ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ. 5 " " " " παθήσεις α και δ. 4 " " " " παθήσεις α και γ. 7 " " " " παθήσεις β και γ 2 " " " " παθήσεις γ και δ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ. 5 " " " " παθήσεις α και δ. 4 " " " " παθήσεις α και γ. 7 " " " " παθήσεις β και γ 2 " " " " παθήσεις γ και δ"

Transcript

1 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ 1. Τρεις εφημερίδες Α, Β, Γ, εκδίδονται σε μια ορισμένη πόλη και έχει εκτιμηθεί ότι από τον ενήλικο πληθυσμό της πόλης 20% διαβάζει την εφημερίδα Α 16% " " " Β 14% " " " Γ 8% διαβάζει τις εφημερίδες Α και Β 5% " " " Α και Γ 4% " " " Β και Γ 2% " " " Α και Β και Γ Ποιό ποσοστό του εν λόγω πληθυσμού διαβάζει τουλάχιστον μια εφημερίδα; 2. Σ' ένα σύνολο 100 ασθενών, έχει παρατηρηθεί ότι: 10 εξ αυτών πάσχουν από εγκεφαλικές παθήσεις (παθήσεις α) 9 " " " " καρδιακές παθήσεις (παθήσεις β) 15 " " " " αγγειακές παθήσεις (παθήσεις γ) 10 " " " " ανίατες παθήσεις (παθήσεις δ) 5 " " " " παθήσεις α και β 4 " " " " παθήσεις α και γ 5 " " " " παθήσεις α και δ 7 " " " " παθήσεις β και γ 2 " " " " παθήσεις β και δ 2 " " " " παθήσεις γ και δ 2 " " " " παθήσεις α, β και γ 1 " " " " παθήσεις α, γ και δ 1 " " " " παθήσεις β, γ και δ 3 " " " " παθήσεις α, β και δ 1 " " " " πάσχει από όλες τις παθήσεις Ποιό είναι το ποσοστό αυτών που πάσχουν από 1 τουλάχιστον πάθηση; 3. Ζητάμε να επιλέξουμε 10 άτομα από ένα πληθυσμό με 10 άτομα. Πόσοι τρόποι υπάρχουν για να γίνει αυτό; 233

2 4. Τα γράμματα στον Κώδικα του Morse σχηματίζονται με τελείες και παύλες (επαναλήψεις επιτρέπονται). Πόσα διαφορετικά γράμματα μπορούμε να σχηματίσουμε αν κάθε γράμμα γίνεται με 4 το πολύ χαρακτήρες; 5. Με πόσους τρόπους μπορούν 7 άτομα να καθήσουν α) σε σειρά και β) γύρω από ένα κυκλικό τραπέζι; 6. Ένας φοιτητής πρέπει να απαντήσει σε 8 από 10 ερωτήσεις α) πόσες επιλογές έχει; β) πόσες επιλογές έχει αν πρέπει να απαντήσει οπωσδήποτε στις 3 πρώτες ερωτήσεις, και γ) πόσες επιλογές έχει αν πρέπει ν' απαντήσει σε 4 τουλάχιστον από τις πρώτες ερωτήσεις; 7. Εάν επαναλήψεις δεν επιτρέπονται α) Πόσοι τριψήφιοι αριθμοί μπορούν να σχηματισθούν από τα ψηφία 2,3,5,6,7 και 9; β) Πόσοι απ' αυτούς είναι μικρότεροι του 400; γ) Πόσοι είναι άρτιοι; δ) Πόσοι είναι περιττοί; και ε) Πόσοι είναι πολλαπλάσια του 5; 8. Ένα αυτοκίνητο έχει σταθμεύσει σε δρόμο κατά μήκος του οποίου υπάρχουν θέσεις για Ν αυτοκίνητα. Όταν ο οδηγός επιστρέφει βρίσκει ότι υπάρχουν ακόμα r σταθμεύμενα αυτοκίνητα. Ποία είναι η πιθανότητα να είναι ελεύθερες οι γειτονικές θέσεις; (N+1=1). 9. Έχουμε 10 βιβλία τα οποία θέλουμε να τοποθετήσουμε σε μια βιβλιοθήκη. Πόσοι τρόποι υπάρχουν να γίνει αυτό; και πόσοι αν 3 απ' αυτά πρέπει να είναι συνέχεια μαζί; (το ένα δίπλα στο άλλο). 10. Μια ομάδα από 2N άνδρες και 2N γυναίκες διαιρείται σε δυο ίσες υποομάδες α) Ποιά η πιθανότητα να έχουν και οι δύο υποομάδες ίσο αριθμό ανδρών και γυναικών β) Ποιά η πιθανότητα όταν Ν = 2, 5, ; 234

