Fermionic Superstring Loop Amplitudes in the Pure Spinor Formalism

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Fermionic Superstring Loop Amplitudes in the Pure Spinor Formalism"

Transcript

1 Fermionic Superstring Loop Amplitudes in the Pure Spinor Formalism Christian Stahn (UNC) UNC String Theory Seminar, 3 May 2007 based on arxiv:

2 Outline Introduction Methods for kinematic factor evaluation Superfield components Integration in pure spinor superspace Reduction to kinematic bases Application to one- and two-loop amplitudes One loop Two loops Discussion

3 Pure spinor quantisation of the superstring [Berkovits (2000)] Problems with superstring quantisation: RNS: Spacetime susy only after summation over spin structures GS: Need to go to light cone gauge Flat-space action: S = d 2 z ( 12 x m xm p α θ α pᾱ θᾱ + w α λ wᾱ λᾱ) α + Bosonic ghost λ subject to pure spinor constraint: Critical in ten dimensions. λγ m λ = 0 BRST operator Q = λ α d α : cohomology reproduces superstring spectrum Tree amplitudes agree with RNS [Berkovits & Vallilo (2000)] Relate to GS formalism in semi-lightcone gauge

4 Pure spinor loop amplitudes Multiloop amplitudes constructed in pure spinor formulation, and used to prove vanishing theorems [Berkovits (2004)]. Massless multiloop amplitude: Need at least four external states. One-loop amplitude: A = K K d 2 τ (Im τ) 5 d 2 z 2 d 2 z 3 d 2 z 4 G(z i, z j ) k i k j Kinematic factors expressed as pure spinor superspace integrals : K 1-loop = (λa)(λγ m W )(λγ n W )F mn i<j K 2-loop = (λγ mnpqr λ)(λγ s W )F mn F pq F rs Covariant zero mode integration: λ 3 θ 5 = 1. Superfields: A α (γ a θ) α ζ a + (uγ a θ)(γ a θ) α +... D β D β and A α Am W α D β F mn, where D α = α k a(γ a θ) α. Bosonic amplitudes agree with RNS [Berkovits & Mafra, Mafra (2005)]

5 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

6 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

7 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

8 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

9 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

10 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

11 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

12 Outline Introduction Methods for kinematic factor evaluation Superfield components Integration in pure spinor superspace Reduction to kinematic bases Application to one- and two-loop amplitudes One loop Two loops Discussion

13 Superfield recursion relations [Ooguri et al. (2000), Grassi & Tamassia (2004), Policastro & Tsimpis (2006)] A α (x, θ) = (θγa ) α ζ a (θγa ) α (θγ a u) +? A m, W α, F mn =? Choose a gauge θ α A α = 0. On-shell identities 2D (α A β) = γ m αβa m, D α W β = 1 4 (γmn ) α β F mn lead to recursion relations A (n) α = 1 n+1 (γm θ) α A (n 1) m A (n) m = 1 n (θγ mw (n 1) ) W α(n) = 1 2n (γmn θ) α m A (n 1) n where f (n) = 1 n! θαn θ α 1 (Dα1 D αn f ). Can solve: obtain e.g. A (n) m from ζ, u via derivative operator O m q = 1 2 (θγ m qp θ) p : A (2k) m = 1 (2k)! [Ok ] m q ζ q, A (2k+1) m = 1 (2k+1)! [Ok ] m q (θγ q u).

14 Outline Introduction Methods for kinematic factor evaluation Superfield components Integration in pure spinor superspace Reduction to kinematic bases Application to one- and two-loop amplitudes One loop Two loops Discussion

15 Pure spinor integrals: Tensorial formulae Recall: Lorentz invariant integration T αβγ,δ 1...δ 5 λ α λ β λ γ θ δ 1... θ δ5 = T (αβγ),[δ 1...δ 5] with normalisation (λγ m θ)(λγ n θ)(λγ p θ)(θγ mnp θ) = 1. Uniquely determined by symmetry λ (α λ β λ γ) : Sym 3 S + = [00003] [10001] θ [δ 1... θ δ5] : Alt 5 S + = [00030] [11010]. Can therefore derive tensorial expressions such as (λγ mnpqr θ)(λγ a θ)(λγ b θ)(θγ cde θ) ( = 1 42 δ mnpqr abcde + ) 1 5! εmnpqr abcde Generally, by Fierzing, reduce to three basic correlators: (λγ [5] λ)(λ{γ [1] or γ [3] or γ [5] }θ)(θγ [3] θ)(θγ [3] θ).

16 Tensorial formulae: example application Example from two-loop four-fermion amplitudes: F = (λγ mnpq[r λ)(λγ s] u 1 )(θγ n ab θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ). After Fierz transformations: ( F = (λγ mnpq[r λ)(λγ c θ)(θγ ab n θ)(θγ jkl θ) (u 1 γ s] γ c γ b u 2 ) ! ! 16 (λγ mnpq[r λ)(λγ cde θ)(θγ ab n θ)(θγ jkl θ) (u 1 γ s] γ cde γ b u 2 ) (λγ mnpq[r λ)(λγ cdefg θ)(θγ ab n θ)(θγ jkl θ) (u 1 γ s] γ cdefg γ b u 2 )) 1 3! 16 (u 3γ q γ jkl γ s u 4 ), Use correlator formulae such as (λγ mnpqr λ)(λγ abcde θ)(θγ fgh θ)(θγ jkl θ) ( = 16 7 δ mnpqr [ ] δ m n p abc δf j δg d δ q k ( δe h δ r l +2δl e δ r h)+δ m n ab δfg cd δ p q jk (δe h δ r l 3δl e δ r h) Fairly complicated m n p q r + 1 5! εmnpqr m n p q r ) [abcde][fgh][jkl](fgh jkl)

17 Reduction to traces and bilinears Covariant expression for correlator, using gamma matrices: λ α λ β λ γ θ δ 1... θ δ5 = N 1 [ (γ m ) αδ 1 (γ n ) βδ 2 (γ p ) γδ 3 (γ mnp ) δ 4δ 5 ] (αβγ)[δ 1...δ 5] Normalisation constant N fixed by N (λγ x θ)(λγ y θ)(λγ z θ)(θγ xyz θ) = [ (γ m ) αδ 1 (γ n ) βδ 2 (γ p ) γδ 3 (γ mnp ) δ 4δ 5 ](αβγ)[δ 1...δ 5] (γ x ) αδ1 (γ y ) βδ2 (γ z ) γδ3 (γ xyz ) δ4 δ 5 = 1 60 Tr(γ xγ m ) Tr(γ y γ n ) Tr(γ z γ p ) Tr(γ xyz γ pnm ) Tr(γ zγ pnm γ zyx γ n γ x γ m γ y γ p ) (60 terms) = Use computer algebra to carry out spinor index symmetrisations simplify γ products and traces (e.g. Mathematica with GAMMA)

18 Reduction to traces and bilinears (2) Allows for easier evaluation of fermionic correlators: N (λγ mnpq[r λ)(λγ s] u 1 )(θγ n ab θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) = 1 60 Tr(γ xγ ab nγ y γ mnpq[r )(u 3 γ q γ xyz γ s u 4 )(u 1 γ s] γ z γ b u 2 ) (u 2γ b γ xyz γ q u 3 )(u 1 γ s γ y γ ab nγ x γ mnpq[r γ z γ s] u 4 ), (24 terms) Simpler because: no Fierzing necessary fewer open indices fewer ε terms easier to put on computer

19 Component approach Can also use gamma matrix expression λ α λ β λ γ θ δ 1... θ δ5 = N 1 [ (γ m ) αδ 1 (γ n ) βδ 2 (γ p ) γδ 3 (γ mnp ) δ 4δ 5 ] to compute correlators of particular spinor components. Example: Check coefficients in t mnm 1n 1...m 4 n 4 (αβγ)[δ 1...δ 5] 10 (λγ p γ m 1n 1 θ)(λγ q γ m 2n 2 θ)(λγ r γ m 3n 3 θ)(θγ m γ n γ pqr γ m 4n 4 θ) ( = 2 45 η mn t m 1n 1...m 4 n 4 ) εmnm 1n 1...m 4 n 4 Choose particular index values. Expand integrand and evaluate correlators on all monomials (here, about 10 5 ) : (λγ p γ 12 θ)(λγ q γ 21 θ)(λγ r γ 34 θ)(θγ 0 γ 0 γ pqr γ 43 θ) = 12 λ 1 λ 1 λ 1 θ 1 θ 9 θ 10 θ 11 θ λ 16 λ 16 λ 16 θ 5 θ 6 θ 7 θ 8 θ 16 = Probably unsuitable for more complex applications.

20 Outline Introduction Methods for kinematic factor evaluation Superfield components Integration in pure spinor superspace Reduction to kinematic bases Application to one- and two-loop amplitudes One loop Two loops Discussion

21 Purely bosonic expressions Easy to algorithmically deal with bosonic on-shell identitites: momentum conservation i k i = 0 and masslessness ki 2 = 0: eliminate one momentum (e.g. k 4 ) and set all ki 2 to zero eliminate one quadratic invariant (e.g. s 23 s 12 s 13 ) equation of motion for polarisation vector k i ζ i = 0: set all k i ζ i to zero replace one extra k ζ, e.g. k 3 ζ 4 ( k 1 k 2 ) ζ 4 For gauge invariant expressions: start with Fi ab = 2k [a i ζ b] i, e.g. gauge invariant k 4 ζ 1 ζ 2 ζ 3 ζ 4 scalars: Tr(F 1 F 2 F 3 F 4 ) Tr(F 1 F 2 F 4 F 3 ) Tr(F 1 F 3 F 2 F 4 ) Tr(F 1 F 2 ) Tr(F 3 F 4 ) Tr(F 1 F 3 ) Tr(F 2 F 4 ) Tr(F 1 F 4 ) Tr(F 2 F 3 ) gauge invariant k 6 ζ 1 ζ 2 ζ 3 ζ 4 scalars: additionally terms like k 3 F 1 F 2 k 3 Tr(F 3 F 4 ), k 4 F 1 F 3 k 2 Tr(F 2 F 4 )

22 Fermions: Fierz identities Spinors more complicated. Example question: which scalars from u 1 u 2 u 3 u 4? start from T 1 (1234) = (u 1 γ a u 2 )(u 3 γ a u 4 ), T 3 (1234) = (u 1 γ abc u 2 )(u 3 γ abc u 4 ). Fierz transformations T 3 (1234) = 12T 1 (1234) 24T 1 (1324) (γ a ) (αβ (γ a ) γ)δ = 0 T 1 (1234) + T 1 (1324) + T 1 (1423) = 0 leaves two scalars T 1 (1234) and T 1 (1324) agrees with rep theory, (S + ) 4 = Easy to computerise in matrix representation for γ a : Reduce to independent monomials u α 1 uβ 2 uγ 3 uδ 4, e.g. T 1 (1234) = 2u 9 1 u9 2 u1 3u u 10 1 u10 2 u1 3u

23 Fermions: Dirac equation In one- and two-loop amplitudes: need (k 2 or k 4 ) u 1 u 2 u 3 u 4. Spinors subject to /k i u i = 0 Useful observation: only need one k into (u i γ [n] u j ) bilinears. Thus consider (k 2 or k 4 ) (u 1 u 2 u 3 u 4 scalar or 2-tensor) Computer treatment: solve Dirac equation with SO(8) spinors ( ) ( ) ( ) u s u = u c with γ u s +u s u c = u c. Obtain coupled equations (k 0 + k 9 )u s (σ k)u c = 0, (k 0 k 9 )u c (σ T k)u s = 0 with solution u s = (σ k)u c / 2k +. Everything reduced to independent monomials in (u c i )1...8

24 Using particular momenta This algorithm reduces all scalars containing k i and u i to fαβγδ (k i )(u c 1 )α (u c 2 )β (u c 3 )γ (u c 4 )δ Problem: manifest Lorentz invariance broken by γ a matrix rep. difficult to deal with the f αβγδ (k i ) (e.g. terms proportional to ki 2 = 0) One solution: substitute sets of particular vectors for k i, e.g. k µ 1 = (5, 3, 0,..., 0, 4) k µ 2 k µ 3 = (5, 3, 0,..., 4, 0) k µ 4 = ( 5, 0, 3,..., 4, 0) = ( 5, 0, 3,..., 0, 4) Results: Algorithms to find independent scalars, decomposition algorithms, e.g. for k 2 u 1... u 4 scalars, (u 1 /k 3 u 2 )(u 3 /k 1 u 4 ) s 12 T 1 (1234) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) s 13 T 1 (1234) (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) s 13 T 1 (1324)

25 The problems addressed in this talk Evaluation of pure spinor superspace integrals in kinematic factors: K 2-loop = (λγ mnpq[r λ)(λγ s] W (θ))f mn (θ)f pq (θ)f rs (θ) Expand superfields, saturate θ 5 +ka 2 kmk 2 p 3 kr 4 (λγ mnpq[r λ)(λγ s] u 1 )(θγ ab n θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) + Evaluate correlator = (u 1 γ mpr u 2 )(u 3 γ a u 4 ) + (u 1 γ ai 1i 2 u 2 )(u 3 γ mpr i 1 i 2 u 4 ) + +ε ampr i 1...i 6 (u 1 γ i 3...i 9 u 2 )(u 3 γ i 1i 2 i7i 8 i 9 u 4 ) + Reduce to kinematic basis (Use on-shell identities) K = s 12 [ (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ]

26 Outline Introduction Methods for kinematic factor evaluation Superfield components Integration in pure spinor superspace Reduction to kinematic bases Application to one- and two-loop amplitudes One loop Two loops Discussion

27 One-loop massless four-point amplitude Derived in pure spinor formalism [Berkovits (2004)]: A = K K Kinematic factor: Saturate θ 5 : d 2 τ (Im τ) 5 d 2 z 2 d 2 z 3 d 2 z 4 G(z i, z j ) k i k j K = (λa 1 )(λγ m W 2 )(λγ n W 3 )F 4,mn + ( cycl(234) ) X ABCD = i<j (λa (A) 1 )(λγm W (B) 2 )(λγ n W (C) 3 )F (D) 4,mn with A + B + C + D = 5. Parities of A, B, C, D bosonic or fermionic external states

28 Four bosons (Review of [Mafra (2005)]) Can evaluate correlator for one labelling, and then symmetrise: K (4B) 1-loop = (λa 1 )(λγ m W 2 )(λγ n W 3 )F 4B 4,mn + ( cycl (234) ) = X X X X ( cycl (234) ) Result must be a linear combination of single trace Tr(F (1 F 2 F 3 F 4) ) and double trace Tr(F (1 F 2 ) Tr(F 3 F 4) ). Pure spinor integrals: X 3110 = F mnf 1 pqf 2 rsf 3 tu 4 (λγ [t γ pq θ)(λγ u] γ rs θ)(λγ a θ)(θγ amn θ), X 1112 = k mζ 4 nf 1 pqf 2 rsf 3 tu 4 (λγ [m γ pq θ)(λγ a] γ rs θ)(λγ n θ)(θγ tu a θ), X 1310 = 5 16 k mζ 3 nf 1 pqf 2 rsf 3 tu 4 (λγ [t γ ma θ)(λγ u] γ rs θ)(λγ n θ)(θγ pq a θ). Reduce to traces: X 3110 = N 1[ 1 60 Tr(γ aγ z ) Tr(γ xyz γ anm ) Tr(γ x γ qp γ [t ) Tr(γ y γ sr γ u] ) Tr(γ[u γ rs γ zyx γ qp γ t] γ x γ a γ y γ mna γ z ) = ( 1 35 δmp rs δ nq tu δmn tu δrs pq 1 90 δmn rs δ pq tu δmn pr δ qs tu ] (60 terms) ) [mn][pq][rs][tu](pq rs)

29 Four bosons (2) Contract with field strengths, momenta and polarisations, and symmetrise: X ( cycl(234) ) = Tr(F (1F 2 F 3 F 4) ) 1 56 Tr(F (1F 2 ) Tr(F 3 F 4) ) X ( cycl(234) ) = Tr(F (1F 2 F 3 F 4) ) Tr(F (1F 2 ) Tr(F 3 F 4) ) X ( cycl(234) ) ( = Tr(F(1 F 2 F 3 F 4) ) Tr(F (1 F 2 ) Tr(F 3 F 4) ) ) Total: K 4B 1-loop = 3 64 ( 4 Tr(F(1 F 2 F 3 F 4) ) Tr(F (1 F 2 ) Tr(F 3 F 4) ) ) = t 8F 4 Agrees with Green-Schwarz and RNS results

30 Four fermions Could similarly evaluate: K (4F) 1-loop = (λa 1 )(λγ m W 2 )(λγ n W 3 )F 4,mn 4F + ( cycl (234) ) Note the symmetry: cycl(234) implies complete antisymmetry in u 2, u 3, u 4 on k 2 u 1 u 2 u 3 u 4 scalars, [234] is equivalent to [1234] there is only one antisymmetric k 2 u 1 u 2 u 3 u 4 scalar Thus the result is fixed by symmetry: K 4F 1-loop (u 1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) Again, agrees with previously known expressions

31 Symmetrisations more tricky now: Two bosons, two fermions K1-loop(f 2B2F 1 f 2 b 3 b 4 ) = (1 π 34 ) (λa (even) 1 )(λγ m W (even) 2 )(λγ n W (odd) 3 )F (even) 4,mn + (λa (even) 1 )(λγ m W (odd) 3 )(λγ n W (odd) 4 )F (odd) 2,mn. First line has wrong [34] symmetry and must give zero. Fermionic expansion: K 2B2F 1-loop = (1 π 34 ) (X X X X 2012 ) + X 2111, Typical correlator: X 4010 = 1 60 k 1 q k 3 b ζ3 c k 4 mζ 4 n Reduce to u 1 u 2 bilinears: (λγ a θ)(θγ a pq θ)(θγ p u 1 )(λγ [m u 2 )(λγ n] γ bc θ) X 4010 = δq[b mn (u 1 γ c] u 2 ) δq[m bc (u 1γ n] u 2 ) δbc mn(u 1 γ q u 2 ) δ[m q (u 1 γ n]bc u 2 ) δ[b q (u 1 γ c]mn u 2 ) δ[b [m (u 1γ c]q n] u 2 ) (u 1γ bcmnq u 2 )

32 Two bosons, two fermions (2) Contract with k and ζ, and expand in kinematic basis C 1... C 5 : (1 π 34 )X 4010 = ( 1, 12, 12, 1, 2) C 1...C 5 (1 π 34 )X 2210 = (31, 30, 30, 1, 2) C 1...C 5 (1 π 34 )X 2030 = (0, 21, 21, 0, 0) C 1...C 5 (1 π 34 )X 2012 = ( 30, 39, 39, 0, 0) C 1...C 5 X 2111 = (1, 0, 4, 1, 0) C 1...C 5 Terms with the wrong [34] symmetry cancel: (1 π 34 ) (X X X X 2012 ) = 0 Remaining part agrees with GS and RNS: ( ) K1-loop 2B2F = X 2111 = s 13 (u 2 /ζ 3 (/k 2 +/k 3 )/ζ 4 u 1 )+s 23 (u 2 /ζ 4 (/k 1 +/k 3 )/ζ 3 u 1 )

33 Outline Introduction Methods for kinematic factor evaluation Superfield components Integration in pure spinor superspace Reduction to kinematic bases Application to one- and two-loop amplitudes One loop Two loops Discussion

34 Two-loop massless four-point amplitude A = 4 d 2 Ω 11 d 2 Ω 12 d 2 Ω 22 i=1 ( exp ) d 2 i,j k i k j G(z i, z j ) z i (det Im Ω) 5 K (k i, z i ) Fermionic zero mode integrals: K = (λγ mnpqr λ)(λγ s ( ) W 1 )F 2,mn F 3,pq F 4,rs + perm(1234) K K K 14 Kinematic factors K ij : K 12 = 4 W [1 F 2] F [3 F 4] + 4 W[3 F 4] F [1 F 2] Biholomorphic one-form, ij = (z i, z j ) = ω 1 (z i )ω 2 (z j ) ω 2 (z i )ω 1 (z j )

35 Four bosons (Review of [Berkovits & Mafra (2005)]) All three kinematic factors equivalent; consider K 4B 12 = 4 W [1 F 2] F [3 F 4] 4B + 4 W [3 F 4] F [1 F 2] 4B = (1 π 12 )(1 π 34 )(1 + π 13 π 24 ) W 1 F 2 F 3 F 4 4B Fermionic expansion: W1 F 2 F 3 F 4B 4 = Y Y Y Y Y 1022 = (1 + π 23 )(1 π 24 ) ( 1 3 Y ) Y Y Y 1022 Introduce symmetrisation operator: K12 4B = ( S 1 4B 3 Y ) Y Y Y 1022, S 4B = (1 π 12 )(1 π 34 )(1 + π 13 π 24 )(1 + π 23 )(1 π 24 ). Non-zero correlators: Y 3200 = k a 1 Fcdk 1 mf 2 ef 2 F pqf 3 rs 4 (λγ mnpqr λ)(λγ s γ ab θ)(θγ cd b θ)(θγ ef n θ), Y 1022 = 1 64 F abf 1 mnk 2 p 3 Fcd 3 k r 4 Fef 4 (λγ mnpq[r λ)(λγ s] γ ab θ)(θγ cd q θ)(θγ ef s θ).

36 Four bosons (2) Symmetriser S 4B projects out k F terms: S 4B (Y Y 1022 ) = (s 13 s 23 ) ( 4 Tr(F (1 F 2 F 3 F 4) ) Tr(F (1 F 2 ) Tr(F 3 F 4) ) ) Very simple result: K 4B 12 = (s 13 s 23 )t 8 F 4 Trivially obtain K 13 and K 14. Total: K2-loop 4B ( ) = (s13 s 23 ) (s 12 s 23 ) (s 12 s 13 ) t8 F 4 Agrees with (relatively recent!) RNS result [d Hoker, Phong (2001)]. Note product structure, with one half being the one-loop kinematic factor

37 Very similar calculation: Four fermions K 4F 12 = (1 π 12 )(1 π 34 )(1 + π 13 π 24 ) W 1 F 2 F 3 F 4 4F = 4(1 π 12 ) W 1 F 2 F 3 F 4 4F = S 4F ( 1 3 Y Y 0311 ) with symmetrisation S 4F = 4(1 π 12 )(1 π 23 )(1 + π 24 ). Two correlators have to be computed: Y 2111 = ( 2)k 1 a k 2 mk 3 p k 4 r (λγ mnpq[r λ)(λγ s] γ ab θ)(θγ b u 1 )(θγ n u 2 )(θγ q u 3 )(θγ s u 4 ) = ( 19, 21, 21, 19, 17, 17, 0, 0, 0, 0) B 1...B 10, Y 0311 = ( 2 3 )k 2 a k 2 mk 3 p k 4 r (λγ mnpq[r λ)(λγ s] u 1 )(θγ n ab θ)(θγ b u 2 )(θγ q u 3 )(θγ s u 4 ) = ( 14, 16, 0, 2, 8, 8, 0, 5, 5, 0) B 1...B 10.

38 Four fermions (2) Act with symmetriser S 4F and obtain the one-loop u 4 scalar: K 4F 12 = S 4F ( 1 3 Y Y 0311 ) = 1 45 ( 1, 0, 1, 0, 1, 0, 0, 0, 0, 0) B 1...B 10 = 1 45 s 12 ( (u1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ). Total result, including K 13 and K 14 : K 4F 2-loop = 1 45 (s s s ) ( (u 1 /k 3 u 2 )(u 3 /k 1 u 4 ) (u 1 /k 2 u 3 )(u 2 /k 1 u 4 ) + (u 1 /k 2 u 4 )(u 2 /k 1 u 3 ) ) Again simple product structure, with one-loop factor

39 Two bosons, two fermions Exchange symmetry prevents simple product structure with one-loop factor: K2-loop 2B2F 1j kl [ f j (s 12, s 13 )K1-loop(f 2B2F 1 f 2 b 3 b 4 ) ]. j=1,2,3 (Note that any f (s 12, s 13 ) has identical symmetry under 1 2 and 3 4, and is symmetric under (1, 3) (2, 4)). Instead, find with K12 2B2F = (1 π 12 )(1 π 34 ) K K13 2B2F = (2 1 + π 12 + π π 12 π 34 ) K K14 2B2F = (1 + 2π π 34 + π 12 π 34 ) K K = (λ 3 W (even) 1 )F (odd) 2 F (even) 3 F (even) 4 + (λ 3 W (odd) 3 )F (even) 4 F (odd) 1 F (odd) 2

40 Two bosons, two fermions (2) Correlators in K : combination of ten k 3 u 1 u 2 F 3 F 4 scalars. Images of the symmetrisers are spanned by s 12, s 13 times (u 1 γ a u 2 ) ( ka 3 Fbc 3 F bc 4 2Fab 3 F bck 4 c 1 + 2FabF 4 bc 3 k c 1 ) Tensor structure thus fixed up to three constants: K2-loop 2B2F = [ c 1 s (c 2 s 12 + c 3 s 13 ) ] +((c 3 c 2 )s 12 + c 3 s 13 ) (u 1 γ a u 2 ) ( ka 3 Fbc 3 F bc 4 2Fab 3 F bck 4 c 1 + 2FabF 4 bc 3 k c 1 )

41 Discussion Summary: The pure spinor formalism yields manifestly supersymmetric loop amplitudes Superspace integration not (much) more complicated for fermions than for bosons Some amplitudes fixed or highly constrained by exchange symmetries Outlook: Improve computer algebra: custom-made Mathematica algorithms vs. specialised program (e.g. Cadabra) Methods applicable to future higher-loop amplitudes

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2

Spinors and σ-matrices in 10 dimensions It is well known that in D-dimensional space-time Dirac spinor has 2 D 2 PiTP Study Guide to Spinors in D and 0D S.J.Gates Jr. John S. Toll Professor of Physics Director Center for String and Particle Theory University of Maryland Tel: 30-405-6025 Physics Department Fax: 30-34-9525

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Hiroshi Kunitomo YITP 215/3/5 @Nara Women s U. Nara arxiv:1412.5281, 153.xxxx Y TP YUKAWA INSTITUTE FOR THEORETICAL

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 10 - Representation Theory III: Theory of Weights

Lecture 10 - Representation Theory III: Theory of Weights Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Micro-Note on solving super p=2 form A MN

Micro-Note on solving super p=2 form A MN Micro-Note on solving super p=2 form A MN Sunny Guha April 10, 2016 1 Introduction Superforms are extended versions of differential forms which include superspace coordinates. For example a one-form superform

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

arxiv: v2 [hep-th] 4 Jun 2015

arxiv: v2 [hep-th] 4 Jun 2015 On the N = 4, d = 4 pure spinor measure factor Thales Azevedo arxiv:1412.5927v2 hep-th 4 Jun 2015 ICTP South American Institute for Fundamental Research Instituto de Física Teórica, UNESP - Univ. Estadual

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Geometry of the 2-sphere

Geometry of the 2-sphere Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories Hiroshi Kunitomo (YITP) 215/5/11 SFT215@Sichuan U. arxiv:1412.5281, 15x.xxxxx Y TP YUKAWA INSTITUTE FOR THEORETICAL

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

dim(u) = n 1 and {v j } j i

dim(u) = n 1 and {v j } j i SOLUTIONS Math B4900 Homework 1 2/7/2018 Unless otherwise specified, U, V, and W denote vector spaces over a common field F ; ϕ and ψ denote linear transformations; A, B, and C denote bases; A, B, and

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Non-Abelian Gauge Fields

Non-Abelian Gauge Fields Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

1 11D spinor conventions

1 11D spinor conventions This note spells out some details in the on-shell superfield formulation of D supergravity in the 980 paper of Brink and Howe. D spinor conventions. Gamma matrices Our convention for -dimensional Gamma

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude PHY 396 K/L. Solutions for problem set #. Problem : Note the correct muon decay amplitude M(µ e ν µ ν e = G F ū(νµ ( γ 5 γ α u(µ ū(e ( γ 5 γ α v( ν e. ( The complex conjugate of this amplitude M = G F

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα