ιαλέξεις Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 Πέτρος Κωµοδρόµος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος"

Transcript

1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

2 Θέµατα Εισαγωγή στην αρχή των δυνατών έργων (Α Ε) Αρχή των δυνατών έργων Αρχή των δυνατών συµπληρωµατικών έργων Εξωτερικό δυνατό έργο Εσωτερικό δυνατό έργο (ελαστική δυνατή ενέργεια ) αξονικές παραµορφώσεις καµπτικές παραµορφώσεις διατµητικές παραµορφώσεις στρεπτικές παραµορφώσεις συνολική ελαστική δυνατή ενέργεια Υπολογισµός µετακινήσεων µε την Α Ε Υπολογισµός ορισµένων ολοκληρωµάτων µορφής Μη πρισµατικά µέλη Παραµορφώσεις από άλλα, εκτός φορτίων, αίτια Θερµοκρασιακές µεταβολές Κατασκευαστικές ατέλειες και σφάλµατα ιαφορικές καθιζήσεις 2

3 Χρησιµότητα υπολογισµού παραµορφώσεων και µετακινήσεων Έλεγχοι ασφάλειας εντατικών µεγεθών σε σχέση µε τις επιτρεπόµενες αντοχές λειτουργικότητας διασφαλίζονται λειτουργικές ανάγκες µιας κατασκευής (π.x. έλεγχος παραµορφώσεων και µετακινήσεων) αναγκαίος ο υπολογισµός των παραµορφώσεων και µετακινήσεων ενός φορέα κάτω από την επίδραση κάποιων συγκεκριµένων δράσεων ή συνδυασµών δράσεων για σκοπούς ελέγχου λειτουργικότητας Επίσης, απαραίτητος είναι ο υπολογισµός των µετακινήσεων κατά την επίλυση υπερστατικών φορέων για την οποία δεν αρκούν οι εξισώσεις ισορροπίας οι επιπλέον εξισώσεις προκύπτουν από την διατύπωση της συµβιβαστότητας των παραµορφώσεων και µετακινήσεων του φορέα Στατική Ανάλυση των Κατασκευών Ι 3

4 Συνήθης παραδοχές µικρές παραµορφώσεις και µετακινήσεις σε σχέση µε τις διαστάσεις χρήση αρχικής απαραµόρφωτης γεωµετρία και µορφής του φορέα γραµµική-ελαστική συµπεριφορά του υλικού γραµµική συµπεριφορά: οι τάσεις είναι ανάλογες των παραµορφώσεων ελαστική συµπεριφορά: αν αφαιρεθούν όλα τα φορτία από τον φορέα τότε αυτός θα επιστρέψει στην αρχική αφόρτιστη θέση και γεωµετρία του χωρίς παραµένουσες παραµορφώσεις αρχή της επαλληλίας. αρχή της επιπεδότητας των διατοµών (Bernoulli) Για γραµµικά µέλη υπό καµπτικές παραµορφώσεις θεωρείται ότι επίπεδες διατοµές που είναι κάθετες στον άξονα ενός µέλους παραµένουν επίπεδες και κάθετες στον παραµορφωµένο άξονα ενός µέλους µετά την παραµόρφωση έτσι, έχοντας γραµµικά ελαστικό υλικό, υπάρχει µια γραµµική µεταβολή των ορθών τάσεων µεταξύ των ακραίων ινών στα πέλµατα ενός µέλους Στατική Ανάλυση των Κατασκευών Ι 4

5 Γεωµετρικές µέθοδοι υπολογισµού µετακινήσεων γεωµετρικές µέθοδοι: βασίζονται, είτε άµεσα είτε έµµεσα, στην διαφορική εξίσώση ( Ε) που συνδέει την καµπτική ροπή µε την καµπυλότητα χρησιµοποιούνται για τον υπολογισµό βυθίσεων και στροφών απλών φορέων λαµβάνοντας υπόψη µόνο τις καµπτικές παραµορφώσεις κύριες γεωµετρικές µέθοδοι: µέθοδος διπλής ολοκλήρωσης (double integration method) µέθοδος ροπών (moment-area method) µέθοδος οµόλογης δοκού (conjugate beam method) παρουσιάζουν σηµαντικά µειονεκτήµατα ειδικά για την συστηµατική γενική ανάλυση πολύπλοκων φορέων. Στατική Ανάλυση των Κατασκευών Ι 5

6 Ενεργειακές µέθοδοι υπολογισµού µετακινήσεων βασίζονται στο ισοζύγιο εξωτερικού και εσωτερικού έργου εξωτερικό έργο (external work): το έργο που παράγεται από τα εξωτερικά φορτία κατά τη µετακίνηση τους λόγω παραµορφώσεων του φορέα εσωτερικό έργο (internal work) ή αλλιώς ελαστική ενέργεια (elastic strain energy): η ενέργεια, ή το εσωτερικό έργο, η οποία αποθηκεύεται στο υλικό λόγω τάσεων και παραµορφώσεων κύριες ενεργειακές µέθοδοι: αρχή διατήρησης της ενέργειας (πραγµατικό έργο) µία άγνωστη µετακίνηση µόνο µπορεί να υπολογιστεί αφού µόνο µια εξίσωση υπάρχει για το ισοζύγιο εξωτερικού και εσωτερικού έργου µόνο µετακινήσεις στο σηµείο και διεύθυνση ενός συγκεντρωµένου φορτίου µπορούν να υπολογιστούν θεωρήµατα Castigliano µόνο µετακινήσεις στο σηµείο και διεύθυνση ενός συγκεντρωµένου φορτίου µπορούν να υπολογιστούν, αφού προσδιοριστούν οι αντίστοιχες µερικές παράγωγοι ως προς τα αντίστοιχα συγκεντρωµένα φορτία αρχή των δυνατών έργων (Α Ε) Στατική Ανάλυση των Κατασκευών Ι 6

7 Εισαγωγή στην αρχή των δυνατών έργων (Α Ε) αποτελεί τη βάση για τον υπολογισµό των µετακινήσεων και τη συστηµατική ανάλυση οποιασδήποτε κατασκευής η πιο σηµαντική διαδικασία υπολογισµού των µετακινήσεων ενός συγκεκριµένου σηµείου ενός φορέα αφού: είναι εφαρµόσιµη σε διαφορετικά είδη κατασκευών έχει δυνατότητες συµπερίληψης, πέρα από τα συνήθη φορτία, άλλων δράσεων, όπως υποχωρήσεις στηρίξεων, θερµοκρασιακές µεταβολές και κατασκευαστικά ατέλειες βασίζεται στο ισοζύγιο του εξωτερικού δυνατού έργου µε το εσωτερικό δυνατό έργο, δηλαδή την ελαστική δυνατή ενέργεια Στατική Ανάλυση των Κατασκευών Ι 7

8 Αρχή των δυνατών έργων (Α Ε) εάν µία κατασκευή, η οποία βρίσκεται σε µια συγκεκριµένη εντατική και παραµορφωσιακή κατάσταση, υποβληθεί σε µια επιπλέον νοητή (δυνατή) φόρτιση, ή µετακίνηση, θα αναπτυχθούν επιπλέον εντατικά µεγέθη και τάσεις καθώς και θα προκύψουν επιπλέον παραµορφώσεις και µετακινήσεις σύµφωνα µε την Α Ε: το εξωτερικό δυνατό έργο και το εσωτερικό δυνατό έργο πρέπει να είναι ίσα ώστε να διατηρείται η συνολική ενέργεια του συστήµατος Στατική Ανάλυση των Κατασκευών Ι 8

9 Εναλλακτικές διατυπώσεις της Α Ε αρχή των δυνατών µετακινήσεων: προκύπτει από εφαρµογή δυνατών µετακινήσεων και το ισοζύγιο του εξωτερικού και εσωτερικού δυνατού έργου. µέθοδοι των µετακινήσεων αρχή των δυνατών δυνάµεων: προκύπτει από εφαρµογή δυνατών δυνάµεων και το ισοζύγιο του εξωτερικού και εσωτερικού συµπληρωµατικού δυνατού έργου. µέθοδοι των δυνάµεων Στατική Ανάλυση των Κατασκευών Ι 9

10 Αρχή των δυνατών έργων - Αρχή των δυνατών µετακινήσεων εφαρµογή δυνατών µετακινήσεων και παραµορφώσεων εφαρµογή σε ένα φορέα, ο οποίος ισορροπεί κάτω από εξωτερικά επιβαλλόµενες (πραγµατικές) φορτίσεις, δυνατών ( φανταστικών ) µετακινήσεων, οι οποίες είναι συµβατές µε τις συνθήκες στήριξης και εσωτερικές συνδέσεις του φορέα ισοζύγιο του εξωτερικού και εσωτερικού δυνατού έργου: το εξωτερικό δυνατό έργο, από την δυνατή µετακίνηση των πραγµατικών φορτίσεων, πρέπει να ισούται µε την ελαστική δυνατή ενέργεια, την οποία πραγµατοποιούν οι τάσεις, οι οποίες αντιστοιχούν στα προκαλούµενα από τα πραγµατικά φορτία εσωτερικά εντατικά µεγέθη, κατά τις δυνατές παραµορφώσεις. Στατική Ανάλυση των Κατασκευών Ι 10

11 Αρχή των δυνατών συµπληρωµατικών έργων - Αρχή των δυνατών δυνάµεων εφαρµογή δυνατών δυνάµεων και ροπών εφαρµόζουµε σε ένα φορέα, ο οποίος ισορροπεί κάτω από εξωτερικά επιβαλλόµενες φορτίσεις, µια δυνατή εξωτερική φόρτιση και τα αντίστοιχα δυνατά εσωτερικά εντατικά µεγέθη ισοζύγιο του εξωτερικού και εσωτερικού συµπληρωµατικού δυνατού έργου: το εξωτερικό δυνατό συµπληρωµατικό έργο, από την µετακίνηση των δυνατών φορτίσεων κατά τις πραγµατικές µετακινήσεις, πρέπει να ισούται µε την ελαστική δυνατή συµπληρωµατική ενέργεια, την οποία πραγµατοποιούν οι τάσεις, οι οποίες αντιστοιχούν στα προκαλούµενα από τα δυνατά φορτία εσωτερικά εντατικά µεγέθη, κατά τις πραγµατικές παραµορφώσεις. µπορούµε να υπολογίσοµε µία άγνωστη µετακίνηση εφαρµόζοντας µια δυνατή φανταστική δύναµη, ή ροπή, όπου ζητείται ο υπολογισµός της. Στατική Ανάλυση των Κατασκευών Ι 11

12 Εξωτερικό δυνατό έργο δw E επιβάλλοντας σε ένα φορέα, ο οποίος ισορροπεί κάτω από την εφαρµογή εξωτερικών φορτίων, µια δυνατή µετακίνηση, η οποία δεν παραβιάζει τις συνθήκες στήριξης ή εσωτερικών συνδέσεων: τα επιβαλλόµενα φορτία εκτελούν εξωτερικό δυνατό έργο το εξωτερικό δυνατό έργο δw E ισούται µε το γινόµενο πραγµατικών δυνάµεων ή ροπών επί τις αντίστοιχες δυνατές (νοητές) µετακινήσεις του σηµείου εφαρµογής. θετικό είναι το δυνατό έργο όταν η δύναµη ή ροπή και η δυνατή µετάθεση ή στροφή, αντίστοιχα, είναι στην ίδια διεύθυνση. Αλλιώς, αν είναι αντίθετης φοράς, είναι αρνητικό το έργο. το εξωτερικό δυνατό έργο εξωτερικών φορτίων από την επιβολή αντίστοιχων δυνατών µετακινήσεων ισούται µε: Στατική Ανάλυση των Κατασκευών Ι 12