3 11. Να δειχθεί ότι είναι πιθανότερο να πάρουμε τουλάχιστον ένα 6 ρίχνοντας 4 ζάρια μία φορά από το να πάρουμε τουλάχιστον ένα διπλό 6 ρίχνοντας δύο ζάρια 24 φορές. 12. Αν κάποιος αγοράσει 10 λαχεία από 1000 σε μία λαχειοφόρο αγορά και για τα 5 βραβεία που υπάρχουν κληρώνονται τυχαία και χωρίς επανατοποθέτηση 5 λαχνοί, να βρεθεί η πιθανότητα να κερδίσει τουλάχιστον ένα βραβείο. 13. Έστω 95% η πιθανότητα ορθής διάγνωσης καρδιακού νοσήματος ενός test. Αν 5% ενός πληθυσμού πάσχει από το νόσημα αυτό ποιά η πιθανότητα για ένα ασθενή για τον οποίο το test βγήκε θετικό να πάσχει πράγματι από το νόσημα; 14. Σε κάποιο βενζινάδικο 40% των πελατών ζητούν απλή βενζίνη (A 1 ), 35% ζητούν αμόλυβδη (A 2 ) και 25% super (A 3 ). Απ' αυτούς που ζητούν απλή μόνο 30% γεμίζουν το ντεπόζιτο τους, απ' αυτούς που ζητούν αμόλυβδη μόνο 60% και απ' αυτούς που ζητούν super μόνο 50%. Ποιά η πιθανότητα ο επόμενος πελάτης α) να ζητήσει αμόλυβδη και να γεμίσει το ντεπόζιτο του β) να γεμίσει το ντεπόζιτο του γ) αν γεμίσει το ντεπόζιτο του να ζητήσει απλή; αμόλυβδη; super; 15. Έχει παρατηρηθεί ότι το 5% των συσκευών τηλεόρασης που κατασκευάζει ένα εργοστάσιο έχουν τον οριζόντιο και τον κάθετο ρυθμιστή ελαττωματικούς. Στα 8% των συσκευών μόνο ο οριζόντιος ρυθμιστής είναι ελαττωματικός. Εάν σε κάποια συσκευή βρεθεί ότι ο οριζόντιος ρυθμιστής είναι ελαττωματικός ποιά η πιθανότητα να είναι και ο κάθετος; 16. Καθένα από 3 δέματα περιέχει 20 ηλεκτρικούς λαμπτήρες μερικοί από τους οποίους είναι ελαττωματικοί. Υποθέτουμε ότι το α δέμα περιέχει 2 ελαττωματικούς το β 6 και το γ κανένα. Ένα δέμα επιλέγεται τυχαία και από αυτό επιλέγεται τυχαία ένας λαπτήρας. Ποιά η πιθανότητα να μην είναι ελαττωματικός; 235

4 17. Κάποιος που δουλεύει σε μία μεγαλούπολη έχει δύο αυτοκίνητα, ένα μικρό και ένα μεγάλο. Σε ποσοστό 75% παίρνει το μικρό να πάει στη δουλειά του και τον υπόλοιπο χρόνο παίρνει το μεγάλο. Αν πάρει το μικρό έχει, συνήθως, μεγαλύτερη ευχέρεια στο parking και έτσι φτάνει στη δουλειά του στην ώρα του με πιθανότητα 0.9. Αν πάρει το μεγάλο είναι στην ώρα του με πιθανότητα 0.6. Δοθέντος ότι έφθασε στη δουλειά του στην ώρα του ένα πρωϊνό, ποιά η πιθανότητα να οδηγούσε το μικρό αυτοκίνητο και ποιά να οδηγούσε το μεγάλο αυτοκίνητο; 18. Μια ομάδα έχει πιθανότητα 0.6 να νικήσει, 0.3 να χάσει και 0.1 να φέρει ισοπαλία. Η ομάδα παίζει 3 παιχνίδια στην διάρκεια ενός Σαββατοκύριακου. α) Προσδιορίσατε το ενδεχόμενο Α το οποίο δηλώνει ότι η ομάδα νικά τουλάχιστον τα δύο παιχνίδια και δεν χάνει κανένα. Ποιά η P(A); β) Βρείτε τα στοιχεία του γεγονότος Β κατά το οποίο η ομάδα νικά, χάνει και φέρνει ισοπαλία. Ποιά η P(B); 19. Στρίβουμε ένα νόμισμα ώσπου να εμφανισθεί κεφάλι δύο διαδοχικές φορές. α) Ποιός είναι ο δειγματοχώρος; β) Αν το νόμισμα είναι αμερόληπτο ποιά η πιθανότητα να χρειαστούν 4 δοκιμές ώσπου να εμφανιστεί κεφάλι 2 διαδοχικές φορές; 20. Υποθέτουμε ότι η διάρκεια χιονόπτωσης σ' ένα ακριτικό χωριό της Β. Ελλάδας είναι μία τυχαία μεταβλητή Τ με συνάρτηση πυκνότητας πιθανότητας - t 5 ( 1 5 ) e, t > 0 f T () t = 0, t < 0 όπου t μετριέται σε λεπτά. Αν η διάρκεια χιονόπτωσης μια μέρα έχει φθάσει ήδη τα 8 λεπτά ποιά η πιθανότητα να διαρκέσει άλλα 6; 21. Έστω Χ μία τυχαία μεταβλητή με f(x) = k1-x ( ) kx 0 < x < < x< 1 0 αλλου 236

5 α) Ποιά η τιμή του k; β) Αν Α={x; x < 1/2} και 1/4 < x < 3/4}, ποιά είναι η P(A) και ποιά η P(B); γ) Είναι τα Α, Β ανεξάρτητα; 22. Για ποιά τιμή του c η συνάρτηση f(x) = cα x I Α (x), όπου Α={0,1,2,3,...}, είναι μία συνάρτηση πυκνότητας πιθανότητας; Να βρεθεί η συνάρτηση πιθανότητας από την συνάρτηση κατανομής 0 αν < 0 F ( α) = α < 1 1 α < 2 2 α < 3 3 α < 3.5 α Ο χρόνος αναμονής (σε λεπτά) σε στάση λεωφορείου έχει σ.κ. 0 x< 0 x10 0 x< 5 Fx ( ) = 12 5 x< 10 x20 10 x< 20 1 x 20 i) Να παρασταθεί γραφικά η F(x). ii) Είναι η συνάρτηση συνεχής; iii) Ποιά η πιθανότητα να περιμένει κανείς α) περισσότερο από β) λιγότερο από 10 και γ) περισσότερο από 15 δεδομένου ότι περιμένει ήδη 5; 25. Μια μηχανή λειτουργεί για χρόνο Χ 1 μέχρις ότου χαλάσει. Ο χρόνος επιδιόρθωσης είναι Y 1. Κατόπιν λειτουργεί πάλι για χρόνο Χ 2 και παθαίνει πάλι βλάβη. Ο χρόνος επιδιόρθωσης είναι Y 2. Αυτό επαναλαμβάνεται.yποθέτουμε ότι, τα Χ I είναι ανεξάρτητες τ.μ. με κοινό μέσο μ και διασπορά σ 2. Η τιμή του Y εξαρτάται από το πόσο παλιά είναι η μηχανή (η ηλικία της μηχανής μετριέται από το χρόνο που βρίσκεται συνολικά σε λειτουργία, δηλαδή από το άθροισμα Χ X n ). Yποθέτουμε ότι Y i = α + β (X X i ) όπου β > 0. Όταν η μηχανή χαλάσει για νιοστή φορά αποσύρεται. Να βρεθεί η μέση τιμή και η διασπορά του χρόνου που μεσολαβεί από την στιγμή της

6 εγκατάστασης μιας νέας μηχανής της μορφής αυτής έως ότου αποσυρθεί. n ( n 1) Σημ: n-1 =, (n-1) 2 n( n 1)( 2n 1) = Σας προσφέρουν την δυνατότητα να επιλέξετε ένα από δύο παιχνίδια. Στο Α ρίχνετε ένα ζάρι μία φορά και κερδίζετε το ποσόν Χ που είναι ίσο με το αποτέλεσμα της ρίψης (σε δρχ.). Στο Β ρίχνετε ένα ζάρι 2 φορές και κερδίζετε το ποσόν Y που είναι maximum των δύο αποτελεσμάτων (σε δρχ.). Αν το ποσό εισόδου είναι 300 δρχ. στο Α και 350 δρχ. στο Β παιχνίδι ποιό θα παίζατε; 27. Ένα κατάστημα ηλεκτρικών ειδών διαθέτει 3 διαφορετικά μοντέλα ψυγείων χωρητικότητας 13.5, 15.9, 19.1 κυβικών ποδιών. Έστω Χ η χωρητικότητα του ψυγείου που θ' αγοράσει ο επόμενος αγοραστής με κατανομή. x P(x) α) Αν η τιμή του ψυγείου χωρητικότητας Χ είναι 10X-100 ποιά η αναμενόμενη τιμή που θα πληρώσει ο επόμενος πελάτης και ποιά η τυπική της απόκλιση; β) Αν, ενώ η διαφημιζόμενη χωρητικότητα είναι Χ η πραγματική είναι φ(x) = X-0.01X 2 ποιά η αναμενόμενη πραγματική χωρητικότητα του ψυγείου που θ αγοράσει ο επόμενος πελάτης. 28. Η τυχαία μεταβλητή Χ έχει συνάρτηση πυκνότητας πιθανότητας της μορφής f(x) = e -λ λ χ /x!. Αν P[X=1] = 0.6 και η P[X=2] = 0.9 να βρεθεί το c ώστε το κατώτερο φράγμα της ανισότητας για την πιθανότητα P[ X-λ < c] να είναι μηδέν. Δίνεται ότι Ε(x) = Δ(x) = λ. 29. Αν οι τυχαίες μεταβλητές Χ, Υ έχουν από κοινού πυκνότητα πιθανότητας 238

7 y x Να βρεθούν η μέση τιμή και η διασπορά της X δοθέντος ότι Y= Έστω Χ b(x;6, 1/2). Να δειχθεί ότι το περισσότερο πιθανό ενδεχόμενο είναι το X=3 (επικρατούσα τιμή). 31. Είναι γνωστό ότι αν ελέγξουμε 10 άτομα από ένα πληθυσμό, η πιθανότητα 5 εξ αυτών να πάσχουν από μία ασθένεια A είναι διπλάσια από την πιθανότητα να πάσχουν 4. Ποιά η πιθανότητα να βρούμε 2 πάσχοντες στους 8; 32. Το τοπικό κυλικείο έχει να προσφέρει για φαγητό κάθε μέρα 10 τυρόπιτες και 10 σάντουϊτς. Αν θεωρήσουμε ότι λόγω του ότι οι τυρόπιτες είναι καλύτερης ποιότητας κάποιος επιλέγει τυρόπιτα με πιθανότητα 0.6. Ποιά η πιθανότητα ότι i) Περισσότεροι από 10 από τους 15 επόμενους πελάτες θα ζητήσουν τυρόπιτες; ii) και οι 15 επόμενοι πελάτες που ζητούν κάτι για φαγητό να μπορούν να κάνουν την επιλογή τους χωρίς το κυλικείο να χρειαστεί να ξαναπαραγγείλει κάποιο από τα είδη που προσφέρει; 33. Είναι γνωστό ότι 20% από το σύνολο των οδηγών σταματούν τελείως στο stop σ' ένα σταυροδρόμι έχοντας αναμμένα τα φλας τους όταν κανένα αυτοκίνητο δεν είναι ορατό. Από 20 τυχαία επιλεγέντες οδηγούς που φθάνουν στο σταυροδρόμι κάτω από τις παρακάτω συνθήκες ποιά είναι η πιθανότητα ότι: i) το πολύ 5 θα σταματήσουν τελείως ii) ακριβώς 5 " " 239

8 iii) το λιγότερο 5 " " iv) Πόσοι από τους επόμενους 20 οδηγούς αναμένουμε να σταματήσουν; 34. Δύο παίκτες παίζουν κορώνα-γράμματα μ' ένα τέλειο νόμισμα. Αυτός που φέρνει κορώνα κερδίζει 1 δραχμή. Οι παίκτες ξεκινούν με 6 δρχ. ο καθένας. Ποιά η πιθανότητα α) μετά 6 ρίψεις οι παίκτες να έχουν τα ίδια χρήματα και β) ο ένας να έχει πάρει όλα τα λεφτά με την 6η ρίψη; 35. Οι 4 μηχανές ενός αεροσκάφους λειτουργούν ανεξάρτητα και η πιθανότητα βλάβης μιας, κατά την διάρκεια της πτήσης είναι Ποιά η πιθανότητα σε μια πτήση να μην παρατηρηθεί i) καμμιά βλάβη ii) πάνω από μία βλάβη; 36. Σε μία αίθουσα εξετάσεων με 50 φοιτητές οι 10 αντιγράφουν. i) Ποιά η πιθανότητα σε 5 τυχαία επιλεγόμενους φοιτητές να μην υπάρχει αντιγραφέας; ii) Αν επαναλάβουμε την διαδικασία 3 φορές, ποιά η πιθανότητα 2 φορές να μην βρούμε αντιγραφέα; 37. Οι αφίξεις πελατών σ' ένα ιατρείο ακολουθούν την κατανομή Poisson με ρυθμό 6 πελάτες την ώρα. Δεδομένου ότι η αίθουσα αναμονής έχει 4 καθίσματα και ο χρόνος εξέτασης κάθε ασθενούς είναι σταθερός και ίσος προς 40 ποιά η πιθανότητα κατά την στιγμή που τελειώνει η εξέταση του πρώτου ασθενούς να υπάρχουν τουλάχιστον 2 όρθιοι στην αίθουσα αναμονής; 38. Έστω ότι ο αριθμός των τυπογραφικών λαθών ανά σελίδα ακολουθεί την κατανομή Poisson. Ένα βιβλίο 200 σελίδων έχει 40 τυπογραφικά λάθη. Αν διαλέξουμε τυχαία 10 σελίδες από το βιβλίο, να βρεθεί η πιθανότητα να μην υπάρχουν τυπογραφικά λάθη στις σελίδες αυτές. 39. Οι αφίξεις τηλεφωνικών κλήσεων σε ένα τηλεφωνικό κέντρο ακολουθούν την κατανομή Poisson με λ=3 μεταξύ 9.00 και

9 το πρωΐ. Ποια η πιθανότητα ο τηλεφωνητής i) κατά την αυριανή ημέρα να μην λάβει καμμιά κλήση από τις 9.00 ως τις 9.10 και ii) κατά τις επόμενες 3 μέρες να λάβει συνολικά 1 κλήση στο ίδιο διάστημα; 40. Η διάρκεια ζωής Χ ενός ηλεκτρικού στοιχείου είναι μία τ.μ. ομοιόμορφα κατανεμημένη στο διάστημα (0,100). Nα βρεθούν οι πιθανότητες i) P[20 X 80] και ii) P[X 90] 41. Έστω Χ 1,, Χ n ανεξάρτητες τ.μ. κάθε μια από τις οποίες ακολουθεί την U(0,1). Αν Μ=max(Χ 1,, Χ n ) και L=min(Χ 1,, Χ n ) να βρεθούν η συνάρτηση κατανομής και η συνάρτηση πυκνότητας πιθανότητας των M και L. 42. Από μία ραδιενεργό ουσία εκπέμπονται κατά μέσο όρο 3 σωμάτια ανά 1 σύμφωνα με την κατανομή Poisson i) Ποιά η πιθανότητα σε 2 λεπτά να εκπεμφθούν 4 σωμάτια; ii) Ποιά η πιθανότητα ο χρονός μεταξύ 2 διαδοχικών εκπομπών να είναι το πολύ 2 λεπτά; 43. Σε μία κλινική υπολογίζεται ότι κατά μέσο όρο φθάνουν 3 ασθενείς ανά μέρα και ζητούν νοσηλεία. Οι αφίξεις ακολουθούν την κατανομή Poisson. Ποιά η πιθανότητα ο χρόνος μεταξύ των αφίξεων του πρώτου και δεύτερου ασθενούς να είναι μικρότερος των 4 ωρών; 44. Ο χρόνος ζωής Χ των κατοίκων μιας χώρας είναι εκθετική τ.μ. με λ=1/50, σε έτη. (α) Ποιά η πιθανότητα για ένα κάτοικο της χώρας να ζήσει τουλάχιστον 70 έτη δοθέντος ότι μόλις γιόρτασε την 40η επέτειο των γενεθλίων του; (β) Ποιό το ποσοστό των κατοίκων που ζουν πάνω από 70 έτη; (γ) Για ποιά τιμή του z ισχύει ότι P[X>z]=1/2; 45. Ο χρόνος λειτουργίας σε έτη των ηλεκτρικών μηχανών ορισμένου τύπου, που εκφράζεται από την τ.μ. Χ έχει συνάρτηση 241

10 1 πυκνότητας πιθανότητας f(x) 9 χρόνος λειτουργίας των μηχανών και ποιά η μέση απόκλιση τετραγώνου αυτού; x/3 = xe, x>0. Ποιός είναι ο μέσος 46. Ο δείκτης ευφυίας (IQ) για κάποιο πληθυσμό έχει την κανονική κατανομή με μέση τιμή 100 και τυπική απόκλιση 15. Ποιό ποσοστό του πληθυσμού αυτού έχει ΙQ μικρότερο του 90 και ποιό μεγαλύτερο του 125; 47. Έστω η τ.μ. X N(μ, σ 2 ). Ποιά η τιμή του c ώστε P[X c]=2p[x>c]. Αν μ=0, σ 2 =1 ποιά η αριθμητική τιμή του c; 48. Έστω ότι ο χρόνος που χρειάζεται για τις απαντήσεις ενός γραπτού test είναι X N(70, 12 2 ). Πότε πρέπει να τελειώσει ο χρόνος ώστε το 90% των υποψηφίων να προλάβουν να ολοκληρώσουν το test; 49. Δύο τύποι λυχνιών D 1, D 2 έχουν αντίστοιχα διάρκεια ζωής (σε ώρες) X και Y όπου X N(40, 36) και Y N(45, 9). Αν μια λυχνία πρόκειται να χρησιμοποιηθεί για 45 ώρες ποιός από τους δύο τύπους ενδείκνυται; Να εξετασθεί η ίδια ερώτηση αν η λυχνία πρέπει να χρησιμοποιηθεί για 48 ώρες. (Η χρήση είναι για τουλάχιστον 45 και 48 ώρες). 50. Κάθε ένα από δύο τύπους απορρυπαντικών Α και Β πωλείται σε κιβώτια που περιέχουν 25 kgr. Το 15% των κιβωτίων του Α περιέχουν λιγότερο των 24.5 kgr, το 6% περισσότερο των 26 kgr και το 8% περισσότερο των 26.5 kgr. Θεωρώντας ότι το βάρος κατανεμέται κανονικά και για τα δύο απορρυπαντικά, να προσδιορισθούν με προσέγγιση 4ου δεκαδικού ψηφίου οι μέσες τιμές και οι διασπορές. Υποθέτοντας ότι η τιμή ανά κιλό των δύο τύπων είναι ίδια να προσδιορισθεί ποιός τύπος δίνει κατά μέσο όρο καλύτερη τιμή ανά κιβώτιο. 242

11 51. Ο χρόνος ζωής X ενός πλυντηρίου, σε έτη, ακολουθεί την κατανομή N(3.1, (1.2) 2 ). Αν το πλυντήριο έχει εγγύηση ενός έτους, τί πιθανότητα έχει το εργοστάσιο να αποφύγει την αντικατάστασή του; 243

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας

ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά

Διαβάστε περισσότερα

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3xi -2 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i )= 5, x

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p). Διωνυμική Κατανομή Ορισμός: Μια τυχαία μεταβλητή Χ λέγεται ότι ακολουθεί την διωνυμική κατανομή αν πληρούνται οι ακόλουθες τρεις συνθήκες: α) Υπάρχουν n επαναλαμβανόμενες δοκιμές οι οποίες είναι στατιστικώς

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του φυλλαδίου ασκήσεων επανάληψης. P (B) P (A B) = 3/4.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του φυλλαδίου ασκήσεων επανάληψης. P (B) P (A B) = 3/4. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8. Λύσεις του φυλλαδίου ασκήσεων επανάληψης.. Αν P (A) / και P (A B) /4, βρείτε την ελάχιστη δυνατή και την μέγιστη δυνατή τιμή της P (B). Το B καλύπτει οπωσδήποτε

Διαβάστε περισσότερα

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις.

Κανονική Κατανομή. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Κανονική Κατανομή. τεχνικές. 73 άλυτες ασκήσεις. Κανονική Κατανομή Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Κανονική Κατανομή τεχνικές 73 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 3 / 1 0 / 0 1 6 εκδόσεις Καλό

Διαβάστε περισσότερα

Μέση τιμή, διασπορά, τυπική απόκλιση. 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)=

Μέση τιμή, διασπορά, τυπική απόκλιση. 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)= Μέση τιμή, διασπορά, τυπική απόκλιση Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3x 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i)= i-2 22, xi=1,2,3,4. α) Να συμπληρωθεί ο παρακάτω πίνακας:

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Συμπληρωματικές Ασκήσεις

Συμπληρωματικές Ασκήσεις Συμπληρωματικές Ασκήσεις Ασκήσεις Στατιστικής ΙΙ Αν για ένα ενδεχόμενο ισχύει Α, να ρείτε την πιθανότητα εμφάνισης του Έστω, τα ενδεχόμενα ότι ένας συγκεκριμένος γιατρός ρίσκεται στις πμ στο ιατρείο του

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή:

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του πέμπτου φυλλαδίου ασκήσεων.. Δηλαδή: Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 2017-18 Λύσεις του πέμπτου φυλλαδίου ασκήσεων 1 Σε ένα πρόβλημα πολλαπλής επιλογής προτείνονται n απαντήσεις από τις οποίες μόνο μία είναι σωστή Αν η σωστή απάντηση κερδίζει

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 25 Νοεµβρίου 2009 Ορισµός Εστω X µια διακριτή τυχαία µεταβλητή µε συνάρτηση πιθανότητας f(x) = e λ λx, x = 0, 1,..., (1) x! όπου 0 < λ

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο

Οι παραγγελίες ακολουθούν την κατανομή Poisson. Σύμφωνα με τα δεδομένα ο ΘΕΜΑ 1 ο (ΜΟΝΑΔΕΣ 10) Μια βιοτεχνία καθαρισμού ρούχων λειτουργεί καθημερινά 8 ώρες. Η βιοτεχνία δέχεται κατά μέσο όρο 4 παραγγελίες την ημέρα για καθαρισμό ενδυμάτων. (ι). Να υπολογισθεί η πιθανότητα να

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 8 Σειρά Α Θέματα ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΜΑ : Το δοχείο Δ περιέχει 6 άσπρες και 4 μαύρες μπάλες ενώ το δοχείο Δ περιέχει 5 άσπρες και μαύρες μπάλες.

Διαβάστε περισσότερα

= 14 = 34 = Συνδυαστική Ανάλυση

= 14 = 34 = Συνδυαστική Ανάλυση 1. Συνδυαστική Ανάλυση 1.1 Ένα κουτί περιέχει 8 κόκκινες, 3 άσπρες και 9 μπλε σφαίρες. Εάν βγάλουμε 3 σφαίρες στην τύχη χωρίς επανατοποθέτηση, ποια είναι η πιθανότητα (α) να είναι και οι 3 κόκκινες, (β)

Διαβάστε περισσότερα

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές.

Η Κανονική Κατανομή. Κανονικές Κατανομές με την ίδια διασπορά και διαφορετικές μέσες τιμές. Η Κανονική Κατανομή 1. Η Κανονική Κατανομή Λέμε ότι τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους μ και σ 2, και συμβολίζουμε Χ ~ N (μ, σ 2 ) αν έχει συνάρτηση πυκνότητας πιθανότητας

Διαβάστε περισσότερα

Ασκήσεις στην διωνυμική κατανομή

Ασκήσεις στην διωνυμική κατανομή Ασκήσεις στην διωνυμική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 1) Επιλέγουμε ένα τυχαίο δείγμα τεσσάρων μεταχειρισμένων ραδιοφώνων. Αν γνωρίζουμε ότι η πιθανότητα να μην υπάρχει ελαττωματικό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Η καταληκτική ημερομηνία για την παραλαβή

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.

1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4. ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος

ΠΙΘΑΝΟΤΗΤΕΣ. β) το ενδεχόμενο Α: ο αριθμός που προκύπτει να είναι άρτιος ΠΙΘΑΝΟΤΗΤΕΣ.Ένα κουτί περιέχει τέσσερις λαχνούς αριθμημένους από το εώς το 4. Εκλέγουμε έναν λαχνό στην τύχη,σημειώνουμε το αποτέλεσμα και δεν ξανατοποθετούμε τον λαχνό στο κουτί. Επαναλαμβάνουμε το πείραμα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙKΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: 9 Φεβουαρίου 007 Ημερομηνία Παράδοσης της Εργασίας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3

ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Ασκηση 1 ΑΣΚΗΣΕΙΣ Γ.Π. ΚΕΦ 1,2,3 Δίνεται η συνάρτηση α. Να εξετάσετε την f ως προς τα ακρότατα. β. Να βρείτε την εξίσωση της εφαπτομένης της C f στο (1,f(1)). γ. Αν το α παίρνει τιμές που προκύπτουν από

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις.

Διακριτές Κατανομές. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Διακριτές Κατανομές. τεχνικές. 42 άλυτες ασκήσεις. Διακριτές Κατανομές Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Διακριτές Κατανομές τεχνικές 4 άλυτες ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglyos.gr 3 / 1 0 / 0 1 6 εκδόσεις

Διαβάστε περισσότερα

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο

Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων, Τμήμα Πληροφορικής. Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας) Διάφορες Ασκήσεις πάνω στην 3 η Ενότητα:

Πανεπιστήμιο Ιωαννίνων, Τμήμα Πληροφορικής. Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας) Διάφορες Ασκήσεις πάνω στην 3 η Ενότητα: Πανεπιστήμιο Ιωαννίνων, Τμήμα Πληροφορικής Προπτυχιακό Μάθημα: Πιθανότητες (Διδάσκων: Κων/νος Μπλέκας) Διάφορες Ασκήσεις πάνω στην 3 η Ενότητα: (Μέση Τιμή και Διακύμανση, Συναρτήσεις τυχαίων μεταβλητών)

Διαβάστε περισσότερα

Στατιστική Ι-Θεωρητικές Κατανομές Ι

Στατιστική Ι-Θεωρητικές Κατανομές Ι Στατιστική Ι-Θεωρητικές Κατανομές Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 12 Δεκεμβρίου 2012 Περιγραφή 1 Θεωρητικές Κατανομές Η Χρήση των Θεωρητικών

Διαβάστε περισσότερα

P(200 X 232) = =

P(200 X 232) = = ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50]

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ. Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 1η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ

ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΙΑ ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Στο Σετ αυτό περιλαμβάνονται θέματα Πιθανοτήτων που έχουν δοθεί σε εξετάσεις παρελθόντων ετών στα Τμήματα Γεωλογικό

Διαβάστε περισσότερα

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4

Διάλεξη 4: Θεωρία Πιθανοτήτων Ασκήσεις 4 Διάλεξη 4: ΑΣΚΗΣΕΙΣ. Η πιθανότητα εμφάνισης βλάβης σε ένα μηχάνημα εργοστασίου ισούται με 0.03, η πιθανότητα εμφάνισης σε ένα δεύτερο ισούται με 0.0 και η πιθανότητα βλάβης και στα δυο ισούται με 0.05.

Διαβάστε περισσότερα

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων

Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Κεφάλαιο 8 Συνεχείς Κατανομές Πιθανοτήτων Copyright 2009 Cengage Learning 8.1 Συναρτήσεις Πυκνότητας Πιθανοτήτων Αντίθετα με τη διακριτή τυχαία μεταβλητή που μελετήσαμε στο Κεφάλαιο 7, μια συνεχής τυχαία

Διαβάστε περισσότερα

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα:

Η Έννοια της Πιθανότητας. 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: 1 Η Έννοια της Πιθανότητας Η Έννοια της Πιθανότητας 1 Βρείτε την πιθανότητα του καθ ενός απ τα παρακάτω ενδεχόμενα: α) Να εμφανιστεί περιττός αριθμός κατά την ρίψη ενός ζαριού. (1/2) β) Να εμφανιστεί τουλάχιστον

Διαβάστε περισσότερα

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.

ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα. 1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει

Διαβάστε περισσότερα

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής

Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Παραδείγματα Θεμάτων/Ασκήσεων Συστημάτων Ουρών Αναμονής Γ. Λυμπερόπουλος Ιανουάριος 2012 Θέμα 1 Ένα εργοστάσιο που δουλεύει ασταμάτητα έχει τέσσερις (4) πανομοιότυπες γραμμές παραγωγής. Από αυτές, μπορούν

Διαβάστε περισσότερα

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση

2010-2011. 4 o Γενικό Λύκειο Χανίων Γ τάξη. Γενικής Παιδείας. Ασκήσεις για λύση 00-0 o Γενικό Λύκειο Χανίων Γ τάξη Μαθηματικά Γενικής Παιδείας γ Ασκήσεις για λύση Επιμέλεια: Μ Ι Παπαγρηγοράκης http://usersschgr/mipapagr Γ Λυκείου Μαθηματικά Γενικής Παιδείας ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ-

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008

ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗ ΧΗΜΕΙΑ Ι ΘΕΜΑΤΑ B Σεπτέμβριος 2008 ΘΕΜΑΤΑ B Σεπτέμβριος 8. Να προσδιοριστούν με τη μέθοδο των ελαχίστων τετραγώνων οι συντελεστές a και b της εξίσωσης y = be a, ώστε να περιγράφει τα πειραματικά σημεία ( i, y i ), i =,,, N.. Να υπολογιστούν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες:

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες: ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2015-16 ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες: α) Να γεννηθούν δύο κορίτσια και ένα αγόρι σε τρεις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες)

. Τι πρακτική αξία έχουν αυτές οι πιθανότητες; (5 Μονάδες) Εργαστήριο Μαθηματικών & Στατιστικής Α ΣΕΙΡΑ ΘΕΜΑΤΩΝ η Πρόοδος στο Μάθημα Στατιστική //7 ο Θέμα α) Περιγράψτε τη σχέση Θεωρίας Πιθανοτήτων και Στατιστικής. β) Αν Α, Β ενδεχόμενα του δειγματικού χώρου Ω

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

( ) ΘΕΜΑ 1 κανονική κατανομή

( ) ΘΕΜΑ 1 κανονική κατανομή ΘΕΜΑ 1 κανονική κατανομή Υποθέτουμε ότι τα εβδομαδιαία έσοδα μιας επιχείρησης ακολουθούν την κανονική κατανομή με μέση τιμή 1000 και τυπική απόκλιση 15. α. Ποια η πιθανότητα i. η επιχείρηση να έχει έσοδα

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του έβδομου φυλλαδίου ασκήσεων. f X (t) dt για κάθε x. F Y (y) = P (Y y) = P X y b ) a.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του έβδομου φυλλαδίου ασκήσεων. f X (t) dt για κάθε x. F Y (y) = P (Y y) = P X y b ) a. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207- Λύσεις του έβδομου φυλλαδίου ασκήσεων Αν η συνεχής τμ X έχει συνάρτηση κατανομής F X και συνάρτηση πυκνότητας πιθανότητας f X, να βρείτε τις αντίστοιχες συναρτήσεις

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b

pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα

Διαβάστε περισσότερα

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ )

ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΔΕΟ13(ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΛΙΟΥ ) ΑΣΚΗΣΗ 1 Μια εταιρεία ταχυμεταφορών διατηρεί μια αποθήκη εισερχομένων. Τα δέματα φθάνουν με βάση τη διαδικασία Poion με μέσο ρυθμό 40 δέματα ανά ώρα. Ένας υπάλληλος

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Ιανουάριος 2014 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Σειρά Θέμα Ι (ΟΛΑ) Θέμα ΙΙ (2 από τα 3) Βαθμός /1 /1 /1 /1 /1 /2,5 /2,5 /2,5 /10 ΘΕΜΑ Ι: Ασχοληθείτε και με τα πέντε ερωτήματα.

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

The G C School of Careers

The G C School of Careers The G C School of Careers ΔΕΙΓΜΑ ΕΞΕΤΑΣΤΙΚΟΥ ΔΟΚΙΜΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΗ ΣΤΗ Στ ΤΑΞΗ Χρόνος: 1 ώρα Αυτό το γραπτό αποτελείται από 15 ασκήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις, στον χώρο που σου δίνεται

Διαβάστε περισσότερα

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Τυχαία Μεταβλητή (Random variable-variable aléatoire) Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 18 Νοεµβρίου 2009 ΑΣΚΗΣΕΙΣ 2.16. Εστω ότι το ετήσιο εισόδηµα X ενός µισθωτού µπορεί να ϑεωρηθεί ως µία συνεχής τυχαία µεταβλητή

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ. Ρίχνουµε ένα νόµισµα τρείς φορές (i) Να βρείτε τον δειγµατικό χώρο του πειράµατος τύχης. (ii) Να βρείτε την πιθανότητα των ενδεχοµένων: Α: Οι τρεις ενδείξεις είναι ίδιες. Β:

Διαβάστε περισσότερα

xp X (x) = k 3 10 = k 3 10 = 8 3

xp X (x) = k 3 10 = k 3 10 = 8 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 ιακριτές Τυχαίες Μεταβλητές ( ΙΙ ) Ασκηση. Ρίχνουµε ένα αµερόληπτο εξάεδρο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014 ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Βασικά Εργαλεία και Μέθοδοι για τον Έλεγχο της Ποιότητας [ΔΙΠ 50] 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Προσοχή: Οι απαντήσεις των ασκήσεων πρέπει να

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΑΡΙΘΜΟΣ ΔΕΝΤΡΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Μάθημα : ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ Ημερομηνία και ώρα εξέτασης:

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

Βαθµολογία Χαρακτηρισµός

Βαθµολογία Χαρακτηρισµός 1. Η χρέωση στους λογαριασµούς της TEL Company είναι η εξής: Πάγιο: 15 Αστικές µονάδες: 0.030 ανά µονάδα Υπεραστικές µονάδες: 0-150 0.045 ανά µονάδα 151-500 0.039 ανά µονάδα 501-0.033 ανά µονάδα Να αναπτυχθεί

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις Έννοια τυχαίας μεταβλητής Κατά τον υπολογισμό πιθανοτήτων, συχνά συμβαίνει τα ενδεχόμενα που μας ενδιαφέρουν να μετρούν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 ΗΔιωνυμική κατανομή για (πολύ) μεγάλα ν και (πολύ) μικρά p Η χρήση του τύπου ν x ν x f ( x)

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ. Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ - ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Εισαγωγικές εξετάσεις για το Μεταπτυχιακό Πρόγραμμα - Μέρος 2ο ΠΡΟΣΟΧΗ: Τα θέµατα που ακολουθούν καλύπτουν ένα ευρύ φάσµα διαφόρων περιοχών των Μαθηµατικών. Αυτό

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1. Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

Κατηγορία: Γενικά και Επαγγελματικά Λύκεια

Κατηγορία: Γενικά και Επαγγελματικά Λύκεια Κατηγορία: Γενικά και Επαγγελματικά Λύκεια Τεστ 1 βασικών γνώσεων Ελέγξτε τα ερωτηματολόγια 1 - Τεστ βασικών γνώσεων A - Γενικά και Επαγγελµατικά Λύκεια Εκδοχή 1 Γλώσσα el 1. Η πιθανότητα ένας ακέραιος

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31.

4 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 31. ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ η ΕΚΑ Α. Οι µηνιαίες αποδοχές, σε, ν υπαλλήλων είναι x, x,, x ν και αυτές αποτελούν οµοιογενές δείγµα µε µέση τιµή 000. Αν το 8% έχει µισθό Α, το 6% Β και οι υπόλοιποι Γ : Να βρείτε το

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές)

07/11/2016. Στατιστική Ι. 6 η Διάλεξη (Βασικές διακριτές κατανομές) 07/11/2016 Στατιστική Ι 6 η Διάλεξη (Βασικές διακριτές κατανομές) 1 2 Δοκιμή Bernoulli Ένα πείραμα σε κάθε εκτέλεση του οποίου εμφανίζεται ακριβώς ένα από δύο αμοιβαία αποκλειόμενα δυνατά αποτελέσματα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

1.2 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ . ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ Ασκήσεις σχ. βιβλίου σελίδας 7 9 Α ΟΜΑΔΑΣ. Από μία τράπουλα με 5 φύλλα παίρνουμε ένα στην τύχη. Να βρείτε τις πιθανότητες των ενδεχομένων : i) Το φύλλο είναι 5 ii) Το φύλλο δεν

Διαβάστε περισσότερα

Ασκήσεις μελέτης της 6 ης διάλεξης

Ασκήσεις μελέτης της 6 ης διάλεξης Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,

Διαβάστε περισσότερα

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν Ερωτήσεις ανάπτυξης 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + 3 β) α = + ( 1) ν ν γ) α ν = 1 1 1 1 + + + L + 1 3 34 ν ν + 1 δ) α1 = 0, αν+ 1 = 3α + 1 ν ( ). ** Να

Διαβάστε περισσότερα