Βοηθητική Ενέργεια. Φορτίο. Αντλία φορτίου. Σχήμα 4.1.1: Τυπικό ηλιακό θερμικό σύστημα

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Βοηθητική Ενέργεια. Φορτίο. Αντλία φορτίου. Σχήμα 4.1.1: Τυπικό ηλιακό θερμικό σύστημα"

Transcript

1 Κεφάλαιο 4: ΗΛΙΑΚΑ - ΘΕΡΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4.1 Τυπικό ηλιακό θερμικό σύστημα Ένα σύστημα που μετατρέπει ηλιακή ενέργεια σε θερμική ενέργεια ονομάζεται ηλιακό θερμικό σύστημα. Πρόκειται για συστήματα που είναι πολύ διαδεδομένα (ιδιαίτερα στη χώρα μας) και βεβαίως αποτελούν μία τυπική εφαρμογή μεταφοράς θερμότητας που περιλαμβάνει και με τους τρεις μηχανισμούς. Η παραγόμενη θερμότητα αξιοποιείται σε πολλές εφαρμογές μεταξύ των οποίων παραγωγή ζεστού νερού (ΖΝΧ) οικιακή χρήση θέρμανση ( και υβριδικά), τηλεθέρμανση, κολυμβητήρια χημική βιομηχανία (π.χ. θέρμανση νερού διεργασιών) αγροτική βιομηχανία (π.χ. ξήρανση, θερμοκήπια) αφαλάτωση νερού παραγωγή ηλεκτρικής ισχύος Πολλά ηλιακά θερμικά συστήματα αποτελούνται από τον ηλιακό συλλέκτη, την δεξαμενή αποθήκευσης, το φορτίο κατανάλωσης, τους κυκλοφορητές, το σύστημα βοηθητικής ενέργειας, το σύστημα αυτοματισμού - ελέγχου και τις σωληνώσεις που συνδέουν τα επιμέρους τμήματα και συσκευές του συστήματος. Ένα τυπικό ηλιακό θερμικό σύστημα φαίνεται στο Σχήμα Βοηθητική Ενέργεια Δοχείο αποθήκευσης Συλλέκτης Φορτίο ς Αντλία συλλέκτη Σύστημα ελέγχου Αντλία φορτίου Σχήμα 4.1.1: Τυπικό ηλιακό θερμικό σύστημα Η λειτουργία του συστήματος βασίζεται στις εξής σχετικά απλές βασικές αρχές: ηλιακός συλλέκτης: η προσπίπτουσα ηλιακή ενέργεια μετατρέπεται σε θερμική ενέργεια του φέροντος ή θερμοαπαγωγού ρευστού (συνήθως νερό) φέρον ρευστό: μεταφέρει την θερμική ενέργεια από τον συλλέκτη στον εναλλάκτη εντός της δεξαμενής αποθήκευσης

2 εναλλάκτης: μεταφέρει την θερμική ενέργεια στο ρευστό χρήσης μονάδα αποθήκευσης: αποθηκεύει τη θερμική ενέργεια κυκλοφορητές: υποστηρίζουν την κίνηση των ρευστών θερμικό φορτίο: δηλώνει το φορτίο που πρέπει να εξυπηρετήσει το σύστημα βοηθητικό σύστημα: παρέχει συμπληρωματικά το αναγκαίο θερμικό φορτίο που απαιτείται σύστημα σωληνώσεων και βανών: υποστηρίζει την κίνηση των ρευστών σύστημα αυτοματισμού και ελέγχου: ρυθμίζει την ομαλή λειτουργία του συστήματος 4. Θερμικά ισοζύγια Διατυπώνονται τα θερμικά ισοζύγια στα πλέον βασικά τμήματα του συστήματος που είναι ο συλλέκτης, το δοχείο αποθήκευσης και το φορτίο κατανάλωσης. Συλλέκτης Η χρήσιμη ενέργεια Q ενός ηλιακού συλλέκτη εξαρτάται από α) την ικανότητα του συλλέκτη να απορροφήσει το μεγαλύτερο δυνατόν κλάσμα της προσπίπτουσας ακτινοβολίας και β) το μέγεθος των θερμικών απωλειών λόγω συναγωγής και ακτινοβολίας προς το περιβάλλον και γράφεται, όπως θα δούμε στη παράγραφο 6. στη μορφή 4 4 Q t A t t A UA A Ο πρώτος όρος εντός της αγκύλης αντιπροσωπεύει το κλάσμα της ακτινοβολίας που απορροφάται από τον συλλέκτη σε σχέση με την προσπίπτουσα ηλιακή ακτινοβολία Q A. Μία τυπική για τον συνολικό κλάσμα απορρόφησης είναι 0.8. Ο δεύτερος όρος εντός της αγκύλης αντιπροσωπεύει τις συνολικές θερμικές απώλειες με αγωγή και συναγωγή ανάμεσα στη πλάκα απορρόφησης του συλλέκτη που βρίσκεται σε θερμοκρασία και το περιβάλλον που είναι σε θερμοκρασία, ενώ U είναι ο συνολικός μέσος συντελεστής θερμικών απωλειών. Τέλος, ο τρίτος όρος είναι οι θερμικές απώλειες λόγω υπέρυθρης ακτινοβολίας που εκπέμπει η πλάκα απορρόφησης και συνήθως είναι μικρός σε σχέση με τον δεύτερο όρο, όταν η θερμοκρασία στη πλάκα απορρόφησης δεν είναι μεγαλύτερη των 100 o C. Η ποσότητα 1 δεν είναι ο συντελεστής εκπομπής της πλάκας απορρόφησης αλλά μία πιο σύνθετη ποσότητα περιλαμβάνει και το. Όσο βελτιώνεται ο σχεδιασμός του συλλέκτη τόσο μειώνεται το. Για επίπεδους συλλέκτες A A, ενώ για κυλινδρικούς A A (A είναι το εμβαδό της πλάκας απορρόφησης, ενώ A το εμβαδόν όλων των ανοιγμάτων του συλλέκτη συμπεριλαμβανομένης της πλάκας απορρόφησης όπου προσπίπτει ηλιακή ακτινοβολία). Ο συντελεστής απόδοσης του συλλέκτη είναι ο λόγος της χρήσιμης θερμικής ενέργειας ως προς την διαθέσιμη προσπίπτουσα ηλιακή ενέργεια A, δηλαδή Q

3 Q 4 4 A UA A A A ή σε αδιάστατη μορφή όπου 4 4 Q b A t A 4, ref, A b UA A, ref,,, t t ref, Οι ποσότητες και ref, είναι η μέση ημερήσια θερμοκρασία και η προσπίπτουσα ακτινοβολία αναφοράς όπως π.χ. η μέγιστη ακτινοβολία σε μία μέρα με καθαρό ουρανό. Επίσης, αν ο συλλέκτης λειτουργεί σε σχετικά χαμηλές θερμοκρασίες ο όρος της ακτινοβολίας απαλείφεται και ο συντελεστής απόδοσης δίδεται από τη γραμμική σχέση b t Γενικά, είναι επιθυμητό στο πλαίσιο σχεδιασμού και ελέγχου του συλλέκτη να δώσουμε τον συντελεστή απόδοσης σε σχέση με τη θερμοκρασία / του φέροντος ρευστού στον συλλέκτη. Αυτό επιτυγχάνεται ξαναγράφοντας την εξίσωση του συντελεστή απόδοσης στη μορφή b UA F t A όπου F UA b A t UA b A t συνδέει η μέση θερμοκρασία της πλάκας απορρόφησης με την θερμοκρασία εισόδου του φέροντος ρευστού. Ο συντελεστής F είναι το κλάσμα της πραγματικά ωφέλιμης ενέργειας ως προς τη θερμική ενέργεια του συλλέκτη αν η μέση θερμοκρασία της πλάκας απορρόφησης ήταν ίση με τη θερμοκρασία εισόδου του φέροντος ρευστού στον συλλέκτη. Με βάση τα παραπάνω το χρήσιμο φορτίο του συλλέκτη γράφεται επίσης στη μορφή

4 ,, Q t A t mc C f ot f in όπου m είναι η μαζική παροχή του φέροντος ρευστού, f, ot και οι θερμοκρασίες εξόδου και εισόδου αντίστοιχα του φέροντος ρευστού, c η ειδική θερμοχωρητικότητα και C μία παράμετρος ελέγχου που παίρνει τιμές 1 και 0 ανάλογα εάν η αντλία του κυκλώματος του φέροντος ρευστού είναι ανοικτή (ON) ή κλειστή (OFF) αντίστοιχα. Με βάση τις δύο τελευταίες εκφράσεις επιλύουμε για την θερμοκρασία εξόδου του φέροντος ρευστού από τον συλλέκτη και βρίσκουμε Fb F f, ot 1 tb, όπου Cmc A ref, Η παράμετρος είναι ο λόγος της ικανότητας του φέροντος ρευστού να απάγει ενέργεια από τον συλλέκτη προς την ηλιακή θερμότητα αναφοράς και μεταβάλλεται από το μηδέν μέχρι πολύ μεγάλες τιμές. Για προκύπτει, όπως αναμένεται f, ot. Για 0, δηλαδή m C 0 ( C 0 ) δεν έχουμε ροή και τότε η παραπάνω εξίσωση μαζί με την εξίσωση του συντελεστή απόδοσης για 0 μας δίδουν τη θερμοκρασία της πλάκας απορρόφησης για συνθήκες μηδενικής μαζικής παροχής (no-flow or gntion tempertre of plte): t g b UA A Ο δεύτερος όρος στη δεξιά πλευρά της εξίσωσης είναι ο λόγος της ηλιακής ενέργειας που απορροφάται προς τις απώλειες ανά βαθμό θερμοκρασίας πάνω από τη θερμοκρασία περιβάλλοντος. Δοχείο αποθήκευσης Στην απλούστερη περίπτωση θεωρούμε ότι η θερμοκρασία είναι ομοιόμορφη και ότι δεν έχουμε αλλαγή φάσης. Τότε το θερμικό φορτίο που αποθηκεύεται ανά μονάδα χρόνου ισούται με τη διαφορά ανάμεσα σε αυτό που έρχεται από τον συλλέκτη μέσω του φέροντος ρευστού και αυτού που πηγαίνει στην κατανάλωση μέσω του ρευστού χρήσης μείον τις απώλειες του αποθηκευτικού δοχείου (βλέπε παράγραφο 4.3, εξίσωση 3). Επίσης, σχετίζεται με την αλλαγή της θερμοκρασίας του ρευστού εντός του δοχείου σύμφωνα με τη σχέση d Q t mc dt

5 όπου Q t η ισχύς του αποθηκευμένου θερμικού φορτίου, η θερμοκρασία του ρευστού αποθήκευσης, m η μάζα του ρευστού αποθήκευσης και c η θερμοχωρητικότητά του (σημειώνεται ότι σε υγρά και στερεά cp c c). Στη παρούσα προσέγγιση η μοντελοποίηση αυτή είναι επαρκής αλλά βεβαίως μπορεί να χρησιμοποιηθούν περισσότερο σύνθετα και πιθανώς ακριβή μοντέλα. Φορτίο Το θερμικό φορτίο που πρέπει να εξυπηρετηθεί δίδεται από τη σχέση,, Q t m c in ot όπου Q t είναι το θερμικό φορτίο, που συνήθως δίδεται από τον χρήστη και αποτελεί μία από τις προδιαγραφές που πρέπει να λάβει υπόψη του ο μελετητής, m η μαζική παροχή του ρευστού χρήσης (τις περισσότερες φορές είναι νερό) και c η θερμοχωρητικότητά του, ενώ in, και ot, η θερμοκρασία εισόδου και επιστροφής του ρευστού χρήσης από το σύστημα κατανάλωσης. Τέλος, η παράμετρος είναι 1 ή 0 αναλόγως εάν ο κυκλοφορητής είναι ON ή OFF. Όπως θα δούμε στη παράγραφο 4.4 για το απλό μοντέλο που εξετάζουμε θεωρούμε ότι, in. 4.3 Θερμικός σχεδιασμός επίπεδου ηλιακού συλλέκτη Οι επίπεδοι συλλέκτες είναι οι πλέον συνηθισμένοι και χρησιμοποιούνται ευρέως για την θέρμανση νερού χρήσης. Όπως φαίνεται στο Σχήμα αποτελούνται από τα εξής τμήματα: κάλυμμα, πλάκα απορρόφησης (τις περισσότερες φορές από αλουμίνιο), σωλήνες νερού (συνήθως από χαλκό), όπου διέρχεται το θερμοαπαγωγό (φέρον) ρευστό, μόνωση (στη πίσω πλευρά της πλάκας απορρόφησης) και το σκελετό (ή πλαίσιο) συγκράτησης. Επίσης θεωρούμε A A A Σχήμα 4.3.1: Κύρια τμήματα επίπεδου ηλιακού συλλέκτη

6 Η ηλιακή ακτινοβολία διέρχεται από το κάλυμμα και απορροφάται από την πλάκα απορρόφησης αυξάνοντας τη θερμοκρασία της. Η πλάκα απορρόφησης εκπέμπει ακτινοβολία στην υπέρυθρη περιοχή η οποία δεν πρέπει να διαπεράσει στο κάλυμμα αλλά αντίθετα να παγιδευτεί εντός του συλλέκτη. Το θερμικό φορτίο μεταφέρεται με αγωγή και συναγωγή από τη πλάκα απορρόφησης στους σωλήνες και στο φέρον ρευστό και μέσω του ρευστού στο δοχείο αποθήκευσης όπου θερμαίνεται το ρευστό χρήσης. Επομένως, για την αποτελεσματική λειτουργία του συλλέκτη θα πρέπει α) το κάλυμμα να είναι διαφανές στην ηλιακή ακτινοβολία και αδιαφανές σε ακτινοβολία με μήκος κύματος 3μm, β) η πλάκα απορρόφησης να έχει μεγάλη απορροφητικότητα και πολύ μικρή ικανότητα διαπερατότητας και ανάκλασης, γ) οι σωλήνες νερού να έχουν καλή θερμική αγωγιμότητα και δ) ο ολικός συντελεστής μεταφοράς θερμότητας να είναι όσο το δυνατόν μεγαλύτερος. Ο βασικός σκοπός στον σχεδιασμό του επίπεδου συλλέκτη είναι να υπολογίσουμε το κλάσμα της προσπίπτουσας ηλιακής ακτινοβολίας στο συλλέκτη που τελικά μεταφέρεται με τη μορφή θερμότητας στο ρευστό. Ο σχεδιασμός περιλαμβάνει α) τον οπτικό και β) τον θερμικό σχεδιασμό: Οπτικός σχεδιασμός Αρχικά εξετάζεται η επιφάνεια του καλύμματος και υπολογίζεται το κλάσμα της ακτινοβολίας που διέρχεται μέσω του καλύμματος. Αποδεικνύεται ότι όταν ακτινοβολία διέρχεται από ένα υλικό σε ένα άλλο η ικανότητα αντανάκλασης της διεπιφάνειας δίδεται από τη σχέση 1 sin 1 tn 1 sin 1 tn 1 όπου 1 και οι γωνίες πρόσπτωσης και σκέδασης. Επίσης, εάν n 1 και n είναι οι δείκτες διαθλάσεως των δύο μέσων ισχύει ότι (νόμος του nell) n n sin sin 1 1 Για ένα κάλυμμα με ικανότητα αντανάκλασης και έστω αρχικά με μηδενική ικανότητα απορρόφησης, το κλάσμα της ακτινοβολίας που διαπερνά σε σχέση με την προσπίπτουσα είναι (βλέπε Σχήμα 4.3.) 4 m m0 1 1 r

7 Σχήμα4.3.: Ακτινοβολία διαμέσου του καλύμματος Αντίστοιχα, στη περίπτωση που ο συλλέκτης έχει περισσότερα από ένα κάλυμμα και συγκεκριμένα καλύμματα τότε r, Στη πράξη ένα τμήμα της προσπίπτουσας ακτινοβολίας απορροφάται από το κάλυμμα και το υπόλοιπο το διαπερνά σύμφωνα με τη γενική σχέση I Ie K 0, όπου I και I 0 η ένταση K ακτινοβολίας που διαπερνά και προσπίπτει αντίστοιχα, ενώ e ο συντελεστής διαπερατότητας λόγω απορρόφησης τμήματος της προσπίπτουσας ακτινοβολίας με το K να εξαρτάται από το υλικό του καλύμματος και το να συμβολίζει το συνολικό μήκος της διαδρομής της ακτινοβολίας εντός του καλύμματος. Για τα καλύμματα ηλιακών συλλεκτών το είναι κοντά στη μονάδα. Το τελικό κλάσμα της προσπίπτουσας ακτινοβολίας που θα διαπεράσει το κάλυμμα και δηλώνει τη συνολική ικανότητα διαπερατότητας του καλύμματος είναι r Στη συνέχεια θα πρέπει να υπολογίσουμε το κλάσμα της ακτινοβολίας που τελικά απορροφάται από την πλάκα απορρόφησης και αυτό επιτυγχάνεται εξετάζοντας το σύστημα κάλυμμα- πλάκα απορρόφησης. Με βάση το Σχήμα 4.3.3, όπου είναι η ικανότητα απορρόφησης της πλάκας απορρόφησης, ενώ 1 είναι η ικανότητα αντανάκλασης της πλάκας απορρόφησης, το κλάσμα της ακτινοβολίας που τελικά απορροφάται είναι m0 m0 1 1 m m

8 Σχήμα 4.3.3: Ακτινοβολία στο κάλυμμα- πλάκα απορρόφησης Σημειώνεται ότι η ποσότητα είναι μεγαλύτερη από το γινόμενο και η τιμή της εξαρτάται από τα υλικά του καλύμματος και της πλάκας απορρόφησης, τη γεωμετρία, τον αριθμό των καλυμμάτων και τη γωνία της προσπίπτουσας ακτινοβολίας. Τελικά η ποσότητα ακτινοβολίας που απορροφάται από τη πλάκα απορρόφησης και διατίθεται για μετατροπή σε θερμική ενέργεια είναι 1 1 όπου η ένταση της κάθετα προσπίπτουσας ηλιακής ακτινοβολίας. Συνεχίζουμε με τον θερμικό σχεδιασμό όπου θα υπολογίσουμε τις θερμικές απώλειες του συλλέκτη και τελικά το χρήσιμο θερμικό φορτίο Θερμικός σχεδιασμός (υπολογισμός U και άλλων ποσοτήτων) Το Σχήμα αναπαριστά τις θερμικές αντιστάσεις στα διάφορα τμήματα του συλλέκτη. Οι θερμοκρασίες και αντιπροσωπεύουν τις θερμοκρασίες του καλύμματος και της πλάκας απορρόφησης αντίστοιχα, ενώ και sky είναι η θερμοκρασία του περιβάλλοντος και ουρανού αντίστοιχα. Οι ποσότητες 1, και 3 είναι οι θερμικές αντιστάσεις διαμέσου της μόνωσης στη πίσω πλευρά του συλλέκτη, ανάμεσα στη πλάκα απορρόφησης και στο κάλυμμα και ανάμεσα στο κάλυμμα και τον περιβάλλοντα χώρο.

9 Σχήμα4.3.4: Διάγραμμα θερμικών αντιστάσεων Ξεκινούμε από τη κάτω πλευρά του συλλέκτη όπου αγνοώντας απώλειες λόγω συναγωγής και θεωρώντας ότι ο συλλέκτης είναι τέλεια μονωμένος από τη πίσω πλευρά γράφουμε 1 / k. Στη σχέση αυτή είναι το πάχος της μόνωσης και k ο συντελεστής θερμικής αγωγής της μόνωσης. Επομένως ο συντελεστής μεταφοράς θερμότητας είναι U 1/ 1 1 Συνεχίζουμε με τη πάνω πλευρά του συλλέκτη όπου έχουμε απώλειες λόγω συναγωγής και ακτινοβολίας ανάμεσα i) στη πλάκα απορρόφησης και το κάλυμμα και ii) στο κάλυμμα και ατμόσφαιρα. i) Η θερμική αντίσταση ανάμεσα στη πλάκα απορρόφησης και το κάλυμμα γράφεται στη μορφή 1 h h c r όπου s g hc k 90 1/3 και

10 hr Στις παραπάνω σχέσεις h c είναι ο συντελεστής φυσικής συναγωγής και r h ο γραμμικοποιημένος συντελεστής ακτινοβολίας. Επιπλέον, k ο συντελεστής θερμικής αγωγής του αέρα και το κινηματικό ιξώδες στη μέση θερμοκρασία /, ενώ s η κλίση των δύο παράλληλων πλακών (κάλυμμα και πλάκα απορρόφησης) ως προς το οριζόντιο επίπεδο. Επίσης, και οι ικανότητες εκπομπής της πλάκας απορρόφησης και του καλύμματος αντίστοιχα. ii) Η θερμική αντίσταση ανάμεσα στο κάλυμμα και το περιβάλλον είναι 3 h 1 h r3 όπου h και h r3 sky sky sky Στις παραπάνω σχέσεις h ο συντελεστής συναγωγής με να αντιπροσωπεύει την ταχύτητα του ανέμου και h r3 ο γραμμικοποιημένος συντελεστής ακτινοβολίας. Επομένως ο συνολικός συντελεστής μεταφοράς θερμότητας στο πάνω τμήμα του συλλέκτη είναι U,3 1 3 Τα θερμικά ισοζύγια ανάμεσα σε πλάκα απορρόφησης κάλυμμα και κάλυμμα - περιβάλλον γράφεται στη μορφή sky 3 3 sky και οδηγεί στον υπολογισμό της μέσης θερμοκρασίας του καλύμματος σε σχέση με τη μέση θερμοκρασία της πλάκας απορρόφησης και των συντελεστών μεταφοράς θερμότητας: U,3 hc hr U,3 h h Ο υπολογισμός αφού εμπλέκει τους συντελεστές μεταφοράς που εξαρτώνται από τις εν λόγω θερμοκρασίες απαιτεί μία επαναληπτική διαδικασία. Ο συνολικός συντελεστής απώλειας θερμότητας που είναι και ένας από τους βασικούς στόχους της θερμικής ανάλυσης είναι U U1 U,3 c r