13 Εσωτερικό δυνατό έργο (ελαστική δυνατή ενέργεια παραµόρφωσης) ενέργεια λόγω των τάσεων κατά αντίστοιχες δυνατές παραµορφώσεις τις γενική περίπτωση τρισδιάστατου σώµατος Στατική Ανάλυση των Κατασκευών Ι 13

14 Ελαστική δυνατή ενέργεια γραµµικών δοµικών στοιχείων εκφράζοντας τις τάσεις και παραµορφώσεις, κατά τον υπολογισµό της ελαστικής δυνατής ενέργειας, συναρτήσει των εντατικών µεγεθών µπορούµε να διατυπώσοµε τις επιπλέον εξισώσεις που απαιτούνται για την επίλυση υπερστατικών φορέων Στατική Ανάλυση των Κατασκευών Ι 14

15 Ελαστική δυνατή ενέργεια λόγω αξονικών δυνάµεων πραγµατικές ορθές τάσεις λόγω αξονικών δυνάµεων επιβολή δυνατών αξονικών παραµορφώσεων νόµος του Hooke ελαστική ενέργεια θεωρώντας γραµµικά ελαστικό υλικό: Στατική Ανάλυση των Κατασκευών Ι 15

16 Ελαστική δυνατή ενέργεια καµπτικών ροπών Μ z ή Μ y ορθές τάσεις: γραµµικά ελαστικό υλικό: Στατική Ανάλυση των Κατασκευών Ι 16

17 Ελαστική δυνατή ενέργεια τεµνουσών δυνάµεων V y ή V z διατµητικές τάσεις: γραµµικά ελαστικό υλικό: Στατική Ανάλυση των Κατασκευών Ι 17

18 Ελαστική δυνατή ενέργεια λόγω ροπών στρέψης Μ x διατµητικές τάσεις: (λόγω ροπής στρέψης) γραµµικά ελαστικό υλικό (Hooke s s law): πολική ροπή αδράνειας: r : απόσταση από το κέντρο της διατοµής Στατική Ανάλυση των Κατασκευών Ι 18

19 υνατή ελαστική ενέργεια (δυνατό εσωτερικό έργο) Έχοντας περισσότερες από µια µορφές δυνατών µορφών παραµόρφωσης, η συνολική ελαστική δυνατή ενέργεια ισούται µε το άθροισµα των επιµέρους ελαστικών δυνατών ενεργειών για κάθε διαφορετικό είδος παραµόρφωσης. συνολικά η ελαστική ενέργεια, στη γενική περίπτωση γραµµικών (ραβδωτών) µελών, δίνεται από την πιο κάτω γενική εξίσωση, η οποία αντιστοιχεί στη µέθοδο των δυνατών µετακινήσεων: εναλλάσσοντας, τα πραγµατικά εντατικά µεγέθη µε τα δυνατά εντατικά µεγέθη η διατύπωση που αντιστοιχεί στη µέθοδο των δυνατών δυνάµεων: Στατική Ανάλυση των Κατασκευών Ι 19

20 Υπολογισµός µετακινήσεων µε την Α Ε φορτίζοντας τον φορέα µε µοναδιαίο δυνατό (φανταστικό) φορτίο στο σηµείο και διεύθυνση της ζητούµενης άγνωστης (πραγµατικής) µετακίνησης, επιλύουµε τον φορέα για αυτό το µοναδιαίο φορτίο ακολούθως, εφαρµόζοντας την πραγµατική φόρτιση ή δράσεις υπολογίζουµε τις (πραγµατικές) παραµορφώσεις οι οποίες προκαλούνται από τα αντίστοιχα εντατικά µεγέθη. σύµφωνα µε την Α Ε, το εξωτερικό έργο από την (πραγµατική) µετακίνηση του σηµείου εφαρµογής του δυνατού φορτίου πρέπει να ισούται µε την ελαστική ενέργεια η οποία αποθηκεύεται από τα εντατικά µεγέθη που αντιστοιχούν στο µοναδιαίο φορτίο λόγω των (πραγµατικών) παραµορφώσεων. µέθοδοι των δυνατών δυνάµεων 20

21 Μέθοδοι των δυνατών µετακινήσεων αφού πρώτα επιβληθούν σε ένα φορέα οι πραγµατικές φορτίσεις δυνατές (δηλαδή νοητές) µετακινήσεις επιβάλλονται σε αυτόν επιτρέποντας ουσιαστικά ένα εναλλακτικό τρόπο διατύπωσης των εξισώσεων ισορροπίας. µέθοδοι των δυνατών µετακινήσεων Στατική Ανάλυση των Κατασκευών Ι 21

22 Παράδειγµα εφαρµογής της Α Ε Υπολογισµός βύθισης και στροφής του άκρου προβόλου λόγω δύναµης P: πρώτα, πρέπει να φορτίσουµε τη δοκό στο σηµείο και τη διεύθυνση της ζητούµενης µετακίνησης µε µοναδιαία δύναµη ακολούθως, φορτίζουµε τη δοκό µε το πραγµατικά επιβαλλόµενο φορτίο P, το οποίο προκαλεί εντατική και παραµορφωσιακή κατάσταση η οποία έχει σαν αποτέλεσµα τις ζητούµενες µετακινήσεις 22

23 µε την επιβολή του φορτίου και την παραµόρφωση της δοκού το σηµείο εφαρµογής της µοναδιαίας δυνατής δύναµης µετακινείται σύµφωνα µε την πραγµατική βύθιση στο άκρο της δοκού παράγοντας εξωτερικό δυνατό (συµπληρωµατικό) έργο εσωτερικό δυνατό (συµπληρωµατικό) έργο προκύπτει από τα δυνατά εντατικά µεγέθη λόγω των πραγµατικών παραµορφώσεων οι οποίες αντιστοιχούν στα πραγµατικά εντατικά µεγέθη σύµφωνα µε την αρχή των δυνατών (συµπληρωµατικών) έργων: παραλείποντας τη συνεισφορά των διατµητικών παραµορφώσεων: Στατική Ανάλυση των Κατασκευών Ι 23

