ΘΕΩΡΗΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΟΠΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΕΝΤΑΣΗΣ ΣΕ ΧΑΛΥΒ ΙΝΑ ΕΛΑΣΜΑΤΑ ΛΟΓΩ ΑΝΗΡΤΗΜΕΝΩΝ ΦΟΡΤΙΩΝ
|
|
- Ησιοδ Τοκατλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΘΕΩΡΗΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΟΠΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΕΝΤΑΣΗΣ ΣΕ ΧΑΛΥΒ ΙΝΑ ΕΛΑΣΜΑΤΑ ΛΟΓΩ ΑΝΗΡΤΗΜΕΝΩΝ ΦΟΡΤΙΩΝ Ιωάννης Γ. Ραυτογιάννης & Γεώργιος Θ. Μιχάλτσος Εργαστήριο Μεταλλικών Κατασκευών, Σχολή Πολιτικών Μηχανικών Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα mail: ΠΕΡΙΛΗΨΗ Στην εργασία αυτή διερευνάται µε τη µαθηµατική θεωρία ελαστικότητας η εντατική κατάσταση και η διαρροή χαλύβδινων ελασµάτων λόγω ανηρτηµένων φορτίων µέσω κοχλιωτής σύνδεσης. Το φαινόµενο αυτό απαντάται σε χαλύβδινα καταστρώµατα µε σύστηµα διαδοκίδων και κοχλιωτές συνδέσεις. Η τυχόν υποχώρηση µιας εκ των διαδοκίδων την καθιστά ανηρτηµένη µέσω της κοχλιωτής σύνδεσης στην πλάκα καταστρώµατος. Το πρόβληµα ουσιαστικά αντιµετωπίζεται ως κάµψη πλάκας υπό εγκάρσιο συγκεντρωµένο φορτίο που δρα τοπικά και οδηγεί ταχύτατα σε τοπική διαρροή µε ανακατανοµή των τάσεων στην πέριξ της κοχλιωτής σύνδεσης περιοχή. Η ανάλυση γίνεται βάσει µιας αντιπροσωπευτικής ζώνης για το σύστηµα πλάκας κοχλιωτής σύνδεσης που προσοµοιάζει επαρκώς τις τοπικές επιδράσεις. Στα θεωρητικά αποτελέσµατα, που επαληθεύονται και αριθµητικά, η ανάλυση εµπεριέχει τόσο γεωµετρική µη-γραµµικότητα όσο και µη-γραµµικότητα υλικού. Εξετάζονται διάφορες περιπτώσεις γεωµετρικών παραµέτρων και βάσει των αποτελεσµάτων εξάγονται χρήσιµα συµπεράσµατα. 1. ΕΙΣΑΓΩΓΗ Ένας πολύ κρίσιµος και επικίνδυνος µηχανισµός αστοχίας στις συνδέσεις χαλύβδινων µελών είναι αυτός που αντιστοιχεί στην εξόλκευση των κοχλιών από χαλύβδινες πλάκες. Παρά τη µεγάλη σηµασία αυτού του µηχανισµού αστοχίας, η διεθνής βιβλιογραφία σε αυτό το φαινόµενο είναι πολύ περιορισµένη. Προηγούµενες πειραµατικές και αναλυτικές εργασίες σχετικές µε το φαινόµενο αυτό [1,] έχουν δείξει ότι οι µηχανισµοί αστοχίας εξαρτώνται κυρίως από το πάχος των πλακών. Λόγω της µεγάλης σηµασίας αυτού του προβλήµατος, έχουν γίνει κυρίως αριθµητικές αναλύσεις σε πλάκες µε κοχλιωτές συνδέσεις όπου το φαινόµενο εξόλκευσης του κοχλία είναι ο κύριος µηχανισµός αστοχίας. Αν και το πρόβληµα φαίνεται να είναι αρκετά απλό, δεν αποτελεί εντούτοις ένα κλασσικό πρόβληµα ανάλυσης. Οι κατασκευές ή τα µέλη των κατασκευών σχεδιάζονται συνήθως µε βάση την ελαστική ή ελαστο-πλαστική θεώρηση. Εντούτοις, ακόµη και στην περίπτωση της πλαστικής θεώρησης εξετάζεται µόνο η περιορισµένη πλαστική ικανότητα. Σε αυτήν την εργασία πραγµατοποιείται αναλυτική προσοµοίωση για τον εντοπισµό της πλήρους αστοχίας του υλικού.. ΕΛΑΣΤΙΚΗ ΠΕΡΙΟΧΗ Στην περίπτωση αυτή, το φαινόµενο εµφανίζεται λόγω υποχώρησης µιας στήριξης ή λόγω ανεµοπίεσης και χαρακτηρίζεται από τελική εξόλκευση του κοχλία που υποβάλλεται σε µια δύναµη F. Θεωρούµε ότι κάθε ένας κοχλίας επηρεάζει εντατικά µια ζώνη πα (η οποία και παραµορφώνεται) και συνεπώς, µπορούµε να µελετήσουµε το πρόβληµα ως κάµψη 48
2 µιας κυκλικής πλάκας πάχους t που είναι πακτωµένη στις παρειές της και στο κέντρο της έχει µια οπή ακτίνας b (βλ. Σχήµα 1). Η εξίσωση που διέπει το πρόβληµα κάµψης της πλάκας είναι [3] d 1 d dw Q() = d d d (1) D όπου w(,θ) είναι το βέλος της πλάκας, Q() είναι η τέµνουσα δύναµη στην πλάκα σε απόσταση από το κέντρο της (εκφρασµένη σε δύναµη ανά µονάδα µήκους) και D είναι η καµπτική δυσκαµψία της πλάκας που δίδεται από τη σχέση 3 E t D = 1(1 ν ) όπου Ε = το µέτρο ελαστικότητας και ν = ο λόγος του Poisson. Σχ. 1 Τοµή κυκλικού τµήµατος πλάκας µε οπή και εγκάρσια φόρτιση λόγω κοχλία Για µια κυκλική πλάκα που φορτίζεται συµµετρικά, η τέµνουσα δράση σε µια θέση προσδιορίζεται διαιρώντας το κατανεµηµένο φορτίο P του κοχλία που δρα στην περιφέρεια της οπής πb δια της περιφέρειας π στη θέση. Συνεπώς, θα έχοµε πb P b Q () = = P () π Αντικαθιστώντας την τέµνουσα Q() από την εξ() στην εξ(1) έχοµε d 1 d dw P b d = d d D και ολοκληρώνοντας δύο φορές παίρνουµε dw P b c = ( ln ) + c 1 + (3) d D 4 ή P b w = ( ln ) + c1 + c ln + c3 D και τελικά P b w = (ln 1) + c1 + c ln + c3 (4) D 4 4 Για τη ροπή κάµψεως M έχοµε d w ν dw M = + D (5) d d και αντικαθιστώντας την εξ(4) στην εξ(5) παίρνουµε P b 1+ ν 1 ν 1+ ν 1 ν M = D ln + + c1 c (6) D 483
3 Σχ. (α) Στοιχειώδες τµήµα πλάκας µε οπή και (β) εντατικά µεγέθη Οι συνοριακές συνθήκες του προβλήµατος είναι w( α ) = 0, w ( α) = 0, M (b) = 0 (7) και αντικαθιστώντας τις εκφράσεις του βέλους w(,θ) και της ροπής M καταλήγουµε στο ακόλουθο σύστηµα: α P b α c1 + ln α c + c3 = (ln α 1) 4 D 4 α 1 P b α 1 c1 + c = (ln α ) (8) α D 1+ ν 1 ν P b 1+ ν 1 ν c1 c = + ( ln b + ) b D 4 Επιλύοντας το παραπάνω σύστηµα, προσδιορίζονται οι σταθερές ολοκλήρωσης c 1, c και c 3 που είναι οι ακόλουθες (9) 3. ΕΛΑΣΤΟΠΛΑΣΤΙΚΗ ΠΕΡΙΟΧΗ Στην περίπτωση αυτή, το υλικό είναι κρατυνόµενος χάλυβας και η σχέση τάσεωνπαραµορφώσεων µπορεί να περιγραφεί από τις σχέσεις: σ = E ε 0 ε ε B (10) σ = A ε ε ε όπου Α και Β είναι σταθερές που εξαρτώνται από την ποιότητα του υλικού. Επί παραδείγµατι, ο χάλυβας ποιότητας S355CM [4] έχει την ακόλουθη σχέση τάσεων παραµορφώσεων σ = E ε 0 ε (10 ) σ = ε ε 484
4 Σχ. 3 ιάγραµµα τάσεων παραµορφώσεων κρατυνόµενου χάλυβα S355CM Επίσης, ορίζουµε ως κρίσιµο φορτίο F c το φορτίο που προκαλεί πλήρη πλαστικοποίηση της παρειάς της οπής και έχει ως συνέπεια την εξόλκευση του κοχλία διαµέσου αυτής. Υιοθετώντας την υπόθεση Blich [5] για ανισότροπη συµπεριφορά πλακών στην ελαστοπλαστική περιοχή, ορίζουµε τον λόγο E t ψ = (11) E όπου ψ είναι ο λόγος του εφαπτοµενικού µέτρου ελαστικότητας E t προς το µέτρο Ε του Young. Συνεπώς, η εξ(5) γίνεται d w ν ψ dw M = ψ + D (1) d d Όταν η παρειά της οπής έχει πλήρως πλαστικοποιηθεί, πρέπει να χρησιµοποιήσουµε την τιµή E t στο σηµείο Β (βλ. Σχήµα 3) που αντιστοιχεί στο ε=ε f. Για παράδειγµα, ο χάλυβας ποιότητας S355CM έχει ε f =0.00 και E t =0.765x10 6 dn/cm. Θέτοντας M (b) = (13) M µπορούµε να προσδιορίσουµε την κρίσιµη τιµή του φορτίου F c. Η ροπή M είναι η ροπή πλήρους πλαστικοποίησης της παρειάς της οπής που υπολογίζεται από τη σχέση t M = σ f 4 όπου σ f = το όριο διαρροής. Ο προσδιορισµός της ακριβούς έκφρασης της παραµορφωµένης κατάστασης για φορτίο F<F c είναι εξαιρετικά δυσχερής. Μια ικανοποιητική προσέγγιση επιτυγχάνεται µέσω της χρήσης της µέσης τιµής του λόγου ψ µεταξύ των σηµείων Α και Β (βλ. Σχήµα 4). Έτσι, µε βάση το Σχήµα 5, έχουµε dx AA + BB AA AA z ε = = = = dx AB AB/ ΓO R ή 1 ε ε f = = (14) R z ζ και 1 σf w () = = (15) R() E ζ() Ο όρος ζ() που καθορίζει την ελαστική περιοχή της διατοµής δίδεται από την ακόλουθη σχέση 485
5 t 3 M () ζ ( ) = 1 (16) M Το µήκος l που αφορά το πλαστικοποιηµένο τµήµα µπορεί να προσδιοριστεί από τις εκφράσεις των ροπών θέτοντας M () = M (17) όπου η Μ δίδεται από την εξ(5) και η Μ =σ f t /6. Αν w είναι το βέλος της πλάκας στον άξονα 1-1 (για µήκος l ) µπορούµε να προσδιορίσουµε το συνολικό βέλος από τη σχέση w = w + l w ( l ) + w (18) όπου το βέλος w δίδεται από την εξ(4) και το βέλος w από την εξ(13), αντίστοιχα. Σχ. 4 Τάσεις και παραµορφώσεις σε µερικώς πλαστικοποιηµένη διατοµή Σχ. 5 Ροπή κάµψεως και βέλος στην µερικώς πλαστικοποιηµένη ζώνη l της πλάκας 4. ΑΡΙΘΜΗΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Θεωρούµε για παράδειγµα µια κυκλική πλάκα από δοµικό χάλυβα S355MC µε διάµετρο 1.00m και πάχος 0.6mm η οποία είναι πακτωµένη περιµετρικά. Το µέτρο ελαστικότητας του υλικού είναι Ε=.1x10 8 kn/m και ο λόγος του Poisson είναι ν=0.30. Στο κέντρο της πλάκας τοποθετείται ένας κοχλίας διαµέτρου 8mm που φορτίζει εγκάρσια την πλάκα. Κατ αρχάς εφαρµόζουµε φορτίο P=100N. Με βάση την ελαστική ανάλυση που παρουσιάστηκε στην παράγραφο προσδιορίζεται το βέλος κάµψεως της πλάκας w(,0) που φαίνεται στο Σχήµα 6, καθώς και το διάγραµµα της κατανεµηµένης ροπής M (). Κατόπιν εφαρµόζουµε την πλαστική ανάλυση της παραγράφου
6 Σχ. 6 Βέλος κάµψης w συναρτήσει της ακτίνας Παρατηρούµε ότι η ροπή κάµψεως - Σχήµα 7(α) - αλλάζει πρόσηµο για ακτίνα =0mm, ενώ κοντά στην οπή, η καµπυλότητα επίσης αλλάζει πρόσηµο λόγω προόδου της πλαστικής ζώνης. Το φαινόµενο πλήρους πλαστικοποίησης της περιµέτρου της οπής λαµβάνει χώρα για φορτίο P=40.7N, ενώ η περιοχή πλαστικοποίησης έχει ακτίνα l =9.87cm όπως φαίνεται στο Σχήµα 7(β). Σχ. 7 (a) Ροπή κάµψης της πλάκας M συναρτήσει της ακτίνας και (β) µεγέθυνση στη θέση της οπής 5. ΣΥΜΠΕΡΑΣΜΑΤΑ Σε αυτή την εργασία επιχειρείται µια αναλυτική προσοµοίωση του φαινοµένου διάτρησης πλακών και εξόλκευσης κοχλιών. Αν και έχουν επιτευχθεί µερικά ενδιαφέροντα αποτελέσµατα (πχ. ο µηχανισµός αστοχίας προσοµοιώνεται µε ακρίβεια), οι τιµές φορτίου-µετατόπισης παρουσιάζουν εντούτοις µικρές αποκλίσεις από αντίστοιχες τιµές που προσδιορίστηκαν µε µοντέλα πεπερασµένων στοιχείων. 6. ΒΙΒΛΙΟΓΡΑΦΙΑ [1] BANIOTOPOULOS CC. Connctions in Mtal Stuctus. Ziti Publ., Thssaloniki, 003. [] IYANYI P, ZYGOMALAS M, BANIOTOPOULOS CC. On th Numical Modling of th Bolt Pull-out Phnomnon fom a Stl Plat in a Boltd Stl Connction, 5 th CRACM Congss, Limassol, Jun 9 July 1, 005. [3] SZILARD R. Thoy and Analysis of Plats. Pntic-Hall Inc., Englwood Cliffs, Nw Jsy, [4] EUROCODE 3. Dsign of Stl Stuctus, Pat 1.4 Gnal Ruls - Sulmntay Ruls fo Stainlss Stls. Euoan Committ fo Standadization, Bussls, 006. [5] BLEICH F. Buckling Stngth of Mtal Stuctus. McGaw-Hill, Nw Yok,
7 ANALYTICAL TREATMENT OF LOCAL STRESS DISTRIBUTIONS IN STEEL PLATES DUE TO TRANSVERSE LOADS SUMMARY Ioannis G. Raftoyiannis & Gog T. Michaltsos Laboatoy of Mtal Stuctus, Datmnt of Civil Engining National Tchnical Univsity of Athns, Gc mail: In this a, an analytical study on local stss distibution and yilding in stl lats subjctd to concntatd tansvs loads causd by bolts is sntd. Stl dcks usually st on a systm of aalll gids with boltd connctions. In th cas of sttlmnt of a bam, th stl dck sists though th boltd connction. Th load is tansvsly alid to th dck though th bolt had o th bolt nut u to local yilding and failu. This a is at of a sach ogam on this fild consisting by ximntal and analytical invstigation. Th analysis is facilitatd by considing a sntativ aa of th dck, dnding on th bounday conditions, caabl of catuing th local stss distibution. Th analytical mthod is mloyd by mans of gomtical and matial nonlinaity. Sval cas studis a sntd fo vaious gomtical aamts and usful sults a obtaind and discussd. Th cas studis sntd hin a illustatd by mans of sval actical xamls. 488
ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.
ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα
Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET
Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει
4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και
Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών
Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών
Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.
ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος
Γενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu
ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης
Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης
Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ
Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης
Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης
Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος
4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης
Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης
5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)
Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) 1 Βασική αρχή εργαστηριακής άσκησης Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία
ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:
Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται
ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ. Σχήμα 1 : Κοιλοδοκοί από αλουμίνιο σε δοκιμή λυγισμού
ΔΟΚΙΜΗ ΛΥΓΙΣΜΟΥ 1. Γενικά Κατά τη φόρτιση μιας ράβδου από θλιπτική αξονική δύναμη και με προοδευτική αύξηση του μεγέθους της δύναμης αυτής, η αναπτυσσόμενη τάση θλίψης θα περάσει από το όριο αναλογίας
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης
Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A
ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος
ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
ΠΕΡΙΕΧΟΜΕΝΑ. ΚΕΦΑΛΑΙΟ 1: Ευχαριστίες Εισαγωγή, πρόλογος και Ιστορική αναδρομή
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Ευχαριστίες Εισαγωγή, πρόλογος και Ιστορική αναδρομή ΚΕΦΑΛΑΙΟ 2: Αναφορά στο θεωρητική διερεύνηση τοπικής κατανομής έντασης σε χαλύβδινα ελάσματα λόγω ανηρτημένων φορτίων μεταλλικές
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΠΑΤΡΑ 26504 Ομάδα εκτέλεσης έργου: Αθανάσιος
Νέα έκδοση προγράμματος STeel CONnections 2010.354
http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών
ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ Θεωρούµε ινώδες σύνθετο υλικό ενισχυµένο µονοδιευθυντικά µε συνεχείς ίνες. Για τη µελέτη της µηχανικής συµπεριφοράς µιας τυχαίας στρώσης, πρέπει να είναι γνωστές οι
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
( ) ( ) ( ) Ασκήσεις στην ελαστική γραµµή. Γενικές Εξισώσεις. Εφαρµογές. 1. Η γέφυρα. ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος
ΤΜ ΙΙΙ Ασκήσεις : Ι. Βαρδουλάκης & Ι. Στεφάνου, Οκτώβριος 005 Ασκήσεις στην ελαστική γραµµή Γενικές Εξισώσεις () p w ( x) = x+ M ( x) = w ( x) p w ( ) ( ) ( ) ( ) ( x) = x + x+ onst x p x onst x dm x =
Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό
Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50 Εγχειρίδιο σχεδιασμού σύμμικτων πλακών σύμφωνα με τον Ευρωκώδικα 3 (ΕΝ 1993.01.03:2006) και τον Ευρωκώδικα 4 (EN 1994.01.04:
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε
ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΙΑΤΑΞΕΩΝ ΚΑΝ.ΕΠΕ. ΓΙΑ ΤΟΝ ΠΡΟΣ ΙΟΡΙΣΜΟ ΣΤΟΧΕΥΟΜΕΝΗΣ ΓΩΝΙΑΣ ΣΤΡΟΦΗΣ ΧΟΡ ΗΣ θ d
Απαιτούµενο Υλικό Περίσφιγξης. Σύγκριση ιατάξεων ΚΑΝ.ΕΠΕ. για τον Προσδιορισµό Στοχευόµενης Γωνίας Στροφής Χορδής θ d ΑΠΑΙΤΟΥΜΕΝΟ ΥΛΙΚΟ ΠΕΡΙΣΦΙΓΞΗΣ. ΣΥΓΚΡΙΣΗ ΙΑΤΑΞΕΩΝ ΚΑΝ.ΕΠΕ. ΓΙΑ ΤΟΝ ΠΡΟΣ ΙΟΡΙΣΜΟ ΣΤΟΧΕΥΟΜΕΝΗΣ
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες
Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης
ΔΙΑΜΗΚΗΣ ΑΝΤΟΧΗ ΠΛΟΙΟΥ Ενότητα: Διαμήκης Αντοχή Πλοίου- Ορθές τάσεις λόγω κάμψης Α. Θεοδουλίδης Η αντοχή του πλοίου Διαμήκης αντοχή Εγκάρσια αντοχή Τοπική αντοχή Ανάλυση του σύνθετου εντατικού πεδίου Πρωτεύουσες,
20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος
Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου
ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ
Επιρροή διαφόρων παραγόντων στα παραμορφωσιακά μεγέθη δομικού στοιχείου και σύγκριση με τύπους ΚΑΝ.ΕΠΕ ΕΠΙΡΡΟΗ ΔΙΑΦΟΡΩΝ ΠΑΡΑΓΟΝΤΩΝ ΣΤΑ ΠΑΡΑΜΟΡΦΩΣΙΑΚΑ ΜΕΓΕΘΗ ΔΟΜΙΚΟΥ ΣΤΟΙΧΕΙΟΥ ΚΑΙ ΣΥΓΚΡΙΣΗ ΜΕ ΤΥΠΟΥΣ ΚΑΝ.ΕΠΕ
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Συντελεστής ασφαλείας safety factor safety factor οριακόϕορτίο / τάση = ϕορτίο / τάση λειτουργ ίας Το φορτίο λειτουργίας ή σχεδίασης
ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης
5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος
6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών
6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε
Κόμβοι πλαισιακών κατασκευών
Κόμβοι πλαισιακών κατασκευών Κόμβοι πλαισιακών κατασκευών Κόμβοι δοκού-υποστυλώματος Κόμβοι δοκού-δοκού Βάσεις υποστυλωμάτων Κοχλιωτοί Συγκολλητοί Κόμβοι δοκού - υποστυλώματος Με μετωπική πλάκα Με γωνιακά
ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ
ΑΡΙΘΜΗΤΙΚΑ ΠΡΟΣΟΜΟΙΩΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΜΕΛΩΝ ΑΠΟ ΓΩΝΙΑΚΑ ΨΥΧΡΗΣ ΕΛΑΣΗΣ ΜΕ ΚΟΧΛΙΩΣΗ ΣΤΟ ΕΝΑ ΣΚΕΛΟΣ ΤΟΥΣ Ιωάννης Γ. Ραυτογιάννης Αναπληρωτής Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής
ΙΑπόστολου Κωνσταντινίδη ιαφραγµατική λειτουργία. Τόµος B
Τόµος B 3.1.4 ιαφραγµατική λειτουργία Γενικά, αν υπάρχει εκκεντρότητα της φόρτισης ενός ορόφου, π.χ. από την οριζόντια ώθηση σεισµού, λόγω της ύπαρξης της πλάκας που στο επίπεδό της είναι πρακτικά άκαµπτη,
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Δομική Σχεδίαση Πλοίου Ελαστικός λυγισμός πρισματικών φορέων Α. Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη
Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών
Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης
ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα
8.3.3 Αναλυτική Μέθοδος Σχεδιασμού Υπόγειων Αγωγών σε ιασταυρώσεις με Ενεργά Ρήγματα. George Mylonakis
8.3.3 Αναλυτική Μέθοδος Σχεδιασμού Υπόγειων Αγωγών σε ιασταυρώσεις με Ενεργά Ρήγματα George Mylonakis Παρουσίαση Προβλήματος z β y α Παρουσίαση Προβλήματος z f β y z y α Παρουσίαση Προβλήματος z f β y
ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ
Βόλος 29-3/9 & 1/1 211 ΜΗ- ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΜΕΤΑΛΛΙΚΩΝ ΠΛΑΙΣΙΩΝ ΓΙΑ ΤΟ ΣΥΝΔΥΑΣΜΕΝΟ ΣΕΝΑΡΙΟ ΤΗΣ ΠΥΡΚΑΓΙΑΣ ΜΕΤΑ ΑΠΟ ΣΕΙΣΜΙΚΑ ΓΕΓΟΝΟΤΑ Δάφνη Παντούσα, Msc, Υπ. Διδάκτωρ Ευριπίδης Μυστακίδης, Αναπληρωτής Καθηγητής
3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe
3.2 Οδηγίες χρήσης του προγράμματος πεπερασμένων στοιχείων RATe 67 3.2 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ RATe Στις επόμενες σελίδες παρουσιάζεται βήμα-βήμα ο τρόπος με τον οποίο μπορεί
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
Υπολογισμός τιμής του συντελεστή συμπεριφοράς «q» για κατασκευές προ του 1985 στην Αθήνα.
Υπολογισμός τιμής του συντελεστή συμπεριφοράς «q» για κατασκευές προ του 1985 στην Αθήνα. Ε.Μ. Παγώνη Πολιτικός Μηχανικός Α. Παπαχρηστίδης Πολιτικός Μηχανικός 4Μ-VK Προγράμματα Πολιτικών Μηχανικών ΕΠΕ
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πλαστική Κατάρρευση Δοκών
Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός
Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)
Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε
ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright
Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]
Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1
ΣΧΕΔΙΑΣΜΟΣ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ... 3 2. ΓΕΝΙΚΕΣ ΠΑΡΑΜΕΤΡΟΙ... 5 3. ΔΙΑΤΟΜΕΣ ΧΑΛΥΒΔΟΦΥΛΛΩΝ... 6 4. ΟΠΛΙΣΜΟΣ ΣΥΜΜΙΚΤΗΣ ΠΛΑΚΑΣ... 9 5. ΦΟΡΤΙΑ... 9 6. ΑΝΑΛΥΣΗ... 11 7. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 11 8. ΤΕΥΧΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ...
2 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ : ΕΠΑΦΗ HERTZ. Εργαστήριο Τριβολογίας Οκτώβριος Αθανάσιος Μουρλάς
η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ : ΕΠΑΦΗ HERTZ Εργαστήριο Τριβολογίας Οκτώβριος 00 Αθανάσιος Μουρλάς Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Η ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ Η ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ Η ΕΠΙΦΑΝΕΙΑ ΕΠΑΦΗΣ ΗΕΠΑΦΗHERTZ Στην Τριβολογία πολλά προβλήματα
Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος, Κ.Γ. Τρέζος, M-A.H. Μενάγια, 1
Συµπεριφορά συγκολλήσεων ράβδων οπλισµού σκυροδέµατος Κ.Γ. Τρέζος, M-A.H. Μενάγια Εργαστήριο Ωπλισµένου Σκυροδέµατος Ε.Μ.Π. Λέξεις κλειδιά: Ράβδοι οπλισµού σκυροδέµατος, συγκολλήσεις, ΠΕΡΙΛΗΨΗ: Στην παρούσα
2. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ
ΚΕΦΑΛΑΙΟ 3. ΚΑΤΑΝΟΜΕΣ ΤΑΣΕΩΝ ΚΑΙ ΠΑΡΑΜΟΡΦΩΣΕΩΝ 3. ΓΥΡΩ ΑΠΟ ΚΥΚΛΙΚΗ ΣΗΡΑΓΓΑ 3. Παραδοχές Σήραγγα κυκλικής διατοµής (ακτίνα ) Συνθήκες επίπεδης παραµόρφωσης (κατά τον άξονα της σήραγγας z) Ισότροπη γεωστατική
ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 016
ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ
ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών
Στατική Ανάλυση Ναυπηγικών Κατασκευών
Στατική Ανάλυση Ναυπηγικών Κατασκευών Ενότητα 2: Ελαστικός λυγισμός πρισματικών φορέων Αλέξανδρος Θεοδουλίδης Η χρήση κολονών (υποστυλωμάτων) είναι πολύ διαδεδομένη στα πλοία καθ όσον χρησιμοποιούνται
Εργαστήριο Τεχνολογίας Υλικών
Εργαστήριο Τεχνολογίας Υλικών Εργαστηριακή Άσκηση 07 Εφελκυσμός Διδάσκοντες: Δρ Γεώργιος Ι. Γιαννόπουλος Δρ Θεώνη Ασημακοπούλου Δρ Θεόδωρος Λούτας Τμήμα Μηχανολογίας ΑΤΕΙ Πατρών Πάτρα 2011 1 Μηχανικές
Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Σχεδιασμός Μεταλλικών Κατασκευών
Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης
XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73
XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο
Διδάσκων: Κίρτας Εμμανουήλ
ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΣΕ ΗΥ Ενότητα 1: Προσομοίωση φορέα με χρήση πεπερασμένων στοιχείων Διδάσκων: Κίρτας Εμμανουήλ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
2η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ HERTZ
. η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΕΠΑΦΗ RTZ.. Επαφή στερεών σωμάτων Η επαφή εφαπτόμενων στερών σωμάτων γίνεται διαμέσου της εξωτερικής τους επιφάνειας. Η μακροσκοπικά μετρούμενη Επιφάνεια Επαφής καλείται Ονομαστική
Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
Για την επιτυχή ολοκλήρωση της διάλεξης αυτής θα πρέπει να γίνει:
NFATEC L Tension members (28/8/23) {LECTURE} {LTITLE} Εφελκυόµενα Μέλη {/LTITLE} {AUTHOR} Miguel Serrano {/AUTHOR} {EMAIL} serrano@correo.uniovi.es {/EMAIL} {LASTEDIT} MAS28/8/3 {/LASTEDIT} {OBJECTIVES}
Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27
Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...
Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη
Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ
«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος 01-014 ΙΑΛΕΞΗ 1: ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΜΕΜΟΝΩΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Οι διαλέξεις υπάρχουν στην
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Β5. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ. Αντοχή Υλικού
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Αντοχή Υλικού Ερρίκος Μουρατίδης (BSc, MSc) Σεπτέμβριος 015 Άδειες Χρήσης Το παρόν εκπαιδευτικό
b 2 ΠΑΠΑΔΟΠΟΥΛΟΣ ΘΕΟΔΩΡΟΣ
7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών 1», Μάρτιος 21 ΑΡΙΘΜΗΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ : ΕΝΙΣΧΥΣΗ ΜΕ ΙΝΟΠΛΙΣΜΕΝΑ ΠΟΛΥΜΕΡΗ, ΕΛΕΓΧΟΣ ΜΗΚΟΥΣ ΑΓΚΥΡΩΣΗΣ, ΕΛΕΓΧΟΣ ΔΙΑΤΜΗΤΙΚΩΝ ΤΑΣΕΩΝ ΑΠΟΣΧΙΣΗΣ, ΔΙΑΤΜΗΤΙΚΗ ΕΝΙΣΧΥΣΗ
ιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy
Το πρόγραµµα ALGOR και εφαρµογές σε ναυπηγικές κατασκευές
Παράρτηµα Γ Το πρόγραµµα ALGOR και εφαρµογές σε ναυπηγικές κατασκευές 1. Εισαγωγή Το σύνολο των προγραµµάτων ALGOR είναι ένα εργαλείο µελέτης (σχεδιασµού και ανάλυσης) κατασκευών και βασίζεται στη µέθοδο
ΣΧΕΔΙΑΣΗ ΑΤΡΑΚΤΩΝ. Λειτουργικές Παράμετροι
Άτρακτος: περιστρεφόμενο στοιχείο κυκλικής (συνήθως) διατομής (πλήρους ή σωληνωτής) που χρησιμοποιείται για να μεταφέρει ισχύ ή κίνηση Άξονας: μη περιστρεφόμενο στοιχείο που δεν μεταφέρει ροπή και χρησιμοποιείται
«Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής»
ΠΕΡΙΛΗΨΗ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ «Αριθμητική και πειραματική μελέτη της διεπιφάνειας χάλυβασκυροδέματος στις σύμμικτες πλάκες με χαλυβδόφυλλο μορφής» του Θεμιστοκλή Τσαλκατίδη, Δρ. Πολιτικού Μηχανικού
ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1
Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ
Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά
Ευστάθεια μελών μεταλλικών κατασκευών
Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές
ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ
ΚΕΦΑΛΑΙΟ 6 ΚΕΝΤΡΟ ΒΑΡΟΥΣ-ΡΟΠΕΣ Α ΡΑΝΕΙΑΣ 6.. ΕΙΣΑΓΩΓΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Για τον υπολογισµό των τάσεων και των παραµορφώσεων ενός σώµατος, που δέχεται φορτία, δηλ. ενός φορέα, είναι βασικό δεδοµένο ή ζητούµενο
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Μηχανικές ιδιότητες των στερεών (μεταλλικά στερεά) Τάση και παραμόρφωση Τάση (stress): αίτιο (δύναμη/ροπή) που προκαλεί παραμόρφωση
ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΙΙ ΣΤΡΕΨΗ ΕΠΙΜΕΛΕΙΑ: ΔΡ Σ. Π. ΦΙΛΟΠΟΥΛΟΣ ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Μηχανικές ιδιότητες Στρέψη κυλινδρικών ράβδων Ελαστική περιοχή Πλαστική
Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?
Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h
ΑΠΟΤΜΗΣΗ 1. ΠΕΡΙΓΡΑΦΗ/ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ
ΑΠΟΤΜΗΣΗ 1. ΠΕΡΙΓΡΑΦΗ/ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Είναι ο αποχωρισµός τµήµατος ελάσµατος κατά µήκος µιας ανοικτής ή κλειστής γραµµής µέσω κατάλληλου εργαλείου (Σχ. 1). Το εργαλείο απότµησης αποτελείται από το έµβολο
Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά
Πεδίο Ορισµού του Μέτρου Ελαστικότητας και του Μέτρου Παραµόρφωσης σε οµοιογενή εδαφικά υλικά Α. Μουρατίδης Καθηγητής ΑΠΘ Λ. Παντελίδης Πολιτικός Μηχανικός, Υποψήφιος ιδάκτορας ΑΠΘ ΠΕΡΙΛΗΨΗ: Το Μέτρο Ελαστικότητας
ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.
ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πειραματική Αντοχή Υλικών. Ενότητα: Καθαρή Κάμψη
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Καθαρή Κάμψη Κωνσταντίνος Ι. Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό