3.2 hold. 1 Fo any,ω,t Ω, V ω:=v ω=v ω 4.2 in he obu Dynkin game aing fom ime given he hioical pah ω,. Moeove, V ω = inf inf γ T P P,ω,ω τ,ω,γ, whee τ,ω :=inf{,t: V,ω } =L,ω T The F adaped poce wih all coninuou pah Υ := V + g d,,t i an E ubmaingale up o ime τ :=τ, =inf{,t: V =L } T in ene ha fo any ζ T Υ τ ζ ω E Υτ ζ ω,,ω,t Ω. 4.4

9 5. Example: Conolled Pah-dependen SDE 9 5 Example: Conolled Pah-dependen SDE In hi ecion, we povide an example of he pobabiliy cla {P,ω},ω,T Ω in cae of pah-dependen ochaic diffeenial equaion wih conol. Le κ> and le b:,t Ω d d d be a P B d d / B d meauable funcion uch ha b,ω,u b,ω,u κ ω ω, and b,,u κ1+ u, ω,ω Ω,,u,T d d. Fix,T. We le U collec all S > d valued, F pogeively meauable pocee {µ },T uch ha µ κ, d dp a.. Le ω Ω, b,ω, ω,u:= b,ω ω,u,, ω,u,t Ω d d i clealy a P B d d / B d meauable funcion ha aifie b,ω, ω,u b,ω, ω,u κ ω ω, and b,ω,,u κ 1+ ω, + u, ω, ω Ω,,u,T d d. Given µ U, a ligh exenion of Theoem V.12.1 of 53 how ha he following SDE on he pobabiliy pace Ω,FT,P : X = b,ω,x,µ d+ µ db,,t, 5.1 admi a unique oluion X,ω,µ, which i an F adaped coninuou poce aifying E X,ω,µ p < fo any p 1 o ee he complee AXiv veion of 5 fo i poof. Noe ha he SDE 5.1 depend on ω, via he geneao b,ω. Wihou lo of genealiy, we aume ha all pah of X,ω,µ ae coninuou and aing fom. Ohewie, by eing N := {ω Ω : X,ω,µ ω o he pah X,ω,µ ω i no coninuou} N,ω,µ, one can ake X :=1 N cx,ω,µ,,t. I i an F adaped poce ha aifie 5.1 and whoe pah ae all coninuou and aing fom. Applying he Bukholde-Davi-Gundy inequaliy, Gonwall inequaliy and uing he Lipchiz coninuiy of b in ω vaiable, one can eaily deive he following eimae fo X,ω,µ : fo any p 1 and E E up, X,ω,µ up ζ,ζ+δ T X,ω,µ X,ω,µ C p p ω ω p, p, ω Ω,,T, 5.2 X,ω,µ ζ ϕ p p ω, δ p/2, fo any F opping ime ζ and δ>, 5.3 whee C p i a conan depending on p,κ,t and ϕ p : + + i a coninuou funcion depending on p,κ,t ee he complee AXiv veion of 5 fo he poof of 5.2 and 5.3 {. Fo any,t, we ee fom 5 ha F GX,ω,µ := A Ω : X,ω,µ } 1 A F, i.e., X,ω,µ 1 A F, A F. 5.4 Namely, X,ω,µ i F / F meauable a a mapping fom Ω o Ω. Define he law of X,ω,µ unde P by p,ω,µ A := P X,ω,µ 1 A, A G X,ω,µ T, and denoe by P,ω,µ he eicion of p,ω,µ on Ω,F T. Now, le u e P,ω:= { P,ω,µ : µ U } P. Popoiion 5.1. Le be a modulu of coninuiy funcion uch ha fo ome 1, δ κ1+δ, δ>. Aume ha g, L, U aify A wih epec o and ha T g d<. Then fo any,ω,t Ω, we have P,ω P. And he pobabiliy cla {P,ω},ω,T Ω aifie P1 P3, Aumpion emak When b, Popoiion 5.1 and he eul 4.2 veify Aumpion 5.7 of 45 paiculaly fo =. Then we know fom Theoem 5.8 heein ha in cae of conolled pah-dependen SDE wih null dif, Playe 1 value V i cloely elaed o he oluion of a econd-ode doubly efleced backwad ochaic diffeenial equaion.

10 obu Dynkin Game 1 2 Simila o 5, he eaon we conide he law of X,ω,µ unde P ove GT X,ω,µ he lage σ field o induce P unde he mapping X,ω,µ ahe han FT lie in he fac ha he poof of Popoiion 5.1 elie heavily on he invee mapping W,ω,µ of X,ω,µ. Accoding o he poof of Popoiion 6.2 and 6.3 in 5, ince W,ω,µ i an F pogeively meauable pocee ha ha only p,ω,µ a.. coninuou pah, i hold fo p,ω,µ a.. ω Ω ha he hifed pobabiliy P,ω,µ, ω i he law of he oluion o he hifed SDE and hu P,ω,µ, ω P,ω ω. Thi explain why ou aumpion P2 need an exenion Ω,F,P of he pobabiliy pace Ω,FT,P. 6 The Opimal Tiple In hi ecion, we idenify an opimal iple fo Playe 1 value in he obu Dynkin game unde he following addiional condiion on he payoff pocee and he pobabiliy cla. A Le g and le L, U be wo eal-valued pocee bounded by ome M > uch ha hey ae unifomly coninuou on,t Ω wih epec o he ame ρ M, ha L ω U ω,,ω,t Ω, and ha L T ω=u T ω, ω Ω. Alo, le a family {P },T of ube P of P = P,,T aify: H1 P := P i a weakly compac ube of P. H2 Fo any ρ M, hee exi anohe ρ of M uch ha up P,ζ P T ρ δ + up ζ,ζ+δ T B Bζ ρδ,,t, δ,. In paicula, we equie ρ o aify 1.7 wih ome C > and 1 < p 1 p 2. H3 Fo any < T, ω Ω and P P, hee exi an exenion Ω,F,P of Ω,F T,P i.e. F T F and P F T =P and Ω F wih P Ω = 1 uch ha P, ω belong o P fo any ω Ω. H4 Moeove, le he finie abiliy unde paing aed in emak hold. The nex example how ha conol of weak fomulaion i.e. P conain all emimaingale meaue unde which B ha unifomly bounded dif and diffuion coefficien aifie H1 H4. Example 6.1. Given l >, le {P l},t be he family of emimaingale meaue conideed in 2 uch ha P l collec all coninuou emimaingale meaue on Ω,FT whoe dif and diffuion chaaceiic ae bounded by l and 2l epecively. Accoding o Lemma 2.3 heein, {P} l,t aifie H1, H3 and H4. Alo, one can deduce fom he Bukholde-Davi-Gundy inequaliy ha {P l},t aifie H2, ee he poof of 7, Example 3.3 fo deail. emak and a evii of emak 3.1 poof how ha he pah-independen pobabiliy cla {P },T aifie P1 P3 and Aumpion 3.1 wih ρ 1 = ρ, while Aumpion 3.2 i clealy implied by H2 wih ρ α ρ, α>. So Theoem 4.1 ill hold fo he obu Dynkin game ove {P },T. In addiion, H1 enable u o apply he eul of 7 o olve 1.2. Theoem 6.1. Unde Aumpion A and H1 H4, hee exi a pai P,γ P T uch ha V = τ,γ. emak 6.1. Theoem and Theoem 6.1 imply ha V = τ,γ inf E P τ,γ inf inf E P τ,γ =V, P P γ T P P τ,γ =E τ,γ. Hence, we ee ha he pai τ,γ i obu wih epec o which how ha V = inf P P P P, o τ,γ i a addle poin of he Dynkin game unde he nonlinea expecaion E. 7 Poof 7.1 Poof of echnical eul in Secion 1.1, 2 and 3 Poof of Popoiion 1.1 2: Le n N and τ T n. Aume ha τω Ω,T fo ome,t. Fo any i=,,2 n uch ha n i = i2 n T, ince, one ha := i2 n T= i2 n T = i2 n T.

11 7.1 Poof of echnical eul in Secion 1.1, 2 and 3 11 Seing A:={ω Ω : τω } F, we can deduce fom Lemma 2.2 of 5 ha { ω Ω : τ,ω ω } = { ω Ω : τω ω } = { ω Ω : ω ω A} = A,ω F. So τ,ω i an F opping ime valued in { i2 n T,T: i=,,2 n } { i2 n T,T: i=,,2 n }, i.e. τ,ω T n. Fo he cae of n=, ee Coollay 2.1 of 5. Poof of 2.4: Le,T and ω 1,ω 2 Ω. We ee fom 1.6 ha L ω 1 L ω 2 + L ω 1 L ω 2 Ψ ω 2 +ρ ω1 ω 2,, and U ω 1 U ω 2 + U ω 1 U ω 2 Ψ ω 2 +ρ ω1 ω 2,. I follow ha Ψ ω 1 = L ω 1 U ω 1 Ψ ω 2 +ρ ω1 ω 2,. Then exchanging he ole of ω1 and ω 2 pove 2.4. Poof of Lemma 2.1: Le,T and P P. Suppoe ha Ψ,ω SF,P and T g,ω d < fo ome ω Ω. Le ω Ω. Fo any, ω,t Ω, 1.6 implie ha g,ω ω g,ω ω = g ω ω g ω ω ρ ω ω ω ω, =ρ ω ω,, 7.1 T T o g,ω d g,ω d+t ρ ω ω, <. Popoiion how ha boh L,ω and U,ω ae F adaped pocee wih all coninuou pah, o i he poce Ψ,ω I follow ha = L,ω Ψ,ω Theefoe, Ψ,ω S F,P. U,ω,,T. Simila o 7.1, we ee fom 2.4 ha Ψ,ω ω Ψ,ω ω ρ ω ω,,, ω,t Ω. = up,t Ψ,ω up Ψ,ω,T +ρ ω ω, =EP Ψ,ω +ρ ω ω, <. Poof of emak 2.1 1: Le,T. Popoiion 1.2 implie ha fo P a.. ω Ω, Ψ,ω S F,P,ω = S F,P and T T,ω T,ω T d=,ω g d,ω g d = g d F ω<. g,ω I hen follow fom Lemma 2.1 ha Ψ, S F,P T and EP g, d<. Hence, P P. Poof of emak 2.2: 2 Fix,T and le ω 1,ω 2 Ω, τ,γ T. By 2.3 and 2.1,,ω1 τ,γ ω,ω2 τ,γ ω =,τ ω,γ ω,ω1 ω,τ ω,γ ω,ω 2 ω 1+Tρ ω1 ω ω 2 ω,t =1+Tρ ω1 ω 2,, ω Ω. 7.2 Now, le ω Ω,,T, n N { }, P P and T. Given ω 1, ω 2 Ω and ς T n, imila o 7.2,,ω ω1 ς,,ω ω2 ς, 1+Tρ ω ω 1 ω ω 2, = 1+Tρ ω1 ω 2,. 7.3 I followha E P,ω ω 1 ς, E P,ω ω 2 ς, +1+Tρ ω1 ω 2,. Takingupemum oveς T n yield ha up E P,ω ω 1 ς, up E P,ω ω 2 ς, +1+Tρ ω1 ω 2,T. Exchanging he ole of ω1 and ς T n ς T n ω 2 how ha he mapping ω up E P,ω ω ς, i coninuou unde nom,t and hu FT meauable. ς T n Nex, le u how ha boh ide of 2.8 ae finie: Le A F, τ T n and,,λ. By 2.5 and 2.6, E P 1A Aj,ω τ, n j E P,ω τ n τ, n j j E P g,ω d+ψ,ω τ n j E P T g,ω d+ψ,ω <.

12 obu Dynkin Game 12 On he ohe hand, given ω A A j and ς T n, aking ω 1, ω 2 = ω, ω j in 7.3, we can deduce fom 2.5 and 2.6 again ha j,ω ω ς, EPj,ω ωj ς, T +1+Tρ ω ωj, EPj +1+Tρ δ:=α j <. I hen follow ha 1 { ω A Aj} up j,ω ω ς, + ς T n a well a ha 1 { ω A Aj} up j,ω ω ς, + ς T n g,ω ωj T g,ω ωd 1 A Aj d+ψ,ω ωj g,ω d +α j PA A j <, T g,ω ωd 1 A Aj g,ω d α j PA A j >. Summing boh up ove j {1,,λ} how ha he igh-hand-ide of 2.8 i finie. 3 The poof of emak in 5 ha hown ha he pobabiliy P defined in 2.9 aifie P3 i and ii: PA A =PA A, A FT, and PA A j =PA A j,,,λ, A F. To ee P aifying 2.8, le u fix n N { } and T. We e n j := Π,,,λ, which ae of T by 1.3. Le A F and τ T n. Given ω Ω, Popoiion how ha τ, ω T n. Since he F adapne of g and 1.8 imply ha g ω Ω = g ω,, and g ω ω Ω = g ω ω,,, 7.4 we ee fom 2.3 ha fo any ω Ω,ω τ, n j, ω ω =,ω τ, n j ω ω =,τ ω ω, Π ω ω,ω ω ω =,τ, ω ω, ω,ω ω ω + g ω ω ω d=,ω ω τ, ω, ω+ By Lemma 1.1, A A j, ω = Ω ep. = if ω A A j ep. / A A j. Then 7.5 lead o ha E P 1A Aj,ω τ, n j = = 1 1A Aj { ω Aj }j,ω τ, n j, ω j =1 1 { ω A Aj}1 { ω Aj }E,ω Pj τ, n j, ω = j =1 1 { ω A Aj} up j,ω ω ς, + ς T n Taking ummaion ove j {1,,λ} yield 2.8. g,ω ωd. 1 { ω A Aj} j,ω ω τ, ω, + Poof of 3.3: Le,ω,T Ω. Since he F meauabiliy of L, U and 1.8 how ha g ω ωd. 7.5 g,ω ωd L,ω ω = L ω ω = L ω and U,ω ω = U ω ω = U ω, ω Ω. 7.6 i hold fo any τ T n ha,ω τ,=1 {τ=} L,ω τ +1 {<τ} U,ω =1 {τ=} L,ω +1 {<τ} U,ω U,ω =U ω. So V n ω inf up,ω τ, inf E P U ω = U ω Ψ ω. P P,ω P P,ω τ T n On he ohe hand, ince T n and ince,ω,γ=1 { γ} L,ω +1 {γ<} U,ω γ =L,ω V n ω inf inf P P,ω γ T,ω,γ = inf P P,ω =L ω fo any γ T, L ω = L ω Ψ ω. Poof of emak 3.1: Fix n N { }. Le,T, ω 1,ω 2 Ω, P P and τ,γ T. By 7.2,,ω 1 τ,γ,ω 2 τ,γ +1+Tρ ω1 ω 2,. Taking upemum ove τ T n, aking infimum ove γ T and hen aking infimum ove P P yield ha V nω 1 V nω 2+1+Tρ ω1 ω 2,. Exchanging he ole of ω1 and ω 2, we obain 3.4 wih ρ 1 =1+Tρ fo each n N { }.

13 7.2 Poof of he Dynamic Pogamming Pinciple Poof of he Dynamic Pogamming Pinciple Poof of Popoiion 3.1: Fix n N { }, T and ω Ω. 1 When =, ince V n i F adaped by emak 3.2, an analogy o 7.6 how ha V n,ω ω=v n,ω ω= V nω, ω Ω. Then inf inf P P,ω γ T up τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω = inf E P V n ω = V n ω. P P,ω 2 To demonae 3.5 fo cae <, we hall pae he local appoximaing P minimize of V n,ω accoding o P3 and hen make ome eimaion. 2aUndenom,T, inceω iaepaablecompleemeicpace, heeexiacounabledeneube { ω } j of j N Ω. Fix ε> and le δ Q + aify ρ 1 δ ρ δ 1+Tρ δ <ε/5. Le j N. By 1.4, A j :=Oδ ω j j <j O δ ω j F. We can find a P j P,ω ω j and a γ j T uch ha V n ω ω j inf up γ T τ T n Given ω O δ ω j, an analogy o 7.3 how ha fo any τ T n j,ω ω 1 j τ,γ 5 ε up j,ω ω j τ,γj 2 ε. 7.7 τ T n 5,ω ω τ,γ j,ω ω j τ,γj 1+Tρ ω ω j, 1+Tρ δ 1 5 ε, o j,ω ω τ,γ j j,ω ω j τ,γj +ε/5. Taking upemum ove τ T n, we ee fom 7.7 and 3.4 ha up j,ω ω τ,γ j up j,ω ω j τ,γj + 1 τ T n τ T n 5 ε V n ω ω j ε V n ω ω+ρ 1 ω ω ω ω j 3, + 5 ε =V n,ω ω+ρ 1 ω ω 3 j, + 5 ε V n,ω ω+ρ 1 δ+ 3 5 ε V n,ω ω+ 4 ε Nex, fix P P,ω, λ N and le P λ be he pobabiliy of P,ω in P3 fo { A j,δ j, ω j,p j } λ = { Aj,δ, ω j,p j } λ λ c F := and A A j. Then we have E Pλ ξ= ξ, ξ L 1 F, P λ L 1 F,P and E Pλ 1 A ξ= 1 A ξ, ξ L 1 F T, P λ L 1 F T,P. 7.9 Alo, in ligh of 2.8 and 7.8, hee exi n j T,,,λ, uch ha fo any A F and τ T n E Pλ 1A Aj,ω τ, n j 1 { ω A Aj} 1 A A c V n,ω + up j,ω ω ς,γ j + ς T n g,ω ωd + ρ δ g,ω d +ε b Now, le γ T and τ T n. Applying 7.1 wih A = {τ γ } F, one can how ha E Pλ 1{τ γ } Aj,ω τ, n j 1 {τ γ } A c V n,ω + We glue γ wih { n j }λ o fom a new F opping ime γ λ :=1 {γ<} γ+1 {γ } 1 A γ+ Since γ λ >τ on {γ } {τ<}, 2.2 how ha 1 {τ γ<},ω τ, γ λ =1 {γ<},ω τ,γ+1 {γ } {τ<} τ 1 Aj n j g,ω d +ε. 7.11*. 7.12* g,ω d+l,ω τ =1 {τ γ<},ω τ,γ F.

14 obu Dynkin Game 14 Then one can deduce fom 7.9, 7.11, 2.5 and 3.3 ha E Pλ,ω τ, γ λ =E Pλ 1{τ γ<} +1 {τ γ } A,ω τ,γ + 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + Taking upemum ove τ T n yield ha g,ω d V n ω up 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + τ T n E Pλ 1{τ γ } Aj,ω τ, n j +1 {τ γ } A,ω τ,γ V n g,ω d +1 A 2 Then aking infimum ove γ T on he igh-hand-ide, we obain V n ω inf up γ T τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n Since j N A j = j N O δ ω j j N OT δ ω j =Ω and ince T g,ω,ω + d +Ψ,ω g,ω d T g,ω d +2Ψ,ω T +2 1 A,ω +ε. g,ω g,ω d +2 1 λ c A j by 2.6, leing λ, one can deduce fom he dominaed convegence heoem ha V n ω inf up γ T τ T n 1 {τ γ<},ω τ,γ+1 {τ γ } V n,ω + d+ψ,ω T g,ω g,ω d +ε +ε. d+ψ,ω +ε. < 7.13 g,ω d +ε. Evenually, aking infimum ove P P,ω on he igh-hand-ide and hen leing ε yield 3.5. Poof of Popoiion 3.2: Le T and ω Ω. I uffice o how fo a given P P,ω ha inf up,ω τ,γ inf up 1 {τ γ<},ω τ,γ+1 {τ γ } V,ω γ T τ T γ T + τ T Fix ε>. Thee exi a γ= γε T uch ha g,ω d up,ω τ, γ inf up,ω τ,γ +ε/ τ T γ T τ T 1 Se γ := γ T. In he fi ep, we ue a dene counable ube of T and Popoiion 1.2 o how ha V,ω + g,ω d eup τ T,ω τ, γ F 3 + ε, P a A in he poof of 5, Popoiion 4.1 ee pa 2a and 2c heein, we can conuc a dene counable ube Γ of T in ene ha fo any δ >, ζ T and P P, {ς n } n N Γ uch ha lim n ς n ω=ζ ω, ω Ω and ha P{ς n ζ n }<δ, n N, 7.17 whee ζ n := 2 n T i= 2 n 1 i+1 {i2 n ζ<i+12 n } 2 T T. n Since ζπ T fo any ζ T by 1.3, i hold excep on a P null e N ha,ω ζπ, γ F eup,ω τ, γ F, ζ Γ τ T

15 7.2 Poof of he Dynamic Pogamming Pinciple 15 By Popoiion 1.1 2, γ ω := γ, ω T. In ligh of 1.9, hee exi a P null e Ñ uch ha fo any ω Ñc,,ω ζπ, γ F ω=ep, ω,ω ζπ, γ, ω =, ω,ω ω ζ,γ ω + g,ω ωd, ζ Γ Hee we ued an analogy o 7.5 ha,ω ζπ, γ, ω =,ω ω ζ,γ ω + g,ω ωd. By P2, hee exi an exenion Ω,F,P of Ω,FT,P and Ω F wih P Ω = 1 uch ha fo any ω Ω, P, ω P,ω ω. Le N be he FT meauable e conaining N Ñ and wih PN =. Now, fix ω Ω N c F. Thee exi a ζ ω T uch ha A P, ω P,ω ω, 2.6 how ha So fo ome δ ω >,, ω 1 T A up, ω,ω ω ζ,γ ω, ω,ω ω ζ ω,γ ω +ε/ ζ T g,ω ω, ω T d+ψ,ω ω g,ω ω d+ψ,ω ω < < ε/5 fo any A F T wih P, ω A < δ ω Applying 7.17 wih δ,ζ, P= δ ω,ζ ω,p, ω, hee exi { } ς k ω Γ uch ha lim k N k ςk ω ω=ζ ω ω, ω Ω and ha P, ω {ς k ω ζk ω }<δ ω, k N, whee ζ k ω := 2 k T i= 2 k 1 i+1 {i2 k ζ ω <i+12 k } 2 T T. k Given k N, 7.22 and 2.5 imply ha,ω, ω ω ζ k ω,γ ω,ω ω ς k ω,γ ω =, ω 1 {ζ ς k ω k ω },ω ω ζ k ω,γ ω,ω ω ς k ω,γ ω 2, ω 1 T < 2 {ζk ω ςk ω} 5 ε, which ogehe wih 7.18 and 7.19 how ha, ω,ω ω ζ k ω,γ ω <EP, ω,ω ω 2 ς k ω,γ ω + 5 ε eup τ T A one can deduce fom ζ ω = lim k ζk ω and he coninuiy of L ha 2.5, 7.21, he dominaed convegence heoem and 7.2 imply ha g,ω ω d+ψ,ω ω,ω τ, γ F ω g,ω ωd+ 2 5 ε.,ω ω ζ ω,γ ω lim k,ω ω ζ k ω,γ ω, 7.23* V,ω ω=v ω ω up, ω,ω ω ζ,γ ω, ω,ω ω ζ ω,γ ω +ε/5 ζ T = lim E P,ω ω ζ k ω k, ω,γ ω +ε/5 eup,ω τ, γ F τ T { Thi how Ω N c A:= V,ω + g,ω d eup τ T ω g,ω ωd+ 3 5 ε, ω Ω N c,,ω τ, γ F ε }. A emak 3.2 and Popoiion imply ha V,ω + g,ω d= V + g d,ω F, we ee ha A F and hu PA=P A P Ω N c =1. Theefoe, 7.16 hold. Moeove, one can find a equence {τ n } n N in T uch ha eup,ω τ, γ F = lim,ω τ n, γ F τ T n, P a *

16 obu Dynkin Game 16 2 Nex, le τ T and n N. Since define an F opping ime, 7.16 and 3.3 how ha 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + g,ω d { whee A n := eup τ T τ n :=1 {τ γ<} τ+1 {τ γ } τ n 7.25* 1 {τ γ<},ω τ n, γ+1 An {τ γ },ω τ n, γ F ε +α n, 7.26,ω τ, γ F <EP,ω τ n, γ } F +ε/5 F and α T n:= 1 A c n g,ω d+ψ,ω Alo, we can deduce fom 2.5 ha 1 An {τ γ },ω τ n, γ F = 1An {τ γ },ω τ n, γ F = 1An {τ γ },ω τ n, γ = 1{τ γ },ω τ n, γ 1 A c n {τ γ },ω τ n, γ 1{τ γ },ω τ n, γ +α n, which ogehe wih 7.26 and 7.15 lead o ha 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + g d,ω,ω τ n, γ +2α n ε up,ω τ, γ +2α n + 4 τ T 5 ε inf γ T up τ T,ω τ,γ +2α n +ε. Since lim PA n=1 by 7.24, we ee fom 7.13 and he dominaed convegence heoem ha lim α n= n n and hu 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + g d,ω inf up,ω τ,γ +ε, τ T γ T τ T U,ω Taking upemum ove τ T on he lef-hand-ide and hen leing ε lead o Poof of Popoiion 3.3: Le n N,,T, α > and ω O α. We fix P P,ω and γ,τ T. Se { n i }2n i= a in 1.5 and define τ n:=1 {τ=} + can deduce ha,ω τ,γ,ω τ n,γ = L,ω = τn γ τ γ τn γ τ γ 2 n i=1. 1 { n i 1 <τ n i } n i T n. One g,ω d+1 {τ γ} L,ω τ 1 {τn γ}l,ω τ n 1 {γ<τn}uγ,ω +1{γ<τ} Uγ,ω Uγ,ω g,ω d+ Given i = 1,,2 n, 1.6 how ha fo any ω { n i 1 < τ n i γ} τ ω L,ω n i 2 n i=1 1 { n i 1 <τ n i γ} L,ω τ L,ω n +1{ n i i 1 <τ γ<n i } L,ω τ Uγ.,ω 7.28 ω = L τ ω,ω ω L n i,ω ω n ρ i τ ω + up ω ω τ ω ω ω n i,t ρ 2 n + up ω ωτ ω ρ 2 n + up τ ω, n i τ ω τ ω+2 n T Similaly, i hold fo any ω { n i 1 < τ γ < n i } ha τ Uγ,ω ω ρ γ ω τ ω + up τ ω,γ ω ω ωτ ω Moeove, anohe analogy o 7.29 how ha fo any, ω,t Ω B ω B τ ω ρ 2 n + up B ω B τ ω. 7.3 τ ω τ ω+2 n T g,ω ω g ω g,ω ω g,ω ρ + up ω ρ T + up B ω B ω, 7.31,,T

17 7.2 Poof of he Dynamic Pogamming Pinciple 17 whee we ued he fac ha B = in he la inequaliy. Plugging back ino 7.28 lead o ha,ω τ,γ,ω τ n,γ 2 n g ω +ρ T + up B ω B ω +ρ 2 n + up B B τ.,t τ,τ+2 n T Taking expecaion, we ee fom 3.6 ha,ω τ,γ,ω τ n,γ +Iα n up,ω τ,γ +Iα, n τ T n whee I n α:=ρ α 2 n +2 n g ω +ρ α T. Taking upemum ove τ T on he lef-hand-ide yield ha up,ω τ,γ up,ω τ,γ +Iα n. τ T τ T n Evenually, aking infimum ove γ T and P P,ω lead o 3.7. Poof of Popoiion 3.4: Fix n N { }, ω Ω and e α := 1+ ω,t. Le < T uch ha δ, := up ω ω T. < 1a We fi uilize Popoiion 3.1 and 3.6 o how ha V n ω V n ω up g ω +2+ ρ α δ,. 7.32,T Le P P,ω. Applying 3.5 and aking γ = how ha V n ω V n ω up 1 {τ<},ω τ,+1 {τ } V n,ω + τ T n = up 1 {τ<} L,ω τ +1 {τ } V n,ω V n ω+ τ T n g,ω d V n ω τ Then, le τ T n. Fo any ω {τ < }, 1.6 implie ha L,ω τ ω L,ω ω = L τ ω,ω ω L,ω ω ρ + up ω τ ω ω,t ρ + up ω ωτ ω ρ + up τ ω, τ ω,τ ω+ T Similaly, uing 1.6 again and applying 1.8 wih η = g F yield ha fo any ω Ω τ ω g,ω Alo, 3.4 how ha fo any ω Ω ωd g,ω ω d g ω +ρ + up, V n ω V n,ω ω = V n ω V n,ω ω ρ 1 ω ω ω, =ρ1 ρ 1 up, ω ω + up, ω g,ω ω + g,ω ω g,ω ω d g,ω d B ω B τ ω B ω B ω d up, ρ 1 δ, + up,+δ, T ω ω ω Since ω, ω,t < α, we can deduce fom 7.34, 7.35, 3.3, 3.6 and 7.36 ha τ 1 {τ<} L,ω τ +1 {τ } V n,ω V n ω+ g,ω d g ω 1 {τ<} L,ω +1 {τ } V n,ω V n ω+ρ 1 + up τ,τ+ T V n,ω V n ω +1+ ρ α 2+ ρ α δ,. B Bτ B ω B ω ρ 1 + up, B B

18 obu Dynkin Game 18 Taking upemum ove τ T n on he lef-hand-ide, we obain 7.32 fom b Nex, we how ha fo V he inequaliy 7.32 can be enghened a V ω V ω up g ω +2+ ρ α δ,. 7.37,T Fix ε>. We can find a P=Pε P,ω uch ha V ω+ε/2 inf ome γ= γε T uch ha 1 {τ γ<},ω τ, γ+1 {τ γ } V,ω + In paicula, aking τ= on he lef-hand-ide give ha V ω+ε 1 { γ<},ω, γ+1 { γ } V,ω + g,ω d An analogy o 7.34 and 7.35 how ha U,ω γ ω U,ω ω ρ + up γ ω g,ω γ T up τ T,ω τ,γ. By 7.27, hee exi g,ω d inf γ T up τ T,ω τ,γ +ε/2, τ T. γ ω, γ ω+ T ωd g ω +ρ + up = γ, g,ω d+1 { γ<} U,ω γ +1 { γ } V,ω B ω B ṱ γ ω, ω { γ < } and B ω B ω, ω Ω. A ω, ω,t <α, plugging hem back o 7.38 and applying 7.36 wih n=, we can deduce fom 3.6 and 3.3 ha V ω V ω+ε+ g ω 1 { γ<} U,ω +1 { γ } V,ω V ω 1+ ρ α V,ω V ω 1+ ρ α 2+ ρ α δ,. Leing ε and aking 7.32 wih n= yield Since lim δ, = lim δ, =, we can deduce fom 7.32 and 7.37 ha each pah of V n i boh lef-uppeemiconinuou and igh-lowe-emiconinuou, in paicula, each pah of V i coninuou. ր ց 2 Given,ω,T Ω, emak 3.2, Popoiion and Pa 1 how ha V,ω i an F adaped poce wih all coninuou pah. Fo any P P,ω, 3.3 and 2.6 imply ha V,ω Ψ,ω,ω <. So V SF,P. 7.3 Poof of he eul in Secion 4 Poof of 4.1: Fix n N { } and τ T. We le,ω,t Ω and P P,ω. Since Vτ n F T and τ g d F T by emak 3.2, Popoiion how ha boh Vτ n,ω τ and g d,ω belong o F T. 1 If := τω, Popoiion how ha τω Ω. Applying 1.8 o η = V n F F and o η= g d F F yield ha fo any ω Ω V n τ,ω ω=v n τω ω,ω ω =V n,ω ω =V n,ω, 7.39 and τ g d,ω τω ω ω= g ω ωd= g ω ωd= g ωd. Boh only depend on ω. 2 Nex, uppoe ha τ >. Popoiion alo how ha τω ω >, ω Ω and ha ζ := τ,ω i a T opping ime. I follow ha Vτ,ω ω n =V n τω ω,ω ω =V n τ,ω ω,ω ω =V n,ω ζ ω, ω, ω Ω. Byhe fiequaliyof 7.4, wealohave τ g d,ω τω ω ω= g ω ωd= g ωd+ ζ ω g,ω ωd. Then 3.3 and 2.6 imply ha V n τ,ω + τ,ω g d V n,ω ζ + ζ g,ω d + g ω d T + Ψ,ω g,ω d + g ω d<.

19 7.4 Poof of Popoiion Poof of Theoem 4.1: Define Υ :=V + g d,,t a in Lemma A.1. Given,ω,T Ωandn N, inceemak3.2, Popoiion1.14andPopoiion3.4howhaV n,ω L,ω i an F adaped poce wih lef-uppe-emiconinuou pah and ha V,ω L,ω i an F adaped poce wih all coninuou pah, we can deduce fom 3.2 ha ae all F opional ime and ha τ n,δ,ω :=inf{,t: V n,ω <L,ω +δ }, δ> τ,ω :=inf{,t: V,ω =L,ω } {,ω =inf,t: V L,ω } i an F opping ime. 1 Le,ω,T Ω and γ T. Since γπ T by 1.3, Taking = and ζ=γπ in A.1 of Lemma A.1 how ha V ω+ g ωd = Υ ω inf Υ,ω. 7.4 P P,ω τ,ω Π γπ Fo any ω Ω, 3.3 and he fi equaliy in 7.4 imply ha Υ,ω ω=υ τ τ,ω Π γπ,ω Π ω ω γ Π ω ω,ω ω =Υ τ,ω ω γ ω,ω ω =V,ω τ,ω ω γ ω, ω + τ,ω ω γ ω g ω ωd 1 {τ,ω ω γ ω} L,ω τ,ω ω, ω +1 {γ ω<τ,ω ω} U,ω γ ω, ω + =,ω τ,ω,γ ω+ g ωd. τ,ω ω γ ω g ωd+ g,ω ωd Plugging hi ino 7.4 yield ha V ω inf,ω τ,ω,γ. Taking infimum ove γ T lead o ha P P,ω V ω inf inf γ T P P,ω,ω τ,ω,γ up inf τ T γ T inf P P,ω,ω τ,γ =V ω V ω, poving Le ζ T and,ω,t Ω. If :=τ ω ζω, imila o 7.39, we can deduce fom Popoiion 1.1 3, he F adapedne of Υ by emak 3.2 a well a 1.8 ha Υ τ ζ,ω ω=υ,ω, ω Ω. Then Υτ ζ E Υτ ζ ω = inf E,ω P = inf E P Υ,ω = Υ,ω = Υ τ ω ζω,ω P P,ω P P,ω On he ohe hand, if τ ω ζω>, applying Popoiion once again how ha ω Ω {τ ζ>}. So i hold foany ω Ω ha,ω ω=υτ ζ Υ τ ζ ω ω =Υ τ ζ ω ω = Υ τ ζ,ω ω. A τ =τ, =τ,ω, aking = in A.1 yield ha Υτ ζ Υ τ ζ ω = Υ ω inf E,ω P P P,ω Υτ ζ = inf E,ω P = E Υτ ζ ω, P P,ω which ogehe wih 7.41 pove Poof of Popoiion 5.1 Fo any α,δ,, we define Φα,δ := δ+δ 1/4 +κ1+2 1 δ ϕ 1 αδ 1/4 +κ2 1 ϕ +1 αδ /2+1/4. 1 we fi how ha he pobabiliy cla {P,ω},ω,T Ω aifie P1 and P2. Le,ω,T Ω and µ U. We e P,p,X:= P,ω,µ,p,ω,µ,X,ω,µ. Given ω Ω, 2.4 how ha Ψ, X ω Ψ = Ψ X ω Ψ X ω, κ 1+ X ω,,,t. 7.42

20 obu Dynkin Game 2 I follow ha Ψ, X ω = up Ψ, X ω κ 1+ X ω,t +M Ψ, whee M Ψ := up Ψ < by he,t,t coninuiy of pah Ψ. Since Ψ, i an F adaped poce by Popoiion 1.1 4, applying 5.3 yield ha Ψ, =Ep Ψ, =E Ψ, X κ 1+E X,T +M Ψ κ 1+ϕ ω, T /2 +M Ψ <. Namely, Ψ, SF,P. Simila o 7.42, one can deduce fom 1.6 ha g, X ω g κ 1+ X ω, fo any,t. Then Fubini Theoem and 5.3 imply ha T T g, d=e p g, d=e T κt 1+ϕ ω, T /2 + T g, X d κ T 1+E X,T d+ g d T g d<. Hence P P Fo any,t and ω 1,ω 2 Ω wih ω 1, =ω 2,, ince he SDE 5.1 depend only on ω, fo a given pah ω Ω, we ee ha X,ω1,µ = X,ω2,µ and hu P,ω1,µ = P,ω2,µ fo any µ U. I follow ha P,ω 1 = P,ω 2. So Aumpion P1 i aified. Alo, Popoiion 6.3 of 5 ha aleady hown ha he pobabiliy cla {P,ω},ω,T Ω aifie P2. 2 The veificaion ha he pobabiliy cla {P,ω},ω,T Ω aifie P3 i elaively lenghy. We pli i ino eveal ep. 2a Le u fi quoe ome knowledge on he invee mapping of X,ω,µ fom 5, which ha aleady veified P3 i, ii fo {P,ω},ω,T Ω. Given,ω,T Ω and µ U, accoding o 5 ee he conex aound 7.62 and 7.63 heein, hee exi an F pogeively meauable poce W,ω,µ uch ha fo all ω Ω excep on a P null e N,ω,µ B ω = W,ω,µ X,ω,µ ω,,t, and ha he p,ω,µ pobabiliy of e A,ω,µ :={ ω Ω : N,ω,µ c X,ω,µ 1 ω } i 1, i.e., A,ω,µ c N p,ω,µ := { A GT X,ω,µ : p,ω,µ A= }. Foany,T, 5.4 andlemmaa.32of5howhaf,ω,µ :=σ F N p,ω,µ G X,ω,µ. We ee fom he conex aound of 5 ha ω:=1 { ω A,ω,µ}W,ω,µ ω,, ω,t Ω i an {F,ω,µ and ha W,ω,µ },T adaped poce uch ha all i pah belong o Ω, ha ω = B ω = W,ω,µ X,ω,µ ω = W,ω,µ X,ω,µ ω, ω N c,ω,µ, 7.44 W,ω,µ 1 A F,ω,µ, A F,,T Fix < T, ω Ω and µ U, δ Q + and λ N. We conide a F paiion {A j} λ j= of Ω uch ha fo,,λ, A j O δ j ω j fo ome δ j,δ Q {δ} and ω j Ω, and le {µ j } λ U. We will imply e P,p,X,W,F := P,ω,µ,p,ω,µ,X,ω,µ, W,ω,µ,F,ω,µ Given j = 1,,λ, 5.4 how ha A X j :=X 1 A j F. So hee exi an A j F uch ha A X j A j N ee e.g. Poblem of 36. Following imila agumen o hoe ued in he poof of Popoiion 6.3 of 5, one can how ha u1 The e Ãj:=A j A j j <j F aifie AX j Ãj N ee 7.7 of 5. u2 The paed conol µ ω := 1 {,} µ ω+1 {,T} 1 { ω à µ } ω+ λ 1 { ω Ãj}µj Π ω,, ω λ c,t Ω belong o U, whee à := à j F ee 7.71 of 5. Se P, p, X, Ŵ, F, N := P,ω, µ,p,ω, µ,x,ω, µ, W,ω, µ,f,ω, µ,n,ω, µ. u3 Thee exi a P null e Ñj uch ha fo any ω Ãj Ñc j, N ω := { ω Ω : X ω ω X ω X,ω X ω,µj ω fo ome,t } belong o N ee 7.78 of 5.

21 7.4 Poof of Popoiion u4 Fo any A F, X 1 A X 1 A N ee 7.74 of 5. Alo, analogou o pa 2b of 5, Popoiion 6.3, we can ue he uniquene of conolled SDE 5.1 o how ha he equaliy µ = µ ove, Ω,T Ã implie he equaliy X = X ove, Ω,T Ã, and hu ha P aifie P3 i, ii. 2b To how ha P aifie 2.8, we make ome echnical eing and pepaaion fi. Popoiion how ha Y 1 := g,ω, Y 2 := L,ω and Y 3 := U,ω,,T ae hee F adaped pocee wih all coninuou pah. Fo l = 1,2,3, 5.4 implie ha Y l X i an F adaped poce wih all coninuou pah. Applying Lemma A.2 3 of 5 wih P,X = P,B how ha Y l X ha an F,P veion Y l. Moe peciely, Y l ae F pogeively meauable pocee uch ha N := 3 l=1 { ω Ω : Y l ω Y l X ω fo ome,t } N By Lemma 1.2, i hold fo all ω Ω excep on an Ñ N ha N N, ω N. We ee fom Popoiion ha he andom vaiable ξ m := up,t +2 m T g,ω d, m N 7.48 ae FT meauable. Since lim ξ m=, 2.6 and he dominaed convegenceheoem how ha lim E Pξ m =. m m So hee exi m N uch ha E Pξ m δ/2 and Φ ω,,2 m δ/2. Se a:=2 m. Now, fix n N { }, T and le,,λ. We e P j,p j,x j,w j,f j,n X j:= P,ω ωj,µj,p,ω ωj,µj,x,ω ωj,µj, W,ω ωj,µj,f,ω ωj,µj,n,ω ω j,µ j and define i <i j := X j T, ν j := j Π T, γ j:=ν j Ŵ, 7.49* whee γ j i a F opping ime ha ake value in,t. Given i=,,2 m, we e i := i2 m T and D i :={ i 1 < γ j i } F i wih 1 := 1. By e.g. Poblem of 36, hee exi an D i F i uch ha D i D i N p. Define D i := D i \ D i F i <i i and D:= 2m D i = 2 m D i F i= i= T. Then γ j := 2 m i= 1 D i i i a F opping ime while γ j := 2 m i= 1 D i i +1 D ct define an T opping ime. Clealy, γ j coincide wih γ j ove 2m m 2 Di D i, whoe complemen Di \D i belong o N p becaue i=1 i=1 c D i \D i =D i Di D i = D i \ D i Di D i D i D i Di Di c Di D i N p. i i fo i=1,,2 m. To wi, we have i <i i <i γ j = γ j, p a c Now, fix A F, τ T n and e τ:=τ X. We how an auxiliay inequaliy: E P 1A Aj,ω τ,γ j E 1 X 1 A A Ξ j j +δ, 7.51 whee Ξ j := τ ν j Y 1 d+1 { τ νj}y 2 τ +1 {ν j< τ}y 3 ν j. Fo any,t, an analogy o A.19 how ha { τ }= X 1 {τ } F, So τ T. By Lemma in he AXiv veion of 5, i hold fo all ω Ω excep on a N τ N ha τ, ω T. Fo,,λ, ince Y l ae F pogeively meauable pocee and ince ν j i a T opping ime, we ee ha Ξ j i an F T meauable andom vaiable.

22 obu Dynkin Game 22 Le,,λ. By 7.5, E P 1A Aj,ω τ,γ j =E p 1A Aj,ω τ,γ j =E p 1A Aj,ω τ,γ j =E 1 X 1 A A,ω j τ,γ j X Given ω Ω, ince γ j ω γ j ω<a, 1.6 implie ha,ω τ,γ j ω,ω τ ω γ j ω τ, γ j ω= g,ω ωd+1 { γj ω<τ ω γ j ω} L,ω τ ω, ω U,ω γ j ω, ω τ ω γ j ω U,ω γ j ω, ω U,ω γ j ω, ω +1 {γ j ω<τ ω} ξ m ω+1 { γj ω<τ ω γ j ω} +1 {γ j ω<τ ω} γ j ω γ j ω+ up τ ω γ j ω+ up,t,t ξ m ω+1 { γj ω<τ ω γ j ω} a+ up ξ m ω+ a+ up γ j ω,τ ω ν j Ŵ ω, ν j Ŵ ω +a T ω ω τ ω ω ω γ j ω ω ω γ j ω ω ω γ j ω Taking ω= X ω, one can deduce fom 7.44 ha fo P a.. ω Ω,,ω τ,γ j X ω,ω τ, γ j X ω ξ m X ω + Alo, 7.44 and 7.47 how ha fo any ω N N c,ω τ, γ j X ω = = τ ω ν j ω Y 1 τ ω ν j ω ω ω γj ω +1 {γ j ω<τ ω} a+ up ω ω γj ω γ j ω,γ j ω ω ω ν j Ŵ ω. a+ up ν j ω,ν j ω +a T X ω X νj ω X ω d+1 { τ ω ν j ω }Y 2 τ ω, X ω +1 {νj ω < τ ω }Y 3 ν j ω, X ω Y 1 ω d+1 { τ ω ν j ω }Y 2 τ ω, ω +1 {νj ω < τ ω }Y 3 ν j ω, ω =Ξ j ω Since X 1 A A j F, j =,,λ by 5.4 and ince ν j ae T opping ime, ν := 1 X 1 A T + λ 1 X 1 A ν j j i alo a T opping ime. Se η := X X ν. Uing he inequaliy a+b up ν,ν+a T 2 1 a +b, a,b>, one can deduce fom 7.54, 7.53 and 5.3 ha E 1 X 1 A A j,ω τ,γ j X Ξj = E 1 X 1 A A j ξ m X + E 1 X 1 A A j ξ m X + a+η E ξ m X + a+η a+ up ν j,ν j+a T X X νj 1+a+η E p ξ m +E 1{η a 1 4} a+a 1 4 +κ1{η>a 1 E Pξ 4} m + a+a 1 4 +κa 1/4 E a η+2 1 η +1 δ/2+ a+a 1 4 +κ1+2 1 a ϕ 1 ω, a 1 4 +κ2 1 ϕ +1 ω, a /2+1/4 =δ/2+φ ω,,2 m δ Then we ee fom 7.52 ha E P 1A Aj,ω τ,γ j = E 1 X 1 A A,ω j τ,γ j X E 1 X 1 A A Ξ j j +δ, poving d We ae eady o ue 2.1 and he eimae 5.2 o veify 2.8 fo P. Le,,λ again. A P P by 7.43, 7.54, 2.5 and 2.6 imply ha E Ξj T E g,ω X d+ψ,ω T T X = E p g,ω d +Ψ,ω = E P g,ω d +Ψ,ω <.

23 7.4 Poof of Popoiion Since X 1 A A j F, applying Lemma A.2 1 of 5 wih P,X,ξ= P,B,Ξ j, uing u4 wih A=A Aj and applying Popoiion 2.3 in he AXiv veion of 5 wih P,ξ= P,Ξ j, we can deduce fom Popoiion and u1 ha E 1 X 1 A A Ξ j j =E 1 X 1 A A E j ΞjF =E 1 X 1 A A E j ΞjF =E 1 X 1 A A je ΞjF =E 1 { ω X 1 A A X j } E Ξ, ω = E 1 { ω X 1 A A X Ãj}E Ξ, ω j j Le ω A X j Ãj Ñc j Ñc Nc τ. A τ, ω T, imila o γ j =ν j Ŵ, ζ ω:= τ, ω W j i a F j opping ime. Le ω Ω uchha ω inoinhep nulle N N, ω NX j N ω, anddefine X j ω ω:= X,ω X ω,µ j ω X j ω,t. Taking ω = ω ω N N c in 7.54, we ee fom 2.3, 7.44, u3, 2.1 a well a an analogy o he econd equaliy of 7.4 ha Ξ, ω j ω=,ω τ, γ j X ω ω =,τ X ω ω, γ j X ω ω,ω X ω ω =, τ ω ω,ν j ω ω,ω X ω ω =, τ, ω ω, j ω,ω X ω ω =,ζ ω X j ω, X j ω,ω X ω X,ω X ω,µj ω,ζ ω X j ω, X j ω, ω X ω X j ω +1+T X j ω ω =,ζ ω X j ω, X j ω, ω X ω X j ω + g ω X ω X j ω d+1+t X j ω ω =,ω X ω ζ ω, X j ω + g ω X ω d+1+t X j ω ω. Since X j ω ω 1 { } δ 1/2 +1 { } κδ 1/2 X j ω ω+ X j ω ω +1, 5.2 how ha X j ω ω δ1/2 X j ω ω>δ1/2 E Ξ, ω j,ω X ω E ζ ω, X j + g,ω X ω d+1+t δ 1/2 +1+Tκδ 1/2 C 1 T ω X ω ω ω j, +C +1 T +1 ω X ω ω ω j +1, j Se δ:=δ+1+t δ 1/2 +1+Tκ C 1 Tδ 1/2 +C +1 T +1 δ +1/2. A ω A X j =X 1 A j, i.e. X ω A j O δ j ω j, one ha ω X ω ω ω j, = X ω ω j, <δ j δ. I follow fom 7.57 ha E Ξ, ω j Ep j,ω X ω ζ ω, + up j,ω X ω ς, + ς T n Plugging hi back ino 7.56, we ee fom 7.51 and u1 ha E P 1A Aj,ω τ,γ j E 1 { ω X 1 A X 1 A j} = = E p 1 { ω A Aj} 1 { ω A Aj} up ς T n up ς T n j j up ς T n g,ω X ω d+ δ δ j g,ω,ω ω ς, +,ω ω ς, + In he la equaliy, we ued he fac ha he mapping ω up j ς T n X ω d+ δ δ. 7.58*,ω X ω ς, + g,ω X ω d+ δ δ +δ g,ω ωd+ δ δ +δ g,ω ωd +PA A c δ δ+δ.,ω ω ς, i coninuou unde nom,t and hu F T meauable by emak Theefoe, 2.8 hold fo n j = γ j,, λ. 3 In hi pa, we ill ue 2.1 and he eimae 5.2 o how ha {P,ω},ω,T Ω aifie Aumpion 3.1.

24 obu Dynkin Game 24 Fix n N { },,T, ω,ω Ω, µ U and e δ := ω ω,. We ill ake he noaion 7.46 and e P,p,X,W,F := P,ω,µ,p,ω,µ,X,ω,µ, W,ω,µ,F,ω,µ. Fix ε >. We ill define ξ m a in 7.48 and can find a k N uch ha ξ k ε/2 and Φ ω,,2 k ε/2. Alo, fix γ T and τ T n. Simila o τ=τ X in pa 2c, τx belong o T Ŵ ; and analogou o γ j =ν j, 7.45 implie ha τ :=τ X W i a F opping ime. Symmeically, γx belong o T and γ :=γ XW define a F opping ime. Se i := i2 k T, i=,,2 k. Then γ k := 2 k i= 1 { i 1< γ i} i define a F opping ime, whee 1 := 1. By imila agumen o hoe ha lead o 7.5, one can conuc a T opping ime γ k valued in { i } 2k i= uch ha γ k = γ k, p a.. Analogou o 7.53, we can deduce ha fo P a.. ω Ω,,ω τ, γ k X ω,ω τ, γ X ω ξ k X ω + 2 k +η ω, whee η := up X X γx. And imila o 7.55, 5.3 implie ha γx,γx+2 k T E p,ω τ, γ k,ω τ, γ = E p,ω τ, γ k,ω τ, γ =E,ω τ, γ k X,ω τ, γ X E ξk X + 2 k +η ξ k +Φ ω,,2 k ε Since 7.44 how ha τ X ω =τ X WX ω = τ X ω and γx ω=γ X W X ω =γ X ω hold fo P a.. ω Ω, we ee fom 2.3 and 2.1 ha fo P a.. ω Ω,ω τ, γ X ω,ω τ,γ X ω =,τx ω, γx ω,ω X ω, τx ω,γx ω,ω X ω =, τx ω,γx ω,ω X ω, τx ω,γx ω,ω X ω 1+T ω X ω ω X ω,t 1+T ω ω, + X ω X ω,t =1+T δ+ X ω 1 { X ω δ 1/2 }1+T δ+δ 1/2 +1 { X ω>δ 1/2 }κ1+tδ 1/ δ X ω+2 1 X ω +1, wih X ω := X ω X ω,t. Then 7.59 and 5.2 how ha,ω τ, γ k = Ep,ω τ, γ k Ep,ω τ, γ +ε=e,ω τ, γ X +ε E,ω τ,γ X + 1δ+ε=E p,ω τ,γ + 1δ+ε, 7.6 whee 1δ:=1+T δ+δ 1/2 +κ1+t δ C 1 Tδ 1/ C +1 T +1δ +1/2 δ. Simila o 7.58, one can deduce ha E p,ω τ,γ up,ω ς,γ. So i follow fom 7.6 ha ς T n,ω τ, γ k up,ω ς,γ + 1δ+ε. ς T n Taking upemum ove τ T n on he lef-hand-ide yield ha inf up ζ T τ T n,ω τ,ζ up τ T n,ω τ, γ k up ς T n Then aking infimum ove γ T on he igh-hand-ide, we obain ha inf up ζ T τ T n,ω,µ,ω τ,ζ inf up γ T ς T n Leing ε and aking infimum ove µ U on boh ide lead o ha V n ω = inf µ U inf up ζ T τ T n,ω,µ,ω τ,ζ inf inf up µ U γ T ς T n,ω ς,γ + 1δ+ε.,ω,µ,ω ς,γ + 1δ+ε.,ω,µ,ω ς,γ + 1 ω ω, =V n Exchanging he ole of ω and ω how ha {P,ω},ω,T Ω aifie To veify Aumpion 3.2 fo {P,ω},ω,T Ω, we fix α> and δ,t. ω+ 1 ω ω,.

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Xiaoquan (Michael) Zhang

Xiaoquan (Michael) Zhang RESEARCH ARTICLE HO DOES THE INTERNET AFFECT THE FINANCIAL MARKET? AN EQUILIBRIUM MODEL OF INTERNET-FACILITATED FEEDBACK TRADING Xiaoquan (Michael) Zhang School of Buine and Managemen, Hong Kong Unieriy

Διαβάστε περισσότερα

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1 Lecue 6 Goals: Deemine e opimal esold, file, signals fo a binay communicaions poblem VI- Minimum Aveage Eo Pobabiliy Poblem: Find e opimum file, esold and signals o minimize e aveage eo pobabiliy. s s

Διαβάστε περισσότερα

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model Inernaional Journal of Modern Nonlinear Theory and Applicaion, 6, 5, 8-9 Publihed Online March 6 in SciRe hp://wwwcirporg/journal/ijmna hp://dxdoiorg/36/ijmna659 Global Aracor for a la of Nonlinear Generalized

Διαβάστε περισσότερα

Approximate System Reliability Evaluation

Approximate System Reliability Evaluation Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic

Διαβάστε περισσότερα

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

On Zero-Sum Stochastic Differential Games

On Zero-Sum Stochastic Differential Games O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg

Διαβάστε περισσότερα

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity

Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Appendix A. Stability of the logistic semi-discrete model.

Appendix A. Stability of the logistic semi-discrete model. Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Motion of an Incompressible Fluid. with Unit Viscosity

Motion of an Incompressible Fluid. with Unit Viscosity Nonl. Analsis and Diffeenial Equaions Vol. 1 013 no. 3 143-148 HIKARI Ld www.m-hikai.com Moion of an Incompessible Fluid wih Uni Viscosi V. G. Gupa and Kapil Pal Depamen of Mahemaics Univesi of Rajashan

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Asymptotic behavior of solutions of mixed type impulsive neutral differential equations

Asymptotic behavior of solutions of mixed type impulsive neutral differential equations Tariboon e al. Advance in Difference Equaion 2014, 2014:327 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 R E S E A R C H Open Acce Aympoic behavior of oluion of mixed ype impulive neural differenial

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

326. Dynamic synchronization of the unbalanced rotors for the excitation of longitudinal traveling waves

326. Dynamic synchronization of the unbalanced rotors for the excitation of longitudinal traveling waves . Dynamic synchonizaion of he unbalanced oos fo he exciaion of longiudinal aveling waves. Saseeyeva K. Ragulsis Z. Navicas Kazah Naional Pedagogical Univesiy named afe bay Tole bi s. 8 lmay Kazahsan E-mail:

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Αλγόριθμοι και πολυπλοκότητα Maximum Flow ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

On Quasi - f -Power Increasing Sequences

On Quasi - f -Power Increasing Sequences Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

Global Existence of Solutions of the Gierer-Meinhardt System with Mixed Boundary Conditions

Global Existence of Solutions of the Gierer-Meinhardt System with Mixed Boundary Conditions pplied Mahemaics 7 8 857-867 hp://www.scip.og/jounal/am ISSN Online: 5-7393 ISSN Pin: 5-7385 Global Exisence of Soluions of he Giee-Meinhad Sysem wih Mixed Bounday Condiions Kwadwo nwi-fodjou Maius Nkashama

Διαβάστε περισσότερα

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

Online Appendix to the Paper No Claim? Your Gain: Design of Residual Value Extended Warranties under Risk Aversion and Strategic Claim Behavior

Online Appendix to the Paper No Claim? Your Gain: Design of Residual Value Extended Warranties under Risk Aversion and Strategic Claim Behavior Online Appendix to the Pape No Claim? You Gain: Design of Residual Value Extended Waanties unde Risk Avesion and Stategic Claim Behavio Lemma Given any x ě y ě 0, pe x e y q{ is inceasing in Moeove, pe

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS H. Yin Q. Qiu Nagoya Math. J. Vol. 154 (1999, 157 169 THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS HUICHENG YIN QINGJIU QIU Abstact. In this pape, fo thee dimensional compessible

Διαβάστε περισσότερα

r = x 2 + y 2 and h = z y = r sin sin ϕ

r = x 2 + y 2 and h = z y = r sin sin ϕ Homewok 4. Solutions Calculate the Chistoffel symbols of the canonical flat connection in E 3 in a cylindical coodinates x cos ϕ, y sin ϕ, z h, b spheical coodinates. Fo the case of sphee ty to make calculations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

LAGRANGIAN EQUILIBRIUM EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES

LAGRANGIAN EQUILIBRIUM EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES Compute, Mateial & Continua 3 (2006) 37-42 LAGANGIAN EQUILIBIUM EQUAIONS IN CYLINDICAL AND SHEICAL COODINAES.Y. Voloh Depatment of Mehanial Engineeing, John Hopin Univeity, Baltimoe, MD Abtat Lagangian

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + +

) 2. δ δ. β β. β β β β. r k k. tll. m n Λ + + Techical Appedix o Hamig eposis ad Helpig Bowes: The ispaae Impac of Ba Cosolidaio (o o be published bu o be made available upo eques. eails of Poofs of Poposiios 1 ad To deive Poposiio 1 s exac ad sufficie

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ Συστήματα γεωγραφικών πληροφοριών 1 ος Κύκλος Εκπαίδευσης ο σεμινάριο Ιουνίου 0 Δρομολόγηση Η δρομολόγηση (rouing) είναι η διαδικασία εύρεσης των «καλύτερων» μονοπατιών

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Fourier Transform. Fourier Transform

Fourier Transform. Fourier Transform ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following

Διαβάστε περισσότερα