11 Η μεθοδολογία επίλυσης απαιτεί επαναληπτική διαδικασία. Συνήθως υποθέτουμε τη θερμοκρασία γνωρίζοντας από μετρήσεις τη θερμοκρασία και βρίσκουμε τους συντελεστές h, h c, h r, h r3 και στη συνέχεια εξετάζουμε αν ικανοποιείται το παραπάνω ισοζύγιο. Αν δεν ικανοποιείται αναθεωρούμε τη θερμοκρασία και επαναλαμβάνουμε τη διαδικασία ώσπου να συγκλίνει. Προχωρούμε στον υπολογισμό της μεταφοράς θερμότητας στο θερμοαπαγωγό (φέρον) ρευστό. Αρχικά θα υπολογίσουμε τη κατανομή της θερμοκρασίας κατά μήκος της πλάκας απορρόφησης x. Θεωρώντας ότι το σύστημα πλάκα απορρόφησης-αγωγοί μπορεί να αντιμετωπιστεί ως μία σειρά από αγωγούς πάνω σε πλάκα με επαναλαμβανόμενα χαρακτηριστικά, στο Σχήμα δίδεται μία γραφική απεικόνιση ενός τμήματος της πλάκας απορρόφησης με έναν συγκολλημένο αγωγό. Το θερμικό ισοζύγιο σε διαφορικό όγκο ( dx ) κατά μήκος του πτερυγίου γράφεται στη μορφή d k U x dx με οριακές συνθήκες d dx x0 0 και xwd/ Σχήμα 4.3.5: Σύστημα πλάκα απορρόφησης-αγωγοί Το πρόβλημα επιλύεται αναλυτικά και προκύπτει ότι

12 x U cosh x cosh U, όπου W D k U Η θερμότητα που άγεται στη βάση του αγωγού και από τις δύο πλευρές είναι d k k U tnh dx U x U ή tnh F U όπου F tnh Το ποσό αυτό προσαυξάνεται με το αντίστοιχο ποσό θερμότητας λόγω άμεσης ακτινοβολίας του αγωγού και το συνολικό ποσό είναι F D U Η θερμότητα αυτή μεταφέρεται με αγωγή και συναγωγή στο θερμοαπαγωγό ρευστό μέσης θερμοκρασίας f f, ot, όπου και f, ot οι θερμοκρασίες εισόδου και εξόδου του νερού. Επομένως γράφεται στη μορφή f 1 1 h D C tbe i όπου h ctbe, ο συντελεστής συναγωγής ανάμεσα στον αγωγό και το ρευστό και C kb/ ο συντελεστής αγωγής για μέσου της συγκόλλησης με b και να συμβολίζουν το πλάτος και το πάχος της συγκόλλησης και k τον αντίστοιχο συντελεστή θερμικής αγωγής. Συνδυάζοντας τις δύο εκφράσεις για το έχουμε U f F D h D C tbe i U f F D h D C tbe i

13 Στη συνέχεια απαλείφουμε τη θερμοκρασία και βρίσκουμε WF U f όπου 1 1 F U U W U D W D F U tbe i C h D 0 Ο αριθμητής εκφράζει την θερμική αντίσταση ανάμεσα στη πλάκα απορρόφησης και το περιβάλλον, ενώ ο παρανομαστής την θερμική αντίσταση ανάμεσα στο ρευστό το περιβάλλον. f και Το F μπορεί επίσης να ερμηνευτεί σαν το κλάσμα του χρήσιμου θερμικού φορτίου προς το θερμικό φορτίο που θα είχε ο συλλέκτης εάν η επιφάνεια απορρόφησης είχε θερμοκρασία ίση με τη μέση θερμοκρασία f του θερμοαπαγωγού ρευστού. Η ποσότητα αυτή είναι σταθερή για κάθε συλλέκτη για συγκεκριμένη παροχή. Τέλος, επιλύουμε για τη κατανομή της θερμοκρασίας του θερμοαπαγωγού ρευστού f f y. Εφαρμόζοντας το θερμικό ισοζύγιο σε έναν όγκο ελέγχου του ρευστού γράφουμε d f mc WF U f dy με αρχική συνθήκη: 0 y y f, f UWF y U e mc U fin. Το πρόβλημα επιλύεται αναλυτικά και προκύπτει ότι UWF UWF y UWF y mc y mc p mc f y e e 1e U U U Επομένως, η θερμοκρασία εξόδου του ρευστού από τον συλλέκτη είναι UWF UWF mc mc f, ot e 1e U Με βάση τα παραπάνω ορίζεται ο συντελεστής απομάκρυνσης θερμότητας:

14 mc U, c f, ot f, ot F G A f in U ή F Gc UF 1 exp U Gc, όπου m m G W A Το F μπορεί να ερμηνευτεί σαν το κλάσμα του χρήσιμου θερμικού φορτίου προς το θερμικό φορτίο που θα είχε ο συλλέκτης εάν η επιφάνεια απορρόφησης είχε θερμοκρασία ίση με τη θερμοκρασία εισόδου του θερμοαπαγωγού ρευστού. Ολοκληρώνουμε την έκφραση για την κατανομή θερμοκρασίας του ρευστού f y κατά μήκος του αγωγού και βρίσκουμε τη μέση θερμοκρασία του θερμοαπαγωγού ρευστού: f Q / A F 1 UF F Υπενθυμίζεται ότι Q, ότι ο βαθμός απόδοσης του συλλέκτη είναι U F A και U, Q A A U FA U f in Επομένως βρίσκουμε και τη μέση θερμοκρασία της πλάκας απορρόφησης του συλλέκτη Q A U 1 F F / Επίσης στη περίπτωση μηδενικής παροχής ( 0 ): g U

15 4.4 Μοντέλο λειτουργίας βασικού ηλιακού θερμικού συστήματος Παρουσιάζεται ένα απλό μοντέλο λειτουργίας και ελέγχου ενός απλού ηλιακού-θερμικού συστήματος (βλέπε Σχήμα 4.4.1). Σχήμα 4.4.1: Απεικόνιση απλού ηλιακού θερμικού συστήματος Στη θέση 1 η θερμοκρασία του φέροντος ρευστού είναι ίση με τη θερμοκρασία του ρευστού εντός του αποθηκευτικού δοχείου και ίση με t. Στη θέση η θερμοκρασία του ρευστού είναι t και στο παρόν απλό μοντέλο θεωρούμε ότι είναι ίση με t, δηλαδή δεν έχουμε θερμικές απώλειες από τη θέση 1 στη θέση. Βρίσκουμε τη θερμοκρασία της πλάκας στη περίπτωση μηδενικής παροχής (εξίσωση 1). Στη θέση 3 η θερμοκρασία του ρευστού είναι t και υπολογίζεται με βάση την εξίσωση (). Στη f, ot θέση 4 η θερμοκρασία του ρευστού είναι f, ot t, δηλαδή δεν έχουμε θερμικές απώλειες από τη θέση 3 στη θέση 4. Η παροχή από τη θέση 1 στη θέση 4 είναι Cm C όπου C είναι μηδέν ή ένα αναλόγως εάν ο κυκλοφορητής είναι ON ή OFF και m η παροχή μάζας του φέροντος ρευστού. Στη θέση 5 η θερμοκρασία του ρευστού χρήσης είναι ίση με τη θερμοκρασία του ρευστού εντός του αποθηκευτικού δοχείου και ίση με t. Στη θέση 6 η θερμοκρασία του t και στο παρόν απλό μοντέλο θεωρούμε ότι είναι ίση με ρευστού είναι in, δηλαδή δεν έχουμε θερμικές απώλειες από τη θέση 5 στη θέση 6. Στη θέση 7 η θερμοκρασία του ρευστού είναι t και υπολογίζεται με βάση την εξίσωση (3). Στη θέση 8 η ot, θερμοκρασία του ρευστού είναι, ot t, t, δηλαδή δεν έχουμε θερμικές απώλειες από τη

16 θέση 7 στη θέση 8. Η παροχή από τη θέση 5 στη θέση 8 είναι m όπου είναι μηδέν ή ένα αναλόγως εάν ο κυκλοφορητής είναι ON ή OFF και m η παροχή μάζας του φέροντος ρευστού. Τέλος, η θερμοκρασία στη θέση 9, δηλαδή εντός του αποθηκευτικού δοχείου είναι t και υπολογίζεται με βάση τις εξισώσεις (4) και (5). Από την (5) βρίσκουμε το Q και στη συνέχεια από την (4) το t και στη συνέχεια το t t Q t A g b UA UWF UWF mc mc f, ot e 1e U Fb F 1 tb,, in ot (1) U Q t m c (3) d Q t mc CQ Q UA dt (4), Q A U FA U f in f, ot mc A U Με βάση την παραπάνω περιγραφή μοντελοποιείται η χρονικά μεταβαλλόμενη λειτουργία του συστήματος. Βεβαίως θα πρέπει να γνωρίζουμε και να δώσουμε σαν δεδομένα τα στοιχεία του συλλέκτη, όπως τα μεγέθη A,, κ.τ.λ., τις παροχές ροής και F, U, τις ιδιότητες του φέροντος ρευστού και του ρευστού χρήσης, τα χαρακτηριστικά του δοχείου αποθήκευσης m, U, A, κ.τ.λ., τη θερμοκρασία του περιβάλλοντος χώρου t, το θερμικό φορτίο χρήσης τη θερμοκρασία t t, όπου t Q, το ηλιακό φορτίο () (5) t, κ.τ.λ. Στη συνέχεια προσδιορίζουμε t για τη αρχική χρονική στιγμή και επιλύουμε για την θερμοκρασία δηλώνει το χρονικό βήμα, από τη θέση 1 προς τη θέση 9 με βάση το Σχήμα και τις εξισώσεις (1-5). Συμπληρωματικά θα χρειαστούμε για το σύστημα ελέγχου τη θερμοκρασία που θα έχει η πλάκα απορρόφησης για τη περίπτωση που η μαζική παροχή του φέροντος ρευστού είναι μηδέν και που προκύπτει από την εξίσωση (1). Το σύστημα ελέγχου της λειτουργίας μπορεί να είναι το εξής:

17 Εάν g t t 6 f ot f in Εάν f, ot και g t g,mx Q t Εάν Εάν και,, τότε 1, in, ot mc t Q mc τότε 1 τότε 0 ή τότε 0,min α παραπάνω περιλαμβάνονται στο λογικό διάγραμμα του Σχήματος 6.3. που μοντελοποιεί την λειτουργία και έλεγχο ενός απλού θερμικού ηλιακού συστήματος. Στη συνέχεια με βάση το διάγραμμα ροής είναι σχετικά εύκολο να γίνει ο προγραμματισμός σε κάποια γλώσσα όπως για παράδειγμα σε Fortrn. Σχήμα 4.4.: Διάγραμμα ροής βασικού θερμικού ηλιακού συστήματος

18 4.5 Απόδοση και έλεγχος προδιαγραφών επίπεδου συλλέκτη Στο σημείο αυτό είναι χρήσιμο να γίνει μία σύντομη ανακεφαλαίωση των πλέον σημαντικών εκφράσεων που περιγράφουν ένα τυπικό ηλιακό θερμικό σύστημα που περιλαμβάνει επίπεδο συλλέκτη (A A A), μονάδα αποθήκευσης και το σύστημα κατανάλωσης που πρέπει να εξυπηρετηθεί. Οι εκφράσεις που ορίζουν τα θερμικά φορτία, τις θερμοκρασίες και τους συντελεστές απόδοσης του εναλλάκτη και του συστήματος είναι συνοψίζονται στο Πίνακα Πίνακας 4.5.1: Βασικές εξισώσεις ηλιακού θερμικού συστήματος,,,,, Q A A U F A U FA U mc f in f f ot f in Q t m c in ot d Q t mc CQ Q UA dt U b F U b F U U f UAF UAF Fb F mc mc f, ot 1 t b e 1e U Q 1 F, 1 f f in AU F F Q 1 F AU F t g b U U Q U b A ref, U b U b U f F F F ref,

19 Γραφική απεικόνιση του συντελεστή απόδοσης ως προς τις ποσότητες εναλλακτικά ως προς την αντίστοιχη ποσότητα b / U ή / για διάφορα συστήματα δίδονται στο Σχήμα Όπως φαίνεται το μειώνεται γραμμικά καθώς η θερμοκρασιακή διαφορά ανάμεσα στις θερμοκρασίες εισόδου του φέροντος ρευστού και τη θερμοκρασία περιβάλλοντος μειώνεται. Είναι προφανές ότι όταν η διαφορά θερμοκρασιών μηδενίζεται τότε, ενώ όταν 0 U. F τότε ή / / / / b Επίσης, η κλίση της ευθείας είναι FU ή Fb. Επομένως, εάν είναι γνωστές οι ποσότητες, U, F ο συντελεστής απόδοσης του συστήματος προσδιορίζεται. Τα μεγέθη αυτά είναι ιδιαίτερα σημαντικά στον σχεδιασμό του συλλέκτη και υπολογίζονται με βάση τη λεπτομερή διαδικασία που περιγράφεται στη Παράγραφο 6.3. Σχήμα 4.5.1: Βαθμός απόδοσης ηλιακού-θερμικού συστήματος Οι ποσότητες, U, F μπορούν να βρεθούν και πειραματικά με μετρήσεις κάνοντας τους εξής τρεις βασικούς εργαστηριακούς ελέγχους: Έλεγχος διαπερατότητας-απορροφητικότητας συλλέκτη Έστω ηλιακή ακτινοβολία προσπίπτει στο κάλυμμα συλλέκτη με γωνία (βλέπε Σχήμα 4.5.). Εάν είναι η ικανότητα ανάκλασης του καλύμματος και r, η ανακλώμενη ακτινοβολία τότε r, ή 1 όπου είναι η ικανότητα (συντελεστής) απορροφητικότητας όλου του συλλέκτη. Εάν υποθέσουμε ότι τότε αφού μετρήσουμε με πυρανόμετρο τις ποσότητες

20 εκτιμούμε τη ποσότητα και r, φορές σε καλά αποτελέσματα.. Η διαδικασία αυτή οδηγεί τις περισσότερες Σχήμα 4.5.: Ακτινοβολίες σχετικές με τον έλεγχο διαπερατότητας-απορροφητικότητας συλλέκτη Έλεγχος μηδενικών θερμικών απωλειών Η λειτουργία του συστήματος ρυθμίζεται στο εργαστήριο ώστε. Τότε οι θερμικές απώλειες μηδενίζονται και από τις εκφράσεις του χρήσιμου θερμικού φορτίου προκύπτει ότι Q A, F mc f ot Επομένως αφού μετρήσουμε τις ποσότητες, m, f, ot και και έχοντας ήδη υπολογίσει από τον προηγούμενο έλεγχο τη ποσότητα βρίσκουμε το συντελεστή F. Έλεγχος μηδενικής ηλιακής ακτινοβολίας Για το έλεγχο αυτό πρέπει το 0 και επομένως πραγματοποιείται τη νύχτα ή αφού καλύψουμε με τον συλλέκτη. Τότε, από τις εκφράσεις του χρήσιμου θερμικού φορτίου προκύπτει ότι Q A,,, FU mc f in f ot f in Επομένως αφού μετρήσουμε τις ποσότητες m, f, ot, και βρίσκουμε το γινόμενο FU και αφού το F είναι γνωστό από τον προηγούμενο έλεγχο καταλήγουμε στο συντελεστή μεταφοράς θερμότητας U. Έχει πιστοποιηθεί ότι τα αποτελέσματα των τριών βασικών ελέγχων είναι σε καλή συμφωνία με τα αντίστοιχα που προκύπτουν εφαρμόζοντας τον λεπτομερή θερμορευστοδυναμικό σχεδιασμό του συλλέκτη και επομένως θεωρούνται αξιόπιστες διαδικασίες για τον εργαστηριακό έλεγχο προδιαγραφών συλλεκτών.

21 Στο σημείο αυτό είναι χρήσιμο να γίνει αναφορά σε μία μέθοδο, γνωστή με το όνομα fchrt method που χρησιμοποιείται ευρέως για την εμπειρική εκτίμηση του μεγέθους ενός ηλιακού-θερμικού συστήματος. Παρόμοιες μέθοδοι που βοηθούν στον σχεδιασμό χωρίς να είναι αναγκαίο να εφαρμοστούν οι λεπτομερείς υπολογισμοί είναι ιδιαίτερα δημοφιλείς για λόγους ευκολίας αλλά όχι απαραίτητα ακριβείς. Η μέθοδος f-chrt είναι από τις πλέον διαδεδομένες και βασίζεται στον υπολογισμό του κλάσματος του φορτίου (συμβολίζεται με f) που καλύπτεται από τη ηλιακή ενέργεια. Αρχικά υπολογίζονται τα μεγέθη Χ και Υ που εκφράζουν το ποσό των ενεργειακών απωλειών και το ποσό της ενέργειας που μπορεί να αξιοποιήσει ο ηλιακός συλλέκτης αντίστοιχα ως προς το συνολικό θερμικό φορτίο Q του μήνα. Οι λεπτομερείς εκφράσεις των Χ και Υ είναι: A F X FU ref NhrK1KK3 Q F A F Y F K 4 Q F Στις σχέσεις αυτές οι περισσότερες ποσότητες έχουν ήδη ορισθεί. Οι καινούργιες ποσότητες είναι η θερμοκρασίας αναφοράς που ορίζεται αυθαίρετα (π.χ. έστω ref 100 o C), η χρονική περίοδος N hr που είναι οι ώρες κάθε μήνα και οι συντελεστές K που έχουν διορθωτικό χαρακτήρα ανάλογα με το συγκεκριμένο σύστημα. Στη συνέχεια το ποσοστό f του φορτίου που καλύπτεται από τη ηλιακή ενέργεια βρίσκεται από τα διαγράμματα f που έχουν εκπονηθεί το Πανεπιστήμιο του Wisconsin εφαρμόζοντας για μεγάλο αριθμό συστημάτων τον λεπτομερή θερμοδυναμικό σχεδιασμό με βάση το λογισμικό ANY. Ένα τυπικό διάγραμμα f φαίνεται στο Σχήμα Γενικά, είναι καλό το f να παίρνει τιμές όχι κοντά στο 1 και 0. Εάν είναι κοντά στο 0 τότε το συγκεκριμένο ηλιακό-θερμικό σύστημα δεν καλύπτει το απαιτούμενο θερμικό φορτίο, ενώ εάν είναι κοντά στο 1 το θερμικό φορτίο υπερκαλύπτεται και το συγκεκριμένο ηλιακό-θερμικό σύστημα θα έχει υψηλό κόστος εγκατάστασης και καλό είναι για οικονομικούς λόγους να μειωθεί το μέγεθος του συστήματος (π.χ. η επιφάνεια των συλλεκτών). Σχήμα 4.5.3: Οι καμπύλες f σε συνάρτηση με τις παραμέτρους Χ και Υ

4. ΕΠΙΠΕ ΟΣ ΗΛΙΑΚΟΣ ΣΥΛΛΕΚΤΗΣ.

4. ΕΠΙΠΕ ΟΣ ΗΛΙΑΚΟΣ ΣΥΛΛΕΚΤΗΣ. 4. ΕΠΙΠΕ ΟΣ ΗΛΙΑΚΟΣ ΣΥΛΛΕΚΤΗΣ. 4.1 Εισαγωγή. Η πλέον διαδεδοµένη συσκευή εκµετάλλευσης της ηλιακής ακτινοβολίας είναι ο επίπεδος ηλιακός συλλέκτης. Στην ουσία είναι ένας εναλλάκτης θερµότητας ο οποίος

Διαβάστε περισσότερα

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης

ΗλιακοίΣυλλέκτες. Γιάννης Κατσίγιαννης ΗλιακοίΣυλλέκτες Γιάννης Κατσίγιαννης Ηλιακοίσυλλέκτες Ο ηλιακός συλλέκτης είναι ένα σύστηµα που ζεσταίνει συνήθως νερό ή αέρα χρησιµοποιώντας την ηλιακή ακτινοβολία Συνήθως εξυπηρετεί ανάγκες θέρµανσης

Διαβάστε περισσότερα

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα

Είδη Συλλεκτών. 1.1 Συλλέκτες χωρίς κάλυμμα ΕΝΩΣΗ ΒΙΟΜΗΧΑΝΙΩΝ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕΜΙΝΑΡΙΟ ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Είδη Συλλεκτών ΧΡΙΣΤΟΔΟΥΛΑΚΗ ΡΟΖA υπ. Διδ. Μηχ. Μηχ. ΕΜΠ MSc Environmental Design & Engineering Φυσικός Παν. Αθηνών ΚΑΠΕ - ΤΜΗΜΑ

Διαβάστε περισσότερα

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων

Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Επίδραση του συνδυασμού μόνωσης και υαλοπινάκων στη μεταβατική κατανάλωση ενέργειας των κτιρίων Χ. Τζιβανίδης, Λέκτορας Ε.Μ.Π. Φ. Γιώτη, Μηχανολόγος Μηχανικός, υπ. Διδάκτωρ Ε.Μ.Π. Κ.Α. Αντωνόπουλος, Καθηγητής

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΙ ΕΙΝΑΙ?

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΙ ΕΙΝΑΙ? ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ ΤΙ ΕΙΝΑΙ? Η ηλιακή ενέργεια που προσπίπτει στην επιφάνεια της γης είναι ηλεκτροµαγνητική ακτινοβολία που παράγεται στον ήλιο. Φτάνει σχεδόν αµετάβλητη στο ανώτατο στρώµατηςατµόσφαιρας του

Διαβάστε περισσότερα

ΒΙΟΚΛΙΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΤΗΡΙΩΝ. Εύη Τζανακάκη Αρχιτέκτων Μηχ. MSc

ΒΙΟΚΛΙΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΤΗΡΙΩΝ. Εύη Τζανακάκη Αρχιτέκτων Μηχ. MSc ΒΙΟΚΛΙΜΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΚΤΗΡΙΩΝ Εύη Τζανακάκη Αρχιτέκτων Μηχ. MSc Αρχές ενεργειακού σχεδιασμού κτηρίων Αξιοποίηση των τοπικών περιβαλλοντικών πηγών και τους νόμους ανταλλαγής ενέργειας κατά τον αρχιτεκτονικό

Διαβάστε περισσότερα

HΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ

HΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ HΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ (VACUUM) VTN ΤΕΧΝΙΚΟ ΕΓΧΕΙΡΙΔΙΟ ΕΠΙΣΗΜΟ ΣΗΜΑ ΠΟΙΟΤΗΤΑΣ ΤΗΣ ΕΥΡΩΠΑΪΚΗΣ ΕΝΩΣΗΣ Περιγραφή Οι συλλέκτες Calpak VTN είναι ηλιακοί συλλέκτες κενού (Vacuum) οι οποίοι αποτελούνται από

Διαβάστε περισσότερα

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας

Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Θέρμανση θερμοκηπίων με τη χρήση αβαθούς γεωθερμίας γεωθερμικές αντλίες θερμότητας Η θερμοκρασία του εδάφους είναι ψηλότερη από την ατμοσφαιρική κατά τη χειμερινή περίοδο, χαμηλότερη κατά την καλοκαιρινή

Διαβάστε περισσότερα

ΠΑΡΟΧΗ ΕΞΕΙΔΙΚΕΥΜΕΝΩΝ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ. Διαπίστευση Εργαστηρίου κατά ΕΝ ISO/IEC 17025 Σύστημα Ποιότητας, Διαδικασίες

ΠΑΡΟΧΗ ΕΞΕΙΔΙΚΕΥΜΕΝΩΝ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΥΠΗΡΕΣΙΩΝ. Διαπίστευση Εργαστηρίου κατά ΕΝ ISO/IEC 17025 Σύστημα Ποιότητας, Διαδικασίες ΗΛΙΑΚΟΙ ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΣΥΛΛΕΚΤΕΣ (ΕΠΙΠΕ ΟΙ (ΕΠΙΠΕ ΟΙ ΣΩΛΗΝΩΝ ΣΩΛΗΝΩΝ ΚΕΝΟΥ) ΚΕΝΟΥ) ΕΞΑΜΕΝΕΣ ΕΞΑΜΕΝΕΣ ΝΕΡΟΥ ΝΕΡΟΥ (ΟΡΙΖΟΝΤΙΕΣ (ΟΡΙΖΟΝΤΙΕΣ ΚΑΘΕΤΕΣ) ΚΑΘΕΤΕΣ) ΜΟΝΩΤΙΚΑ ΜΟΝΩΤΙΚΑ ΥΛΙΚΑ ΥΛΙΚΑ (ΠΕΤΡΟΒΑΜΒΑΚΕΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΧΡΗΣΗΣ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΚΤΙΡΙΑ

ΤΕΧΝΟΛΟΓΙΕΣ ΧΡΗΣΗΣ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΚΤΙΡΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΕΣ ΧΡΗΣΗΣ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΚΤΙΡΙΑ ΣΕΡΡΕΣ 2011 ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 2. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα Μετεωρολογίας-Κλιματολογίας Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Με τον όρο ακτινοβολία

Διαβάστε περισσότερα

Προσομοιώματα του μικροκλίματος του θερμοκηπίου. Θ. Μπαρτζάνας

Προσομοιώματα του μικροκλίματος του θερμοκηπίου. Θ. Μπαρτζάνας Προσομοιώματα του μικροκλίματος του θερμοκηπίου Θ. Μπαρτζάνας 1 Αναγκαιότητα χρήσης προσομοιωμάτων Τα τελευταία χρόνια τα θερμοκήπια γίνονται όλο και περισσότερο αποτελεσματικά στο θέμα της εξοικονόμησης

Διαβάστε περισσότερα

ΗΠΗΝ: Ηλιοθερμική Παραγωγή Ηλεκτρισμού και αφαλατωμένου Νερού

ΗΠΗΝ: Ηλιοθερμική Παραγωγή Ηλεκτρισμού και αφαλατωμένου Νερού ΗΠΗΝ: Ηλιοθερμική Παραγωγή Ηλεκτρισμού και αφαλατωμένου Νερού Άρης Μπονάνος Κέντρο Ερευνών Ενέργειας Περιβάλλοντος και Υδάτινων Πόρων Ινστιτούτο Κύπρου 25 Απριλίου 2012 1 Στόχος ΗΠΗΝ Στόχος του προγράμματος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΟΣΙΦΩΝΑ ICS, ΕΠΙΠΕ ΟΥ ΣΥΛΛΕΚΤΗ - ΑΠΟΘΗΚΗΣ

ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΟΣΙΦΩΝΑ ICS, ΕΠΙΠΕ ΟΥ ΣΥΛΛΕΚΤΗ - ΑΠΟΘΗΚΗΣ ΑΝΑΠΤΥΞΗ ΟΛΟΚΛΗΡΩΜΕΝΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΟΣΙΦΩΝΑ ICS, ΕΠΙΠΕ ΟΥ ΣΥΛΛΕΚΤΗ - ΑΠΟΘΗΚΗΣ Σ. Ε. Πνευµατικάκης, Ι. Γ. Καούρης, Κ. Γκέρτζος Τµήµα Μηχανολόγων & Αεροναυπηγών Μηχανικών, Πανεπίστηµιο Πατρών, 265, Πάτρα

Διαβάστε περισσότερα

Εισαγωγή στην Μεταφορά Θερμότητας

Εισαγωγή στην Μεταφορά Θερμότητας Εισαγωγή στην Μεταφορά Θερμότητας ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής Διάλεξη 1 MMK 312 Μεταφορά Θερμότητας Κεφάλαιο 1 1 Μεταφορά Θερμότητας - Εισαγωγή Η θερμότητα

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Η επιστήμη της Θερμοδυναμικής (Thermodynamics) συσχετίζεται με το ποσό της μεταφερόμενης ενέργειας (έργου ή θερμότητας) από ένα σύστημα προς ένα

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ Α1) ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΗΛΙΑΚΟΥ ΤΟΙΧΟΥ Ο ηλιακός τοίχος Trombe και ο ηλιακός τοίχος μάζας αποτελούν

Διαβάστε περισσότερα

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ

ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ: ΘΕΡΜΑΝΣΗ ΑΕΡΑ Χρήσεις: Ξήρανση γεωργικών προϊόντων Θέρµανση χώρων dm Ωφέλιµη ροή θερµότητας: Q = c Τ= ρ qc( T2 T1) dt ΕΠΙΦΑΝΕΙΑ ΕΠΙΚΑΛΥΨΗΣ ΗΛΙΑΚΗ ΨΥΧΡΟΣ ΑΕΡΑΣ ΘΕΡΜΟΣ ΑΕΡΑΣ Τ 1 Τ 2 ΣΥΛΛΕΚΤΙΚΗ

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

Θερμικά Ηλιακά Συστήματα

Θερμικά Ηλιακά Συστήματα Θερμικά Ηλιακά Συστήματα Εξοικονόμηση Ενέργειας Ενεργειακή Απόδοση Εξοικονόμηση ενέργειας Τα θερμικά ηλιακά συστήματα της ΤΙΕΜΜΕ, καλύπτουν πάνω από το 90% των αναγκών για ΖΝΧ* και μέχρι το 40% των αναγκών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

ΚΕΦΑΛΑΙΟ 7 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΚΕΦΑΛΑΙΟ 7 ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ 7.1 Mεταφορά θερµότητας H θερµότητα µπορεί να µεταφερθεί από σηµείο του χώρου υψηλότερης θερµοκρασίας T 1 σε άλλο χαµηλότερης T µε αντίστοιχη µεταφορά µάζας. Η µεταφορά είναι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΕΝΕΡΓΕΙΑΚΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΕΡΕΥΝΩΝ TEI ΣΤΕΡΕΑΣ ΕΛΛΑ ΑΣ (Ψύξης, Κλιµατισµού και Εναλλακτικών Μορφών Ενέργειας) ρ. ΜαρίαΚ. Κούκου Μιχάλης Μέντζος Χρήστος Ζιούτης Νίκος Τάχος Prof. Μ. Gr. Vrachopoulos

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ: ΕΦΑΡΜΟΓΕΣ ΣΕ ΣΥΣΤΗΜΑΤΑ ΘΕΡΜΑΝΣΗΣ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ ΑΝΩΤΑΤΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ: ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑΣ Επιβλέπων: ΠΕΤΡΟΣ Γ. ΒΕΡΝΑΔΟΣ, Καθηγητής ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΕΝΔΟΔΑΠΕΔΙΑ ΘΕΡΜΑΝΣΗ:

Διαβάστε περισσότερα

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά Ακτίνες Χ (Roentgen) Είναι ηλεκτρομαγνητικά κύματα με μήκος κύματος μεταξύ 10 nm και 0.01 nm, δηλαδή περίπου 10 4 φορές μικρότερο από το μήκος κύματος της ορατής ακτινοβολίας. ( Φάσμα ηλεκτρομαγνητικής

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Συστήµατα µεταφοράς ρευστών Ισοζύγιο µηχανικής ενέργειας Η αντίσταση στην ροή και η κίνηση ρευστών µέσα σε σωληνώσεις επιτυγχάνεται µε την παροχή ενέργειας ή απλά µε την αλλαγή της δυναµικής

Διαβάστε περισσότερα

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας.

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας. Άσκηση Η9 Θερμότητα Joule Θερμική ενέργεια Η θερμότητα μπορεί να είναι επιθυμητή π.χ. σε σώματα θέρμανσης. Αλλά μπορεί να είναι και αντιεπιθυμητή, π.χ. στους κινητήρες ή στους μετασχηματιστές. Θερμότητα

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ AP

ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ AP ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ ΚΕΝΟΥ AP Oι σωλήνες κενού AP της APRICUS, είναι κατάλληλοι για κατοικίες, αλλά και για επιχειρήσεις. Ο σχεδιασμός αυτών των σωλήνων, είναι αποτέλεσμα 10ετούς μελέτης, εφαρμογής και πειραματισμού

Διαβάστε περισσότερα

Προβλήµατα και Προοπτικές στην Αναβάθµιση Κοινωνικής Κατοικίας: Η Περίπτωση του Ηλιακού Χωριού

Προβλήµατα και Προοπτικές στην Αναβάθµιση Κοινωνικής Κατοικίας: Η Περίπτωση του Ηλιακού Χωριού Προβλήµατα και Προοπτικές στην Αναβάθµιση Κοινωνικής Κατοικίας: Η Περίπτωση του Ηλιακού Χωριού Νίκος Νταβλιάκος - Αριστοτέλης Μπότζιος-Βαλασκάκης Αθήνα 14 Οκτωβρίου 2004, Ξενοδοχείο Stratos Vassilikos

Διαβάστε περισσότερα

Ενεργητικά ηλιακά συστήματα με την εμπειρία της ALTEREN Α.Ε. Οδηγός εφαρμογής ενεργητικών ηλιακών συστημάτων

Ενεργητικά ηλιακά συστήματα με την εμπειρία της ALTEREN Α.Ε. Οδηγός εφαρμογής ενεργητικών ηλιακών συστημάτων Ενεργητικά ηλιακά συστήματα με την εμπειρία της ALTEREN Α.Ε. Οδηγός εφαρμογής ενεργητικών ηλιακών συστημάτων 1 ΓΕΝΙΚΑ Η εκμετάλλευση της ηλιακής ενέργειας μπορεί να γίνει με διάφορους τρόπους. Οι πλέον

Διαβάστε περισσότερα

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal

Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal Θ2 Φαινόμενα ανταλλαγής θερμότητας: Προσδιορισμός της σχέσης των μονάδων θερμότητας Joule και Cal 1. Σκοπός Η εργαστηριακή αυτή άσκηση αποσκοπεί, με αφορμή τον προσδιορισμό του παράγοντα μετατροπής της

Διαβάστε περισσότερα

1 Aπώλειες θερμότητας - Μονωτικά

1 Aπώλειες θερμότητας - Μονωτικά 1 Aπώλειες θερμότητας - Μονωτικά 1.1 Εισαγωγή Όταν ένα ρευστό ρέει μέσα σ' έναν αγωγό και η θερμοκρασία του διαφέρει από τη θερμοκρασία του περιβάλλοντος, τότε μεταδίδεται θερμότητα: από το ρευστό προς

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗ ΚΤΗΡΙΩΝ ΤΕΧΝΙΚΕΣ ΟΔΗΓΙΕΣ (Τ.Ο.Τ.Ε.Ε.)

ΜΕΘΟΔΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗ ΚΤΗΡΙΩΝ ΤΕΧΝΙΚΕΣ ΟΔΗΓΙΕΣ (Τ.Ο.Τ.Ε.Ε.) ΣΕΜΙΝΑΡΙΟ ΕΚΠΑΙΔΕΥΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΕΠΙΘΕΩΡΗΤΩΝ: ΟΚΤΩΒΡΙΟΣ 2010 ΜΕΘΟΔΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΜΟΥ ΕΝΕΡΓΕΙΑΚΗΣ ΑΠΟΔΟΣΗ ΚΤΗΡΙΩΝ ΤΕΧΝΙΚΕΣ ΟΔΗΓΙΕΣ (Τ.Ο.Τ.Ε.Ε.) ΑΘΗΝΑ ΓΑΓΛΙΑ Μηχανολόγος Μηχανικός Ε.Μ.Π., M.Sc. Οµάδα Εξοικονόµησης

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ 10 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ ΑΣΚΗΣΗ 0 ΜΕΤΡΗΣΗ ΤΗΣ ΕΣΤΙΑΚΗΣ ΑΠΟΣΤΑΣΗΣ ΦΑΚΟΥ . Γεωμετρική οπτική ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ Η Γεωμετρική οπτική είναι ένας τρόπος μελέτης των κυμάτων και χρησιμοποιείται για την εξέταση μερικών

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

Παρακάτω είναι τα βασικά χαρακτηριστικά του σχεδιασμού ενός Συλλέκτη EasySolar

Παρακάτω είναι τα βασικά χαρακτηριστικά του σχεδιασμού ενός Συλλέκτη EasySolar Ηλιακός Συλλέκτης EasySolar. ΓΕΝΙΚΑ: Ο συλλέκτης EasySolar ή ηλιακός θερμοσίφωνας είναι μια συσκευή που απορροφά τη θερμική ενέργεια του ήλιου και το μετατρέπει σε αξιοποιήσιμη θερμότητα. Η θερμότητα συνήθως

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΕΣ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΚΑΤΑΡΤΙΣΗ ΕΝΕΡΓΕΙΑΚΩΝ ΕΠΙΘΕΩΡΗΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ Α. ΕΠΙΘΕΩΡΗΣΗ ΚΤΗΡΙΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΔΕ4 ΤΕΧΝΟΛΟΓΙΕΣ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ Αθήνα, Ιούνιος 2011 Α έκδοση Ομάδα εργασίας θεματικής ενότητας ΔΕ4:

Διαβάστε περισσότερα

Ανθοκομία (Εργαστήριο)

Ανθοκομία (Εργαστήριο) Ανθοκομία (Εργαστήριο) Α. Λιόπα-Τσακαλίδη ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΩΝ ΓΕΩΠΟΝΩΝ 1 ΕΡΓΑΣΤΗΡΙΟ 4 Πολλαπλασιασμός ανθοκομικών φυτών 2 Στα θερμοκήπια

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Ηµεροµηνία: Κυριακή 3 Μαΐου 015 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Μεταφορά Ενέργειας με Ακτινοβολία

Μεταφορά Ενέργειας με Ακτινοβολία ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΠΙΣΤΗΜΗ - ΕΡΓΑΣΤΗΡΙΟ Εργαστηριακή Άσκηση: Μεταφορά Ενέργειας με Ακτινοβολία Σκοπός της Εργαστηριακής Άσκησης: Να προσδιοριστεί ο τρόπος με τον οποίο μεταλλικά κουτιά με επιφάνειες διαφορετικού

Διαβάστε περισσότερα

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Κεφάλαιο 4 Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας. 4.1. Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing). Οι ενδείξεις (τάσεις εξόδου) των θερμοζευγών τύπου Κ είναι δύσκολο να

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

Θέρμανση και τον κλιματισμός του κτιρίου της ΙΩΝΙΑ ΕΚΤΥΠΩΤΥΚΑΙ ΑΕ με τη χρήση της γεωθερμικής ενέργειας Μια Προ-μελέτη Εφαρμογής της BONAIR

Θέρμανση και τον κλιματισμός του κτιρίου της ΙΩΝΙΑ ΕΚΤΥΠΩΤΥΚΑΙ ΑΕ με τη χρήση της γεωθερμικής ενέργειας Μια Προ-μελέτη Εφαρμογής της BONAIR Θέρμανση και τον κλιματισμός του κτιρίου της ΙΩΝΙΑ ΕΚΤΥΠΩΤΥΚΑΙ ΑΕ με τη χρήση της γεωθερμικής ενέργειας Μια Προ-μελέτη Εφαρμογής της BONAIR Σε αυτό το κεφάλαιο θα πραγματοποιηθεί μια μελέτη εφαρμογής σε

Διαβάστε περισσότερα

Συστήματα διαχείρισης ενέργειας με ηλιακή υποβοήθηση για θέρμανση & ζεστό νερό χρήσης, με τη χρήση δοχείων διαστρωμάτωσης

Συστήματα διαχείρισης ενέργειας με ηλιακή υποβοήθηση για θέρμανση & ζεστό νερό χρήσης, με τη χρήση δοχείων διαστρωμάτωσης Συστήματα διαχείρισης ενέργειας με ηλιακή υποβοήθηση για θέρμανση & ζεστό νερό χρήσης, με τη χρήση δοχείων διαστρωμάτωσης Εκδήλωση ASHRAE, 25.02.2014 Κόνιας Γιάννης, Ηλεκτρολόγος Μηχανικός 1 Οι εγκαταστάσεις

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1:

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ 1. Πειραματική Διάταξη Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1: Σχήμα 1 : Η πειραματική συσκευή για τη μελέτη της απόδοσης φωτοβολταϊκού

Διαβάστε περισσότερα

>> Μέγιστη εξοικονόμηση >> Μηδενικές εκπομπές CO2 >> Απόλυτη άνεση

>> Μέγιστη εξοικονόμηση >> Μηδενικές εκπομπές CO2 >> Απόλυτη άνεση ΗΛΙΟΘΕΡΜΙΑ ΣΤΕΡΕΑ ΚΑΥΣΙΜΑ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΣΥΜΠΥΚΝΩΣΗ ΠΕΤΡΕΛΑΙΟΥ/ΑΕΡΙΟΥ Inisol ΟΙΚΙΑΚΑ ΗΛΙΑΚΑ ΣΥΣΤΗΜΑΤΑ EASYLIFE Ήλιος για όλους, ηλιακή ενέργεια για όλους >> Μέγιστη εξοικονόμηση >> Μηδενικές εκπομπές

Διαβάστε περισσότερα

Συστήματα διαχείρισης ενέργειας με ηλιακή υποβοήθηση για θέρμανση & ζεστό νερό χρήσης, με τη χρήση δοχείων διαστρωμάτωσης

Συστήματα διαχείρισης ενέργειας με ηλιακή υποβοήθηση για θέρμανση & ζεστό νερό χρήσης, με τη χρήση δοχείων διαστρωμάτωσης Συστήματα διαχείρισης ενέργειας με ηλιακή υποβοήθηση για θέρμανση & ζεστό νερό χρήσης, με τη χρήση δοχείων διαστρωμάτωσης Εκδήλωση ASHRAE, 31.05.2014 Κόνιας Γιάννης, Ηλεκτρολόγος Μηχανικός 1 Οι εγκαταστάσεις

Διαβάστε περισσότερα

Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller

Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller ΑΠ1 Μελέτη της ακτινοβολίας γ µε τη βοήθεια απαριθµητή Geiger - Muller 1. Σκοπός Στην άσκηση αυτή γίνεται µελέτη της εξασθενήσεως της ακτινοβολίας γ (ραδιενεργός πηγή Co 60 ) µε την βοήθεια απαριθµητή

Διαβάστε περισσότερα

ΟΔΗΓΟΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΓΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΕΝΕΡΓΕΙΑΚΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ

ΟΔΗΓΟΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΓΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΕΝΕΡΓΕΙΑΚΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ ΟΔΗΓΟΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΓΩΝ ΣΥΜΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΣΜΟΥ ΚΑΙ ΘΕΡΜΟΤΗΤΑΣ ΩΣ ΠΡΟΣ ΤΗΝ ΕΝΕΡΓΕΙΑΚΗ ΑΠΟΔΟΤΙΚΟΤΗΤΑ ΕΚΔΟΣΗ 2.0 30.10.2009 Α. Πεδίο Εφαρμογής Ο Οδηγός Αξιολόγησης εφαρμόζεται κατά την αξιολόγηση αιτήσεων

Διαβάστε περισσότερα

Εργαστήριο ήπιων µορφών ενέργειας

Εργαστήριο ήπιων µορφών ενέργειας Εργαστήριο ήπιων µορφών ενέργειας Ενότητα: Θερµικός υπολογισµός ηλιακού συλλέκτη Ταουσανίδης Νίκος Τµήµα ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνικό φυλλάδιο Αντλίες θερμότητας Yutaki S80

Τεχνικό φυλλάδιο Αντλίες θερμότητας Yutaki S80 Τεχνικό φυλλάδιο Αντλίες θερμότητας Yutaki S80 Yutaki S80 Τεχνικά χαρακτηριστικά και πλεονεκτήματα Θερμοκρασία εξόδου ζεστού νερού έως 80 o C ακόμα και με εξωτερική θερμοκρασία περιβάλλοντος -20 o C. Αποτελεί

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων

Δυναμική Μηχανών I. Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Δυναμική Μηχανών I Μοντελοποίηση Ηλεκτρικών και Υδραυλικών Συστημάτων Χειμερινό Εξάμηνο 2014 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δημήτριος Τζεράνης, Ph.D. Περιεχόμενα Μοντελοποίηση Ηλεκτρικών Συστημάτων Μεταβλητές

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ROTEX Sanicube Το µπόιλερ υγιεινού ζεστού νερού

ROTEX Sanicube Το µπόιλερ υγιεινού ζεστού νερού ROTEX Sanicube Το µπόιλερ υγιεινού ζεστού νερού Όσο υγιεινό ζεστό νερό θέλετε Μια µεγάλη συµβολή στην ποιότητα της ζωής σας Το ζεστό νερό έχει γίνει απαραίτητο στοιχείο άνεσης σε κάθε σπίτι είτε για ένα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό;

ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ. Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό; ΣΥΣΤΗΜΑΤΑ ΓΕΩΘΕΡΜΙΑΣ Τους δάνεισα το περιβάλλον που θα ζήσω. Θα μου το επιστρέψουν καθαρό; ΠΡΟΓΡΑΜΜΑ ΕΞΟΙΚΟΝΩΜΗΣΗΣ ΕΝΕΡΓΕΙΑΣ APOLYTON : ΠΑΡΑΓΩΓΗ ΕΝΕΡΓΕΙΑΣ ΚΟΥΦΩΜΑΤΑ ΥΨΗΛΗΣ Θ Προστατέψτε το περιβάλλον και

Διαβάστε περισσότερα

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:

( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά: Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ (SPECTROMETRIC TECHNIQUES)

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ (SPECTROMETRIC TECHNIQUES) ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ (SPECTROMETRIC TECHNIQUES) ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2014 ΦΑΣΜΑΤΟΜΕΤΡΙΚΕΣ ΤΕΧΝΙΚΕΣ Στηρίζονται στις αλληλεπιδράσεις της ηλεκτρομαγνητικής ακτινοβολίας με την ύλη. Φασματομετρία=

Διαβάστε περισσότερα

Μελέτη των χαρακτηριστικών της β - ραδιενεργού εκποµπής

Μελέτη των χαρακτηριστικών της β - ραδιενεργού εκποµπής ΑΠ2 Μελέτη των χαρακτηριστικών της β - ραδιενεργού εκποµπής 1. Σκοπός Η εργαστηριακή αυτή άσκηση µελετά τα χαρακτηριστικά της β - ακτινοβολίας. Πιο συγκεκριµένα υπολογίζεται πειραµατικά η εµβέλεια των

Διαβάστε περισσότερα

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης

Δίκτυα Τηλεπικοινωνιών. και Μετάδοσης Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Δίκτυα Τηλεπικοινωνιών και Μετάδοσης Σύστημα μετάδοσης με οπτικές ίνες Tο οπτικό φέρον κύμα μπορεί να διαμορφωθεί είτε από αναλογικό

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ 8. Ενδεικτικό Έντυπο Ενεργειακής Επιθεώρησης Κτιρίου

ΠΑΡΑΡΤΗΜΑ 8. Ενδεικτικό Έντυπο Ενεργειακής Επιθεώρησης Κτιρίου ΠΑΡΑΡΤΗΜΑ 8 Ενδεικτικό Έντυπο Ενεργειακής Επιθεώρησης Κτιρίου 1 1. Γενικά Στοιχεία Χρήση κτιρίου Μικτή χρήση Έτος έκδοσης οικοδομικής άδειας: Έτος ολοκλήρωσης κατασκευής: Κατοικίες Γραφεία Καταστήματα

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΗΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ

ΕΡΓΑΣΙΑ ΣΤΗΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ ΕΡΓΑΣΙΑ ΣΤΗΝ ΟΙΚΙΑΚΗ ΟΙΚΟΝΟΜΙΑ Σχολικό έτος 2011/2012 ΘΕΡΜΑΝΣΗ ΕΡΓΑΣΤΗΚΑΝ ΟΙ ΜΑΘΗΤΕΣ ΜΑΡΙΟΣ ΜΟΛΑΣΙΩΤΗΣ ΠΕΡΙΚΛΗΣ ΣΠΑΝΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ ΤΕΛΙΟΓΛΑΝΙΔΗΣ Υπεύθυνες καθηγήτριες Παπαδοπούλου Τζένη, Κοσμίδου Σόνια

Διαβάστε περισσότερα

Η Ελληνική Πρόταση στην Ηλιακή Ενέργεια! Εγγύηση 5 χρόνια

Η Ελληνική Πρόταση στην Ηλιακή Ενέργεια! Εγγύηση 5 χρόνια Η Ελληνική Πρόταση στην Ηλιακή Ενέργεια! Εγγύηση 5 χρόνια Τεχνικά Χαρακτηριστικά Συλλεκτών Επιλεκτικών και Κενού Συλλέκτης Green Line Strip ENGINEERING Επιλεκτικός απορροφητής από φύλλο αλουμινίου strip

Διαβάστε περισσότερα

Κεφάλαιο 1: ΘΕΡΜΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ

Κεφάλαιο 1: ΘΕΡΜΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ Κεφάλαιο 1: ΘΕΡΜΙΚΗ ΑΚΤΙΝΟΒΟΛΙΑ 1.1 Εισαγωγή Στο κεφάλαιο αυτό θα αναφερθούμε στις ιδιότητες και στους θεμελιώδεις νόμους της ακτινοβολίας και στη συνέχεια, στο Κεφάλαιο 2 θα εξετάσουμε την μετάδοση θερμότητας

Διαβάστε περισσότερα

ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗΝ ΥΠΗΡΕΣΙΑ ΤΗΣ ΟΙΚΟΝΟΜΙΑΣ. ΗΛΙΑΚΟΙ ΘΕΡΜΟΣΙΦΩΝΕΣ με ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ με ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΔΙΑΦΟΡΙΚΟΙ ΕΛΕΓΚΤΕΣ

ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗΝ ΥΠΗΡΕΣΙΑ ΤΗΣ ΟΙΚΟΝΟΜΙΑΣ. ΗΛΙΑΚΟΙ ΘΕΡΜΟΣΙΦΩΝΕΣ με ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ με ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΔΙΑΦΟΡΙΚΟΙ ΕΛΕΓΚΤΕΣ ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΤΕΧΝΟΛΟΓΙΑ ΣΤΗΝ ΥΠΗΡΕΣΙΑ ΤΗΣ ΟΙΚΟΝΟΜΙΑΣ ΗΛΙΑΚΟΙ ΘΕΡΜΟΣΙΦΩΝΕΣ με ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΗΛΙΑΚΟΙ ΣΥΛΛΕΚΤΕΣ με ΣΩΛΗΝΕΣ ΚΕΝΟΥ ΔΙΑΦΟΡΙΚΟΙ ΕΛΕΓΚΤΕΣ ΣΩΛΗΝΕΣ ΚΕΝΟΥ: ΤΕΧΝΟΛΟΓΙΑ ΑΙΧΜΗΣ Οι σωλήνες κενού αποτελούνται

Διαβάστε περισσότερα

Εφαρμογή ΘΗΣ για θέρμανση κολυμβητικής δεξαμενής

Εφαρμογή ΘΗΣ για θέρμανση κολυμβητικής δεξαμενής Εφαρμογή ΘΗΣ για θέρμανση κολυμβητικής δεξαμενής ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ ΘΕΡΜΑΝΣΗΣ ΠΙΣΙΝΑΣ 50m 3 ΣΤΗΝ ΚΕΡΚΥΡΑ ΣΚΟΠΟΣ ΤΟΥ ΕΡΓΟΥ Η πλειονότητα των κολυμβητικών δεξαμενών στην Ελλάδα αποτελείται από εξωτερικές, μη

Διαβάστε περισσότερα

Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ. 12 Η Εταιρεία μας Πιστοποιήσεις. 13-16 Συλλέκτες. 17-18 Ηλιακά θερμοσιφωνικά συστήματα. 19 Ηλιακά Συστήματα.

Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ. 12 Η Εταιρεία μας Πιστοποιήσεις. 13-16 Συλλέκτες. 17-18 Ηλιακά θερμοσιφωνικά συστήματα. 19 Ηλιακά Συστήματα. Solar Energy Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ 1 Η Εταιρεία μας Πιστοποιήσεις 13-16 Συλλέκτες 17-18 Ηλιακά θερμοσιφωνικά συστήματα 19 Ηλιακά Συστήματα 1 - Μπόιλερ 18 19 Εγκατάσταση Η Εταιρεία μας Η Εταιρεία μας

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

Ηλιοθερμικά συστήματα για θέρμανση κτιρίων κατοικίας

Ηλιοθερμικά συστήματα για θέρμανση κτιρίων κατοικίας Ηλιοθερμικά συστήματα για θέρμανση κτιρίων κατοικίας Εκδήλωση ASHRAE, 07.04.2015 Κόνιας Γιάννης, Ηλεκτρολόγος Μηχανικός 1 Ετήσια ηλιακή ακτινοβολία σε οριζόντια επιφάνεια Μέση ετήσια ηλιακή ακτινοβολία

Διαβάστε περισσότερα

Ανίχνευση Κίνησης Παρουσίας. Κέντρο εκπαίδευσης ISC

Ανίχνευση Κίνησης Παρουσίας. Κέντρο εκπαίδευσης ISC Ανίχνευση Κίνησης Παρουσίας Κέντρο εκπαίδευσης ISC July 2009 > Ανίχνευση κίνησης και παρουσίας Περιεχόμενα Τι είναι ο ανιχνευτής κίνησης? Ανιχνευτές κίνησης & οφέλη για τον πελάτη Ανιχνευτές κίνησης στην

Διαβάστε περισσότερα

V. ΤΕΥΧΟΣ ΥΠΟΛΟΓΙΣΜΩΝ

V. ΤΕΥΧΟΣ ΥΠΟΛΟΓΙΣΜΩΝ ΔΗΜΟΣ ΩΡΑΙΟΚΙΑΣΤΡΟΥ ΕΡΓΟ : ΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ ΚΟΝΤΑΞΟΠΟΥΛΕΙΟΥ ΚΛΕΙΣΤΟΥ ΓΥΜΝΑΣΤΗΡΙΟΥ ΑΡ. ΜΕΛΕΤΗΣ: 1/2015 ΠΡΟΥΠΟΛΟΓΙΣΜΟΣ: 421.130,25 ΧΡΗΜΑΤΟΔΟΤΗΣΗ: ΤΑΜΕΙΟ ΣΥΝΟΧΗΣ ΑΞΟΝΑΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ "01 ΠΡΟΣΤΑΣΙΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ: ΓΕΩΘΕΡΜΙΚΗ ΕΝΕΡΓΕΙΑ ΤΣΑΝΑΚΑΣ ΑΝΑΣΤΑΣΙΟΣ ΜΩΥΣΙΔΗΣ ΓΕΩΡΓΙΟΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΟΝΙΤΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Εισαγωγή Άνθρωπος και ενέργεια Σχεδόν ταυτόχρονα με την εμφάνιση του ανθρώπου στη γη,

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1

ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΑΣΚΗΣΗ ΘΕΡΜΟΜΟΝΩΣΗΣ 1 2 1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ 3 ΘΕΡΜΟΤΗΤΑ, Q ( W h ) ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ Μεταφορά ενέργειας με: Θερμική αγωγή ή Θερμική μεταβίβαση ή με συναγωγιμότητα (μεταφορά θερμότητας στην επιφάνεια επαφής

Διαβάστε περισσότερα

Γεωθερμία Εξοικονόμηση Ενέργειας

Γεωθερμία Εξοικονόμηση Ενέργειας GRV Energy Solutions S.A Γεωθερμία Εξοικονόμηση Ενέργειας Ανανεώσιμες Πηγές Σκοπός της GRV Ενεργειακές Εφαρμογές Α.Ε. είναι η κατασκευή ενεργειακών συστημάτων που σέβονται το περιβάλλον με εκμετάλλευση

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα στα Κύµατα

Επαναληπτικό διαγώνισµα στα Κύµατα ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 Επαναληπτικό διαγώνισµα στα Κύµατα Θέµα 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

Τεχνικά θέματα εγκαταστάσεων

Τεχνικά θέματα εγκαταστάσεων Κέντρο Ανανεώσιμων Πηγών Ενέργειας Χρήση ΘΗΣ για θέρμανση κολυμβητικών δεξαμενών Τεχνικά θέματα εγκαταστάσεων ΧΑΣΑΠΗΣ ΔΗΜΗΤΡΙΟΣ RENEWABLE ENERGY SYSTEMS TECHNOLOGY ENG. MSc ΚΑΠΕ - ΤΜΗΜΑ ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

VIEGA FONTERRA Συστήµατα Θέρµανσης και Ψύξης απέδου Όλα από ένα χέρι

VIEGA FONTERRA Συστήµατα Θέρµανσης και Ψύξης απέδου Όλα από ένα χέρι VIEGA FONTERRA Συστήµατα Θέρµανσης και Ψύξης απέδου Όλα από ένα χέρι Η απαίτηση για µια ευχάριστη θερµική άνεση κατά τη διάρκεια όλου του χρόνου, όλο και αυξάνεται. Το σύστηµα θέρµανσης και ψύξης απέδου

Διαβάστε περισσότερα

ενεργειακών απαιτήσεων πρώτης ύλης, ενεργειακού περιεχομένου παραπροϊόντων, τρόπους αξιοποίησής

ενεργειακών απαιτήσεων πρώτης ύλης, ενεργειακού περιεχομένου παραπροϊόντων, τρόπους αξιοποίησής Πίνακας. Πίνακας προτεινόμενων πτυχιακών εργασιών για το εαρινό εξάμηνο 03-4 ΤΜΗΜΑ: MHXANIKΩN ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΤΟΜΕΑΣ: ΕΝΕΡΓΕΙΑΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ Α/Α Τίτλος θέματος Μέλος Ε.Π Σύντομη περιγραφή Προαπαιτούμενα

Διαβάστε περισσότερα

3. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο

3. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο Σηµειώσεις ΑΠΕ Ι Κεφ. 3 ρ Π. Αξαόπουλος Σελ. 1 3. ΗΛΙΑΚΗ ΑΚΤΙΝΟΒΟΛΙΑ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕ Ο Η γνώση της ηλιακής ακτινοβολίας που δέχεται ένα κεκλιµένο επίπεδο είναι απαραίτητη στις περισσότερες εφαρµογές

Διαβάστε περισσότερα

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0

Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 Οι δύο θεμελιώδεις παράμετροι προσδιορισμού της ταχύτητας του φωτός στο κενό: Διηλεκτρική σταθερά ε0 Μαγνητική διαπερατότητα μ0 1 c 0 0 Όταν το φως αλληλεπιδρά με την ύλη, το ηλεκτρομαγνητικό πεδίο του

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚA BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ - ΗΛΙΑΚΑ BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ

ΗΛΕΚΤΡΙΚA BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ - ΗΛΙΑΚΑ BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ ΗΛΕΚΤΡΙΚA BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ - ΗΛΙΑΚΑ BOILER ΛΕΒΗΤΟΣΤΑΣΙΟΥ (Ηλιακά Βεβιασμένης Κυκλοφορίας) Το ζεστό νερό χρήσης, αποτελεί, όσο και εάν δεν το έχουμε συνειδητοποιήσει, μία δραστηριότητα, καθημερινώς

Διαβάστε περισσότερα

2. Ηλιακοί συλλέκτες Τύποι και Βασικές Ιδιότητες

2. Ηλιακοί συλλέκτες Τύποι και Βασικές Ιδιότητες 2. Ηλιακοί συλλέκτες Τύποι και Βασικές Ιδιότητες Επίπεδοι Χωρίς κάλυμμα Κενού Πλαστικός απορροφητής συλλέκτης χωρίς κάλυμμα Χιτώνιο ελαστικού σωλήνα Σωλήνας διανομής Αισθητήρας θερμοκρασίας Αποστάτης Σπειροειδής

Διαβάστε περισσότερα

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις.

Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περιβαλλοντικές απόψεις της παροχής ενέργειας στις χηµικές αντιδράσεις. Περίληψη Η επιβάρυνση του περιβάλλοντος που προκαλείται από την παροχή ηλεκτρικής ή θερµικής ενέργειας είναι ιδιαίτερα σηµαντική.

Διαβάστε περισσότερα

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας

Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Γεωθερµικό Σύστηµα: Γεωθερµική Αντλία Θερµότητας Η Αντλία Θερµότητας ανήκει στην κατηγορία των Ανανεώσιµων Πηγών Ενέργειας. Για την θέρµανση, το ζεστό νερό χρήσης και για την ψύξη, το 70-80% της ενέργειας

Διαβάστε περισσότερα

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες

Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Φθίνουσες μηχανικές ταλαντώσεις Οι ταλαντώσεις των οποίων το πλάτος ελαττώνεται με το χρόνο και τελικά μηδενίζονται λέγονται φθίνουσες ταλαντώσεις. Η ελάττωση του πλάτους (απόσβεση)

Διαβάστε περισσότερα

Η/Μ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΟΧΕΤΕΥΣΗ

Η/Μ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΟΧΕΤΕΥΣΗ Η/Μ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΑΠΟΧΕΤΕΥΣΗ ΑΠΟΧΕΤΕΥΣΗ Ανάμικτη περισυλλογή Ένα δίκτυο για βρόχινα νερά και λύματα απλό και φθηνό διάμετροι μεγάλοι καθώς νερό βροχής μπορεί για μικρό διάστημα να είναι σε μεγάλες ποσότητες

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

"Έξυπνο σπίτι" ΚΝΧ και αντλίες θερμότητας (Α/Θ)

Έξυπνο σπίτι ΚΝΧ και αντλίες θερμότητας (Α/Θ) "Έξυπνο σπίτι" ΚΝΧ και αντλίες θερμότητας (Α/Θ) Η ιδανική λύση για οικονομική ψύξη και θέρμανση με δωρεάν ενέργεια από το περιβάλλον Από τους Νεκτάριο Βρυώνη, Ηλεκτρολόγο Μηχανικό, MSc ABB i-bus KNX Product

Διαβάστε περισσότερα

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας 1 3 ο κεφάλαιο : Απαντήσεις των ασκήσεων Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες: 1. Συμπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείμενο, έτσι ώστε οι προτάσεις που προκύπτουν να είναι

Διαβάστε περισσότερα

to edit Master title style

to edit Master title style ΕΝΩΣΗ ΒΙΟΜΗΧΑΝΙΩΝ ΗΛΙΑΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕΜΙΝΑΡΙΟ ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Θέρμανση κολυμβητικών δεξαμενών ΧΡΙΣΤΟΔΟΥΛΑΚΗ ΡΟΖΗ MSc ENVIRONMENTAL DESIGN & ENGINEERING BSc PHYSICS ΚΑΠΕ - ΤΜΗΜΑ ΘΕΡΜΙΚΩΝ ΗΛΙΑΚΩΝ

Διαβάστε περισσότερα

Θέρμανση Νερού - Τεχνικό Εγχειρίδιο

Θέρμανση Νερού - Τεχνικό Εγχειρίδιο ΤΟ ΕΥΡΩΠΑΪΚΟ ΠΡΟΓΡΑΜΜΑ GREENBUILDING Θέρμανση Νερού - Τεχνικό Εγχειρίδιο Περιεχόμενα 1. Εισαγωγή... Error! Bookmark not defined. 2. Σχέδιο Δράσης... 8 3. Έκθεση... 8 Παράρτημα:... 10 1 Συγγραφείς: Benke,

Διαβάστε περισσότερα

Χρήση Θερμικών Ηλιακών Συστημάτων. Τεχνολογίες Θέρμανσης Εξωτερικών Κολυμβητικών Δεξαμενών με χρήση ΘΗΣ. Συλλέκτες χωρίς κάλυμμα. Επίπεδοι Συλλέκτες

Χρήση Θερμικών Ηλιακών Συστημάτων. Τεχνολογίες Θέρμανσης Εξωτερικών Κολυμβητικών Δεξαμενών με χρήση ΘΗΣ. Συλλέκτες χωρίς κάλυμμα. Επίπεδοι Συλλέκτες Κέντρο Ανανεώσιμων Πηγών Ενέργειας Χρήση Θερμικών Ηλιακών Συστημάτων Πλεονεκτήματα Τεχνολογίες Θέρμανσης Εξωτερικών Κολυμβητικών Δεξαμενών με χρήση ΘΗΣ Επέκταση κολυμβητικής περιόδου από τον Απρίλιο μέχρι

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ»

ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 217 ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΔΙΑΘΛΑΣΗΣ ΣΕ «ΕΙΚΟΝΙΚΟ ΕΡΓΑΣΤΗΡΙΟ» Λουκία Μαρνέλη Εκπαιδευτικός Δευτεροβάθμιας Εκπαίδευσης Διεύθυνση: Μονής Κύκκου 1, 15669 Παπάγου

Διαβάστε περισσότερα