24 Υπολογισµός της στροφής στο ελεύθερο άκρο του προβόλου φορτίζουµε τη δοκό στο σηµείο και τη διεύθυνση της ζητούµενης στροφής µε µοναδιαία ροπή, η οποία προκαλεί τέµνουσες δυνάµεις και καµπτικές ροπές ακολούθως, φορτίζουµε τη δοκό µε το πραγµατικά επιβαλλόµενο φορτίο το οποίο προκαλεί τέµνουσες δυνάµεις και καµπτικές ροπές, και τις αντίστοιχες παραµορφώσεις και τις ζητούµενες µετακινήσεις Στατική Ανάλυση των Κατασκευών Ι 24

25 µε την επιβολή του φορτίου και την παραµόρφωση της δοκού το σηµείο εφαρµογής της µοναδιαίας δυνατής ροπής µετακινείται σύµφωνα µε την πραγµατική στροφή στο άκρο της δοκού παράγοντας εξωτερικό δυνατό (συµπληρωµατικό) έργο εσωτερικό δυνατό (συµπληρωµατικό) έργο προκύπτει τα δυνατά εντατικά µεγέθη λόγω των πραγµατικών παραµορφώσεων σύµφωνα µε την αρχή των δυνατών (συµπληρωµατικών) έργων: Στατική Ανάλυση των Κατασκευών Ι 25

26 Υπολογισµός ολοκληρωµάτων µορφής: ολοκληρώνοντας τις αναλυτικές εκφράσεις για τις συναρτήσεις ο γνωστός τρόπος που έχουµε χρησιµοποιήσει µέχρι τώρα συνήθως δεν είναι ο πιο εύκολος αν και οι δύο συναρτήσεις Φ(x) και Ψ(x) µεταβάλλονται γραµµικά Στατική Ανάλυση των Κατασκευών Ι 26

27 Υπολογισµός ολοκληρωµάτων µορφής: αν η µία από τις δύο συναρτήσεις µεταβάλλεται γραµµικά σε όλο το µήκος της ολοκλήρωσης, τότε το ορισµένο ολοκλήρωµα ισούται µε το γινόµενο της επιφάνειας της άλλης συνάρτησης επί την τιµή της γραµµικά µεταβαλλόµενης συνάρτησης στο σηµείο κατά µήκος του µέλους, το οποίο αντιστοιχεί στο κέντρο βάρους της επιφάνειας της άλλης συνάρτησης χρήση πινάκων µε ορισµένα ολοκληρώµατα για κοινές περιπτώσεις γινοµένων Φ(x) και Ψ(x) µπορούµε χρησιµοποιώντας την αρχή της επαλληλίας να σχηµατίσουµε το συγκεκριµένο διάγραµµα µε κατάλληλη άθροιση ή αφαίρεση γνωστών επιµέρους διαγραµµάτων. συνήθως ο πιο εύκολος τρόπος 27

28 Πινάκες ορισµένων ολοκληρωµάτων µορφής: 28

29 Παράδειγµα εφαρµογής της Α Ε µε χρήση πινάκων Υπολογισµός βύθισης και στροφής του άκρου προβόλου λόγω δύναµης P: πρώτα, πρέπει να φορτίσουµε τη δοκό στο σηµείο και τη διεύθυνση της ζητούµενης µετακίνησης µε µοναδιαία δύναµη ακολούθως, φορτίζουµε τη δοκό µε το πραγµατικά επιβαλλόµενο φορτίο P, το οποίο προκαλεί εντατική και παραµορφωσιακή κατάσταση η οποία έχει σαν αποτέλεσµα τις ζητούµενες µετακινήσεις 29

30 σύµφωνα µε την αρχή των δυνατών (συµπληρωµατικών) έργων: ολοκληρώνοντας αναλυτικά: χρήση των διαγραµµάτων των εντατικών µεγεθών και πινάκων : Στατική Ανάλυση των Κατασκευών Ι 30

31 Μη πρισµατικά µέλη πρισµατικά µέλη: τα γραµµικά µέλη ενός φορέα τα οποία έχουν σταθερή εγκάρσια διατοµή µη πρισµατικά µέλη: έχουν µεταβαλλόµενα κατά µήκος του άξονα τους γεωµετρικά χαρακτηριστικά τα ολοκληρώµατα για την ελαστική ενέργεια µπορούν να υπολογιστούν: µε αναλυτική ολοκλήρωση (ακριβής λύση) προσεγγιστικά, αντικαθιστώντας το ολοκλήρωµα από ένα άθροισµα πεπερασµένου αριθµού τµηµάτων, δηλαδή χωρίζοντας το µέλος σε ένα αριθµό τµηµάτων και θεωρώντας για κάθε τµήµα µια ισοδύναµη πρισµατική δοκό µε σταθερές ιδιότητες. π.χ. ελαστική ενέργεια καµπτικών παραµορφώσεων µε µεταβαλλόµενη ροπή αδράνειας Ι y κατά µήκος µίας δοκού: Στατική Ανάλυση των Κατασκευών Ι 31

32 Παραµορφώσεις από άλλα, εκτός φορτίων, αίτια Θερµοκρασιακές µεταβολές οµοιόµορφη καθ ύψος της διατοµής: µεταβολή του µήκους του στοιχείου (επιµήκυνση ή βράχυνση) διαφορετική στα δύο πέλµατα ενός µέλους καµπτικής µορφής παραµορφώσεις και σχετικές στροφές των διατοµών Κατασκευαστικές ατέλειες και σφάλµατα ιαφορικές καθιζήσεις Στατική Ανάλυση των Κατασκευών Ι 32

33 Θερµοκρασιακές µεταβολές αύξηση/µείωση θερµοκρασίας ενός µέλους διαστολή/συστολή συστολή εάν η µεταβολή της θερµοκρασίας είναι: οµοιόµορφη καθ ύψος της διατοµής: προκαλεί µεταβολή του µήκους L του στοιχείου (επιµήκυνση ή βράχυνση διαφορετική στα δύο πέλµατα ενός µέλους: θεωρώντας γραµµική µεταβολή της θερµοκρασίας Τ καθ ύψος h της διατοµής, παρατηρείται στροφή γειτονικών διατοµών, προκαλώντας καµπτικής µορφής παραµορφώσεις και σχετικές στροφές των διατοµών. (α: συντελεστής θερµικής διαστολής του υλικού) Στατική Ανάλυση των Κατασκευών Ι 33

34 Εφαρµογή της Α Ε για θερµοκρασιακές µεταβολές Για να υπολογιστούν οι µετακινήσεις ενός σηµείου λόγω θερµοκρασιακών µεταβολών µπορούµε να χρησιµοποιήσουµε την Α Ε εφαρµόζοντας µοναδιαίο δυνατό φορτίο στο σηµείο και την διεύθυνση της ζητούµενης µετακίνησης: ελαστική δυνατή ενέργεια λόγω οµοιόµορφης µεταβολής της θερµοκρασίας: ελαστική δυνατή ενέργεια λόγω διαφορικής µεταβολής της θερµοκρασίας: Στατική Ανάλυση των Κατασκευών Ι 34

35 Παράδειγµα θερµοκρασιακών µεταβολών Υπολογισµός οριζόντιας και κάθετης µετακίνηση του κόµβου 3 του δικτυώµατος λόγω αύξησης θερµοκρασίας της ράβδου 2 κατά 20 ο C (α = 10-5 / ο C) επιµήκυνση ράβδου 2: Στατική Ανάλυση των Κατασκευών Ι 35

36 Παράδειγµα θερµοκρασιακών µεταβολών (συν.) εφαρµόζοντας µοναδιαία δύναµη κατά τη Χ µπορούµε µε την Α Ε να υπολογίσουµε την αντίστοιχη άγνωστη µετακινήση u: εξισώνοντας το εξωτερικό δυνατό (συµπληρωµατικό) έργο, από τη δυνατή µοναδιαία φόρτιση και την αντίστοιχη πραγµατική µετακίνηση, µε την ελαστική δυνατή (συµπληρωµατική) ενέργεια, από τις δυνατές αξονικές δυνάµεις στις ράβδους λόγω της εφαρµογής της µοναδιαίας δύναµης και τις αντίστοιχες αξονικές (πραγµατικές) παραµορφώσεις από τη θερµοκρασιακή µεταβολή: Στατική Ανάλυση των Κατασκευών Ι 36

37 Παράδειγµα θερµοκρασιακών µεταβολών (συν.) εφαρµόζοντας µοναδιαία δύναµη κατά τη Y µπορούµε µε την Α Ε να υπολογίσουµε την αντίστοιχη άγνωστη µετακινήση v: εξισώνοντας το εξωτερικό δυνατό (συµπληρωµατικό) έργο, από τη δυνατή µοναδιαία φόρτιση και την αντίστοιχη πραγµατική µετακίνηση, µε την ελαστική δυνατή (συµπληρωµατική) ενέργεια, από τις δυνατές αξονικές δυνάµεις στις ράβδους λόγω της εφαρµογής της µοναδιαίας δύναµης και τις αντίστοιχες αξονικές (πραγµατικές) παραµορφώσεις από τη θερµοκρασιακή µεταβολή: Στατική Ανάλυση των Κατασκευών Ι 37

38 Κατασκευαστικές ατέλειες και σφάλµατα Σφάλµατα και ατέλειες κατασκευής διαφόρων δοµικών στοιχείων ενός φορέα, όπου δεν ταιριάζουν οι διαστάσεις µε τις οποίες σχεδιάστηκαν µε αυτές που πραγµατικά κατασκευάστηκαν ισοστατικοί φορείς γενικά δεν προκαλούν εντάσεις υπερστατικοί φορείς αυτεντατική κατάσταση: ανάπτυξη επιπλέον εντατικής και παραµορφωσιακής κατάστασης ο υπολογισµός των µετακινήσεων λόγω κατασκευαστικών ατελειών γίνεται όπως οι παραµορφώσεις λόγω θερµοκρασιακών µεταβολών. όταν συνυπάρχουν παραµορφώσεις λόγω φορτίων, θερµοκρασιακών µεταβολών και κατασκευαστικών ατελειών τις συνυπολογίζουµε αθροίζοντας τις συνέπειες τους Στατική Ανάλυση των Κατασκευών Ι 38

39 ιαφορικές καθιζήσεις οι κατασκευές, µε το σχετικά µεγάλο βάρος τους, δεν εδράζονται πάνω σε απολύτως απαραµόρφωτη βάση, αλλά θεµελιώνονται σε παραµορφώσιµο έδαφος το οποίο µπορεί να παρουσιάσει καθιζήσεις εξωτερικοί καταναγκασµοί λόγω διαφορικών µετακινήσεων (καθιζήσεων) των στηρίξεων µιας κατασκευής ισοστατικοί φορείς αν και οι διαφορικές καθιζήσεις προκαλούν µετακινήσεις και στροφές των µελών της κατασκευής γενικά δεν προκαλούν παραµορφώσεις ή εντάσεις ο υπολογισµός των µετακινήσεων µπορεί να γίνει εύκολα µε την Α Ε εφαρµόζοντας µοναδιαίο φορτίο στην κατεύθυνση της ζητούµενης µετακίνησης ως δυνατή φόρτιση αφού η ελαστική δυνατή ενέργεια ισούται µε µηδέν εφόσον δεν αναπτύσσονται (πραγµατικές) παραµορφώσεις σε ένα ισοστατικό φορέα υπερστατικοί φορείς ανάπτυξη εντατικών µεγεθών και παραµορφώσεων το µέγεθος των εντατικών µεγεθών εξαρτάται από το µέγεθος των καθιζήσεων και τη δυσκαµψία της κατασκευής Στατική Ανάλυση των Κατασκευών Ι 39

40 Παράδειγµα διαφορικών καθιζήσεων Υπολογισµός οριζόντιας µετακίνησης του κόµβου Γ λόγω υποχώρησεων της στηρίξεως Α κατά: Α Ε: εφαρµόζοντας στο Γ µια οριζόντια µοναδιαία δυνατή δύναµη αντιδράσεις: Στατική Ανάλυση των Κατασκευών Ι 40

41 Παράδειγµα διαφορικών καθιζήσεων (συν.) το εξωτερικό δυνατό (συµπληρωµατικό) έργο ισούται µε: το εσωτερικό δυνατό (συµπληρωµατικό) έργο ισούται µε: (αφού δεν αναπτύσσονται παραµορφώσεις σε ένα ισοστατικό φορέα λόγω µετακινήσεων των στηρίξεων του) Στατική Ανάλυση των Κατασκευών Ι 41

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,

Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,, ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος

Διαβάστε περισσότερα

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος

Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Επαναλήψεις Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 Θέµατα

Διαβάστε περισσότερα

ιάλεξη 7 η, 8 η και 9 η

ιάλεξη 7 η, 8 η και 9 η ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ03-2 Οι ενεργειακές μέθοδοι αποτελούν τη βάση για υπολογισμό των μετακινήσεων, καθώς η μετακίνηση εισέρχεται

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8

Διαβάστε περισσότερα

1 η Επανάληψη ιαλέξεων

1 η Επανάληψη ιαλέξεων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν

Διαβάστε περισσότερα

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι

ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Παράδειγμα Π4-1 Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων: Δ04-2 Χρησιμοποιώντας την ΑΔΕ, να υπολογιστούν οι μετακινήσεις δ x και δ y του κόμβου

Διαβάστε περισσότερα

Ανάλυση Ισοστατικών ικτυωµάτων

Ανάλυση Ισοστατικών ικτυωµάτων ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15

ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7

ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7 Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη

Διαβάστε περισσότερα

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)

2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,

Διαβάστε περισσότερα

ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004

ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι

ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ

ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΥΝΑΜΙΚΗ ΣΥΣΤΗΜΑΤΩΝ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ έκδοση DΥΝI-DCMB_2016b Copyright

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών

11. Χρήση Λογισμικού Ανάλυσης Κατασκευών ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 015 3. Δοκοί (φορτία NQM) Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 3. Δοκοί (φορτία NQΜ)/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής με τα διάφορα είδη φορτίων.

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα

Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 9 Φεβρουαρίου 011 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια)

Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) Ενεργειακές Μέθοδοι Υπολογισμού Μετακινήσεων (συνέχεια) ο Θεώρημα Castigliano Δ06- Το ο ΘεώρημαCastigliano αποτελεί μια μέθοδο υπολογισμού της μετακίνησης (μετάθεσης ή στροφής) ενός σημείου του φορέα είτε

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών

9. Χρήση Λογισμικού Ανάλυσης Κατασκευών 9. Χρήση Λογισμικού Ανάλυσης Κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής Κατανομή φορτίων πλακών

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:

ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων: ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 017 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

4. Επίλυση Δοκών και Πλαισίων με τις

4. Επίλυση Δοκών και Πλαισίων με τις ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

Κεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς

Κεφάλαιο 1 Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Πάγιοι ατενείς φορείς υπό εξωτερικά φορτία και καταναγκασμούς Σύνοψη Οι ασκήσεις έως του κεφαλαίου αυτού αφορούν σε πάγιους ατενείς φορείς. Στην Άσκηση

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ

ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος

20/10/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού. Πανεπιστημιακός Υπότροφος Εργαστηριακές Σημειώσεις Κάμψη Ξυλινης Δοκού Δρ. Σωτήρης Δέμης Πανεπιστημιακός Υπότροφος Τσιμεντοπολτός Περιλαμβάνονται διαγράμματα από τα βιβλία «Μηχανική των Υλικών» και «Δομικά Υλικά» του Αθανάσιου

Διαβάστε περισσότερα

Κεφάλαιο 2 Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις

Κεφάλαιο 2 Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με ή χωρίς ελαστικές στηρίξεις/πακτώσεις Σύνοη Οι ασκήσεις έως 6 του κεφαλαίου αυτού, αφορούν σε κινητούς ατενείς φορείς. Στην Άσκηση

Διαβάστε περισσότερα

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

Κεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας

Κεφάλαιο 5 Φορείς με στοιχεία πεπερασμένης δυστένειας Κεφάλαιο Φορείς με στοιχεία πεπερασμένης δυστένειας Σύνοψη Οι ασκήσεις 0, και του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν μεταξύ άλλων και στοιχεία πεπερασμένης δυστένειας

Διαβάστε περισσότερα

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ,

ΠEPIEXOMENA. σελ. iii ΠΡΟΛΟΓΟΣ KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, v ΠEPIEXOMENA ΠΡΟΛΟΓΟΣ ΠEPIEXOMENA iii v KEΦAΛAIO 1 ΟΡΘΕΣ ΚΑΙ ΙΑΤΜΗΤΙΚΕΣ ΤΑΣΕΙΣ, ΣΧΕ ΙΑΣΜΟΣ ΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ 1 1.1 Εισαγωγή 1 1.2 H µέθοδος των τοµών 2 1.3 Ορισµός της τάσης 3 1.4 Ο τανυστής των τάσεων

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

Μέθοδος των Δυνάμεων (συνέχεια)

Μέθοδος των Δυνάμεων (συνέχεια) Μέθοδος των Δυνάμεων (συνέχεια) Δοκοί σε Ελαστικές Στηρίξεις Μέθοδος των Δυνάμεων: Δ10-2 Οι στηρίξεις κάποιων φορέων είναι δυνατό να μετακινηθούν υπό την επίδραση της εξωτερικής φόρτισης. Για παράδειγμα,

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013

ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013 ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ ΑΝΑΛΥΣΗΣ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ

Διαβάστε περισσότερα

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών

5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών 5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών

Διαβάστε περισσότερα

7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος

Διαβάστε περισσότερα

Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα

Κεφάλαιο 3 Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα ΜΕΘΟΔΟΣ ΜΕΤΑΚΙΝΗΣΕΩΝ - ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Κινητοί ατενείς φορείς με απολύτως στερεά τμήματα Σύνοη Οι ασκήσεις 7 και 8 του κεφαλαίου αυτού αφορούν σε κινητούς ατενείς φορείς, οι οποίοι συμπεριλαμβάνουν

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις.

ΑΣΚΗΣΗ 6. Διαλέγουμε ως υπερστατικά μεγέθη τις κατακόρυφες αντιδράσεις στις τρεις αριστερές στηρίξεις. Άσκηση 6 Μέθοδος των υνάμεων ΑΣΚΗΣΗ 6 ΕΟΜΕΝΑ: Για τη δοκό του σχήματος με ίσα ανοίγματα και ροπές αδρανείας σταθερές αλλά όχι ίδιες σε κάθε άνοιγμα, ζητείται να μορφωθεί το διάγραμμα ροπών κάμψεως. 6 mm

Διαβάστε περισσότερα

4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα

4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας

ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3

Διαβάστε περισσότερα

Μέθοδοι των Μετακινήσεων

Μέθοδοι των Μετακινήσεων Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή

Κεφάλαιο 1: Εισαγωγή 1-1 Η Επιστήµη της Αντοχής των Υλικών, 1-2 Γενικές παραδοχές, 1-3 Κατάταξη δυνάµεων, 1-4 Είδη στηρίξεων, 1-5 Μέθοδος τοµών, Παραδείγµατα, 1-6 Σχέσεις µεταξύ εσωτερικών και εξωτερικών δυνάµεων, Παραδείγµατα,

Διαβάστε περισσότερα

Περίληψη μαθήματος Ι

Περίληψη μαθήματος Ι ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΥΛΙΚΩΝ, ΤΟΜΕΑΣ ΜΗΧΑΝΙΚΗΣ, ΓΕΝΙΚΟ ΤΜΗΜΑ, ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ, ΑΠΘ Περίληψη μαθήματος Ι Τυπολόγιο μεθοδολογία στατικής Περίληψη Ι: Ισορροπία υλικού σημείου & στερεού σώματος, δικτυώματα,

Διαβάστε περισσότερα

Σκοπός της Αντοχής των Υλικών. Αναγκαιότητα του µαθήµατος, ρόλος του σε σχέση µε άλλα µαθήµατα των κατασκευών, προβλήµατα που επιλύει.

Σκοπός της Αντοχής των Υλικών. Αναγκαιότητα του µαθήµατος, ρόλος του σε σχέση µε άλλα µαθήµατα των κατασκευών, προβλήµατα που επιλύει. 1 η Εβδοµάδα Σκοπός της Αντοχής των Υλικών. Αναγκαιότητα του µαθήµατος, ρόλος του σε σχέση µε άλλα µαθήµατα των κατασκευών, προβλήµατα που επιλύει. Η έννοια του φορέα. Συσχετισµός και αντιδιαστολή µε τον

Διαβάστε περισσότερα

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional).

x=l ηλαδή η ενέργεια είναι µία συνάρτηση της συνάρτησης . Στα µαθηµατικά, η συνάρτηση µίας συνάρτησης ονοµάζεται συναρτησιακό (functional). 3. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΥΣ Η Μέθοδος των Πεπερασµένων Στοιχείων Σηµειώσεις 3. Ενεργειακή θεώρηση σε συνεχή συστήµατα Έστω η δοκός του σχήµατος, µε τις αντίστοιχες φορτίσεις. + = p() EA = Q Σχήµα

Διαβάστε περισσότερα

Πλαστική Κατάρρευση Δοκών

Πλαστική Κατάρρευση Δοκών Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός

Διαβάστε περισσότερα

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων

2.1 Παραμορφώσεις ανομοιόμορφων ράβδων ΑΞΟΝΙΚΗ ΦΟΡΤΙΣΗ 9 Αξονική φόρτιση. Παραμορφώσεις ανομοιόμορφων ράβδων. Ελαστική ράβδος ΑΒ μήκους, Γ B μέτρου ελαστικότητας Ε και / συντελεστή θερμικής διαστολής α, είναι πακτωμένη στα σημεία Α και Β και

Διαβάστε περισσότερα

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»

ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ 7 Πεδιλοδοκοί και Κοιτοστρώσεις..6 Πεδιλοδοκοί και Κοιτοστρώσεις Η θεμελίωση μπορεί να γίνει με πεδιλοδοκούς ή κοιτόστρωση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2017 Εισαγωγή στο Μάθημα Μηχανική των Υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Εισαγωγή/ Μηχανική Υλικών 1 Χρονοδιάγραμμα 2017 Φεβρουάριος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων.

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΘΕΜΑ 1 ο (35%) Να επιλυθεί ο υπερστατικός φορέας του σχήματος χρησιμοποιώντας τη μέθοδο των παραμορφώσεων. ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΙΔΕΥΤΙΚΟ ΙΔΡΥΜ ΘΗΝΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 8 Φεβρουαρίου Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΤΩΝ ΡΠΤΗ ΕΞΕΤΣΗ ( η περίοδος χειμερινού

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας

ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή

Διαβάστε περισσότερα

Εισαγωγικές Έννοιες. Οι καλές ταλαντώσεις!

Εισαγωγικές Έννοιες. Οι καλές ταλαντώσεις! Εισαγωγικές Έννοιες Οι καλές ταλαντώσεις! Αντικείμενο της Δυναμικής Εισαγωγικές Έννοιες: Αντικείμενο της Δυναμικής των Κατασκευών: Ανάλυση της απόκρισης των κατασκευών που υπόκεινται σε δυναμική καταπόνηση

Διαβάστε περισσότερα

Παραδείγματα μελών υπό αξονική θλίψη

Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.

Διαβάστε περισσότερα

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 119 Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 6.1 Εισαγωγή Όταν ένα δομικό στοιχείο καταπονείται με ροπές των οποίων τα διανύσματα είναι παράλληλα προς τον άξονα του στοιχείου, δηλαδή προκαλούν συστροφή του στοιχείου

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 2011 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης 2:15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 6 Οκτωβρίου 11 Διδάσκων:, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 1. Εισαγωγικές έννοιες στην μηχανική των υλικών Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενο μαθήματος Μηχανική των Υλικών: τμήμα των θετικών επιστημών που

Διαβάστε περισσότερα

ιαλέξεις 17-21 Παρασκευή, 15, Τρίτη, 19, Τετάρτη, 20, Παρασκευή 22 και Τρίτη, 26, Οκτωβρίου,, 2004 komodromos@ucy.ac.cy http://www.ucy.ac.

ιαλέξεις 17-21 Παρασκευή, 15, Τρίτη, 19, Τετάρτη, 20, Παρασκευή 22 και Τρίτη, 26, Οκτωβρίου,, 2004 komodromos@ucy.ac.cy http://www.ucy.ac. ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 17-21 Ενεργειακές Μέθοδοι Υπολογισµού Μετακινήσεων Παρασκευή, 15, Τρίτη, 19, Τετάρτη, 20, Παρασκευή 22 και Τρίτη, 26, Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος

Διαβάστε περισσότερα

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ

AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση

Διαβάστε περισσότερα

Μέθοδος Επικόμβιων Μετατοπίσεων

Μέθοδος Επικόμβιων Μετατοπίσεων Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:

ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ: ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......

Διαβάστε περισσότερα

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2)

Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (2) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Ανάλυσης Θεωρία Μηχανισμών

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

5. Θερμικές τάσεις και παραμορφώσεις

5. Θερμικές τάσεις και παραμορφώσεις 5. Θερμικές τάσεις και παραμορφώσεις Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 5. Θερμικές Τάσεις και Παραμορφώσεις/ Μηχανική Υλικών 2015 1 Περιεχόμενα ενότητας Επίδραση ορθών τάσεων στη μεταβολή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων

ΚΕΦΑΛΑΙΟ. Οι γραμμικοί φορείς. 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων ΚΕΦΑΛΑΙΟ 1 Οι γραμμικοί φορείς 1.1 Εισαγωγή 1.2 Συστήματα συντεταγμένων 2 1. Οι γραμμικοί φορείς 1.1 Εισαγωγή 3 1.1 Εισαγωγή Για να γίνει ο υπολογισμός μιας κατασκευής, θα πρέπει ο μελετητής μηχανικός

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ

ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή

15/12/2016. Δρ. Σωτήρης Δέμης. Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή 15/1/016 Εργαστηριακές Σημειώσεις Στρέψη Μεταλλικής Δοκού Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εισαγωγή Αρχή: Δομικό στοιχείο καταπονείτε σε στρέψη όταν διανύσματα ροπών είναι

Διαβάστε περισσότερα

Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......

Διαβάστε περισσότερα

Κεφάλαιο 3 Υπολογισμός παραμορφωσιακών μεγεθών

Κεφάλαιο 3 Υπολογισμός παραμορφωσιακών μεγεθών ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΑΣΚΗΣΕΙΣ Κεφάλαιο Κεφάλαιο Υπολογισμός παραμορφωσιακών μεγεθών Σύνοψη Οι ασκήσεις του κεφαλαίου αυτού αφορούν τις μεθόδους υπολογισμού (α) μεμονωμένων μεγεθών παραμόρφωσης (Ομάδα Ι),

Διαβάστε περισσότερα

~ 2 ~

~ 2 ~ ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Αναλυτική µελέτη της µεθοδολογίας επίλυσης υπερστατικών φορέων στο επίπεδο» ΟΝ/ΜΟ: ΕΥΘΥΜΙΑ ΒΟΓΚΛΗ Α.Μ.: 40240 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

4.5 Αµφιέρειστες πλάκες

4.5 Αµφιέρειστες πλάκες Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και

Διαβάστε περισσότερα

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό

Α5. Όταν η ζήτηση για ένα αγαθό είναι ελαστική, τότε πιθανή αύξηση της τιµής του, θα οδηγήσει σε µείωση της καταναλωτικής δαπάνης για αυτό το αγαθό ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΟΛΩΝ ΤΩΝ ΚΑΤΕΥΘΥΝΣΕΩΝ ΙΑΓΩΝΙΣΜΑ 1 (για άριστα διαβασµένους) ΟΜΑ Α Α Να απαντήσετε στις επόµενες ερωτήσεις πολλαπλής επιλογής A1. Σε γραµµική ΚΠ της µορφής Y =

Διαβάστε περισσότερα

7. Δυναμική Ανάλυση ΠΒΣ

7. Δυναμική Ανάλυση ΠΒΣ ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 7. Δυναμική Ανάλυση ΠΒΣ Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στα πολυβάθμια συστήματα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής

ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΤΕΧΝΟΛΟΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΙΚΩΝ ΕΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 5 Ιουνίου 1 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. Διάρκεια εξέτασης :15 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΡΑΠΤΗ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα