Technical Appendix for DSGE Models for Monetary Policy Analysis

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Technical Appendix for DSGE Models for Monetary Policy Analysis"

Transcript

1 Technical Appendix for DSGE Models for Moneary Policy Analysis by Larence J Chrisiano, Mahias Traband, Karl Walenin A Daa Appendix A Daa Sources FRED2: Daabase of he Federal Reserve Bank of S Louis available a: hp://researchslouisfedorg/fred2/ BLS: Daabase of he Bureau of Labor Saisics available a: hp://blsgov/ FR: Fujia and Ramey (26) daa on job separaions and job findings available a: hp://philadelphiafedorg/research-and-daa/economiss/fujia/ransiion_raesxls SH: Daa on job separaions and job findings available a Rober Shimer s Homepage: hp://robershimergooglepagescom/ NIPA: Daabase of he Naional Income And Produc Accouns available a: hp://beagov/naional/nipaeb/indexasp BGOV: Daabase of he Board of Governors of he Federal Reserve Sysem available a: hp://federalreservegov/econresdaa/defaulhm CONFB: Daabase of he Conference Board available a: hp://conference-boardorg/economics/helpwanedcfm A2 Ra Daa Nominal GDP (GDP ): nominal gross domesic produc, billions of dollars, seasonally adjused a annual raes, NIPA GDP Deflaor (P ) : price index of nominal gross domesic produc, index numbers, 25=, seasonally adjused, NIPA Nominal nondurable consumpion (C nom nondurables ):nominal personal consumpion expendiures: nondurable goods, billions of dollars, seasonally adjused a annual raes, NIPA Nominal durable consumpion (C nom durables ):nominal personal consumpion expendiures: durable goods, billions of dollars, seasonally adjused a annual raes, NIPA Nominal consumpion services (C nom services) :nominal personal consumpion expendiures: services, billions of dollars, seasonally adjused a annual raes, NIPA Nominal invesmen (I nom ):nominal gross privae domesic invesmen, billions of dollars, seasonally adjused a annual raes, NIPA Price index: nominal durable consumpion (PC nom durables ):price index of durable goods, index numbers, 25=, seasonally adjused a annual raes, NIPA Price index: nominal invesmen (PI nom ):price index of nominal gross privae domesic invesmen, index numbers, 25=, seasonally adjused a annual raes, NIPA Employmen (E): civilian employmen, CE6OV, seasonally adjused, monhly, housands, persons 6 years of age and older, FRED2 Federal Funds Rae (FF): effecive federal funds rae, H5 seleced ineres raes, monhly, percen, averages of daily figures, FRED2

2 Treasury bill rae (TBill): 3-monh reasury bill: secondary marke rae, H5 seleced ineres raes, monhly, percen, averages of business days, discoun basis, FRED2 Populaion (POP): civilian noninsiuional populaion, no seasonally adjused, monhly, housands, FRED2 Capaciy uilizaion (CAP): capaciy uilizaion, G7 - indusrial producion and capaciy uilizaion, UTL: manufacuring (SIC) G7/CAPUTL/CAPUTLB4SQ, seasonally adjused, percenage, BGOV Job separaion rae (S): separaion rae: E o U, seasonally adjused, monhly, 976M- 28M2, FR Spliced ih corresponding daa from Rober Shimer for he sample before 976, quarerly SH Job finding rae (F ): Job finding rae: U o E, seasonally adjused, monhly, 976M- 28M2, FR Spliced ih corresponding daa from Rober Shimer for he sample before 976, quarerly SH Vacancies (V ): index of help aned adverising in nespapers, HELPWANT, The Conference Board, seasonally adjused, monhly, index 987=, Unemploymen rae (U): unemploymen rae labor force saus: unemploymen rae, LNS4, seasonally adjused, percen, 6 years and over, monhly frequency, BLS Nominal age (W ): nominal hourly compensaion, PRS8563, secor: nonfarm business, seasonally adjused, index, 992 =, BLS Average hours (H avg ): average eekly hours, PRS85623, secor: nonfarm business, seasonally adjused, index, 992 =, BLS Paricipaion rae (LabF orce) :civilian paricipaion rae, CIVPART, he employmen siuaion, seasonally adjused, monhly, percen, BLS A3 Daa Transformaions Ra daa are ransformed as follos POP is seasonally adjused using he X2 (muliplicaive) mehod The indices for W and H avg are normalized such ha 25= E, FF,TBill,POP,V,U and LabF orce are convered o quarerly frequencies by averaging monhly observaions For he job finding rae F, e compue he quarerly measure from monhly daa as follos: F q = F m +( F m )F m2 + ( ( F m )F m2 )F m3, here F q denoes he findingraeofquarerandf m,f m2,f m3 are he corresponding monhly finding raes The case for he separaion rae, S, follos accordingly Due o missing daa e use TBill as a proxy for he FF prior 954Q3 All daa are available from 948Q excep for vacancies for hich he firs observaion is 95Q We calculae he folloing ime series hich, among ohers, is used in he VAR: real GDP = GDP P POP hours = Havg E Pop nominal consumpion = Cnondurables nom + Cservices nom nominal invesmen = I nom + Cdurables nom 2

3 The price of invesmen is calculaed as a Torn price index using PI nom,pcdurables nom,inom and Cdurables nom The resuling price index PIT and quaniy index QIT are used o calculae he relaive price of invesmen as follos: PIT Inom relaive price of invesmen= P QIT B Scaling of Variables in Medium-sized Model We adop he folloing scaling of variables The neural shock o echnology is z and is groh rae is μ z, : z = μ z z, The variable, Ψ, is an invesmen specific echnology shock and i is convenien o define he folloing combinaion of our o echnology shocks: z + Ψ α α z, μ z +, μ α α Ψ, μ z, (B) Capial, K, and invesmen, I, are scaled by z + Ψ Consumpion goods C, governmen consumpion G and he real age, W /P are scaled by z + Also, υ is he muliplier on he nominal household budge consrain in he Lagrangian version of he household problem Tha is, υ is he marginal uiliy of one uni of currency The marginal uiliy of a uni of consumpion is υ P The laer mus be muliplied by z + o induce saionariy Oupu, Y, is scaled by z + Opimal prices, P, chosen by inermediae good firms hich are subjec o Calvo price seing fricions are scaled by he price, P,of he homogeneous oupu good Similarly, opimal ages, W, chosen by monopoly unions hich are subjec o Calvo age seing fricions are scaled by he age, W, of he homogenous labour inpu Thus our scaled variables are: k + = K + z + Ψ, k + = K + z + Ψ,i = I z +,c = C, (B2) Ψ g = G z +,ψ z +, = υ P z +, = W z +, ỹ = Y P z +, p = P, = W P W We define he scaled dae price of ne insalled physical capial for he sar of period + as p k, and e define he scaled real renal rae of capial as r k : p k, = Ψ P k,, r k = Ψ r k here P k, is in unis of he homogeneous good The inflaion rae is defined as: π = P P 3 z +

4 C Equilibrium Condiions for he Medium-sized Model C Firms We le s denoe he firm s marginal cos, divided by he price of he homogeneous good The sandard formula, expressing his as a funcion of he facor inpus, is as follos: s = ³ r k P α α W R α α P z α When expressed in erms of scaled variables, his reduces o: s = r k α α R α α (C) Producive efficiency dicaes ha s is also equal o he raio of he real cos of labor o he marginal produc of labor: α μψ, R s = ³ (C2) ki, ( α) /H μ z + i, α, The only real decision aken by inermediae good firmsisoopimizepriceheniis seleced o do so under he Calvo fricions The firs order necessary condiions associaed ih price opimizaion are, afer scaling: # πf,+ E "ψ z,y + + βξ π p F f + F f =, (C3) + πf,+ E ψ z,y + s + βξ p K f + K f =, (C4) π + p = ξp ³ πf, λ ξ f p π ξ p πf, + ξ p p π, (C5) ³ πf, λ ξ f p π ξ p ( ) = Kf, (C6) F f π f, π (C7) When e log-linearize abou he seady sae, e obain, βξp ξp ˆπ = βe ˆπ + + bs, ξ p here a ha indicaes log-deviaion from seady sae 4

5 C2 Households We no derive he equilibrium condiions associaed ih he household We firs consider he household s consumpion saving decision We hen urn o is age decision The Lagrangian represenaion of he household s problem is: E j = " β { h j, ln (C bc ) A L υ W,j h,j + X k K + R B + a,j P C + Ψ I B + P P k, +ω +( δ) K + The firs order condiion ih respec o C is: # I S I K + } I bβ E = υ P, C bc C + bc or, afer expressing his in scaled erms and muliplying by z + : ψ z +, = c b c βbe c μ z + + μ z +,+ bc, (C8) The firs order condiion ih respec o is, afer rearranging: P P k, = ω υ (C9) The firs order condiion ih respec o I is: I ω S S I I + E βω + S I+ I I I I I+ I 2 = P υ Ψ Making use of (C9), muliplying by Ψ z +, rearranging and using he scaled variables, μz,μ S + Ψ, i μz,μ S + Ψ, i μz,μ + Ψ, i (C) ψ z +,p k, i +βψ z +,+p k,+s μz +,+μ Ψ,+ i + i i i+ i i 2 μ z+,+μ Ψ,+ = ψ z+,, Opimaliy of he choice of K + implies he folloing firs order condiion: ω = βe υ + X k + + βe ω + ( δ) =βe υ + X k + + P + P k,+ ( δ) Using (C9) again, υ = E βυ + X k + + P + P k,+ ( δ) P P k, 5 = E βυ + R+, k (C)

6 here R k + denoes he rae of reurn on capial: Muliply (C) by P z + R k + Xk + + P + P k,+ ( δ) P P k, and express he resuls in scaled erms: ψ z +, = βe ψ z +,+ (C2) π + μ z +,+ Expressing he rae of reurn on capial, (??), in erms of scaled variables: R+ k = π + u + r + k a(u + )+( δ)p k,+ (C3) μ Ψ,+ p k, The firs order condiion associaed ih capial uilizaion is: Ψ r k = a (u ), or, in scaled erms, r k = a (u ) The firs order condiion ih respec o B + is: Muliply by z + P : υ = βυ + R ψ z +,+ R k + (C4) ψ z +, = βe R (C5) μ z,+π + + Finally, he la of moion for he capial sock, in erms of scaled variables is as follos: k + = δ μz,μ k + S + Ψ, i i (C6) μ z,μ + Ψ, C3 Resource Consrain i The resource consrain afer scaling by z + is given by: k y = g + c + i + a (u ) (C7) μ ψ, μ z +, In appendix D e derive a relaionship beeen oal oupu of he homogeneous good, Y, and aggregae facors of producion hich in scaled form looks as follos: α λ y =( p ) f k H α ϕ, (C8) μ Ψ, μ z +, here Finally, GDP is given by: k = k u gdp = g + c + i (C9) (C2) 6

7 C4 Wage Seing by he Monopoly Union We urn no o he equilibrium condiions associaed ih he household age-seing decision Consider he j h household ha has an opporuniy o reopimize is age a ime We denoe his age rae by W This is no indexed by j because he siuaion of each household ha opimizes is age is he same In choosing W, he household considers he discouned uiliy (neglecing currenly irrelevan erms in he household objecive) of fuure hisories hen i canno reopimize: " # E j (βξ ) i (h j,+i ) A L + υ +i W j,+i h j,+i, here υ is he muliplier on he household s period budge consrain The demand for he j h household s labor services, condiional on i having opimized in period and no again since, is: Ã! λ W π,+i π,+ h j,+i = H +i W +i Here, i is undersood ha π,+i π,+ hen i = Subsiuing his ino he objecive funcion and opimizing (see appendix F for deails) yields he folloing equilibrium equaions associaed ih age seing: ẘ = ( ξ ) π,+ = W + W = +z + +P + z + P = +μ z+,+π +, (C2) ³ ξ π, π, ξ h = ẘ λ H, (C22) λ λ π, + ξ ẘ π, λ (C23) In addiion o (C23), e have folloing equilibrium condiions associaed ih sicky ages 2 : 2 Log linearizing hese equaions abou he nonsochasic seady sae e obain, η b + η E b + η 2 b + + η 3ˆπ + η 4ˆπ + + η 5ˆπ =, +η 6 ˆψz+, + η 7 Ĥ + η 8ˆμ z+, + η 9ˆμ z+,+ here b = [λ σ L ( λ )] [( βξ )( ξ )],η = b ξ,η = σ L λ b +βξ 2,η2 = b βξ, η 3 = b ξ ( + βκ ),η 4 = b βξ,η 5 = b ξ κ,η 6 =( λ ), η 7 = ( λ )σ L,η 8 = b ξ,η 9 = b βξ 7

8 F, = ψ z +, λ K, = ẘ λ h + βξ E + ẘ λ h A L π,+ π,+ + βξ E π,+ ³ ξ π, π, ξ π,+ λ () + λ F,+ λ () K,+ F, = K, (C24) (C25) (C26) π,+ = π κ π ( κ) μ z + (C27) C5 Equilibrium Equaions The equilibrium condiions of he model correspond o he folloing 28 equaions, (C), (C2), (C3), (C4), (C5), (C6), (C7), (C6), (C8), (C), (C4), (C5), (C22), (422), (C7), (C8), (424), (C9), (425), (C3), (C2), (C24), (C25), (C26), (C23), (C27), (C2), (C2), hich can be used o solve for he folloing 28 unknons: r k,,r,s,π,p k,,k +, k +,u,h,h,i,c,ψ z +,,y, K f,f f, π f,, p,k,,f,, π,r k,s,a(u ), ẘ,π,,gdp D Resource Consrain in he Medium-sized Model We begin by deriving a relaionship beeen oal oupu of he homogeneous good, Y, and aggregae facors of producion We firs consider he producion of he homogenous oupu good: Y sum = = = Z Z Z = z α Y i, di (z H i, ) α Ki, α z + ϕ di α Ki, H i z + ϕ di z α K H H i α Z H i di z + ϕ, here K is he economy-ide average sock of capial services and H is he economy-ide average of homogeneous labor The las expression explois he fac ha all inermediae good firms confron he same facor prices, and so hey adop he same capial services 8

9 o homogeneous labor raio This follos from cos minimizaion, and holds for all firms, regardless heher or no hey have an opporuniy o reopimize Then, The demand for Y j, is so ha say, here Dividing by P, or, Y Z Y i, di = p = ξp The preceding discussion implies: Y sum Z = z α K α H α z + ϕ P P i, P Y P i, " Z P = P p = Z Pi P = Y i, Y, di = Y P i, ³ π λ ξ f p π ξ p di # di ³ P λf, (D), π + ξ p π p λ Y =( p ) f λ Y =( p ) f z α K α H α z + ϕ, (D2) or, afer scaling by z +, y =( p ) α k H α ϕ, μ Ψ, μ z +, here k = k u Finally, e adjus hours orked in he resource consrain so ha i corresponds o he oal number of people orking, as in (F6): " α # λ y =( p ) f k ẘ λ h α ϕ μ Ψ, μ z +, 9

10 I is convenien o also have an expression ha exhibis he uses of he homogeneous oupu, z + y = G + C + Ĩ, or, afer scaling by z + : k y = g + c + i + a (u ) μ ψ, μ z +, E Opimal Price Seing in he Medium-sized Model The profi funcion of he i h inermediae good firm ih he subsiued demand funcion is given by, λ X f β j Pi,+j Pi,+j υ +j P +j Y +j { s+j }, or, here E E j= X j= P +j P +j β j υ +j P +j Y +j {(X,j p ) s +j (X,j p ) P i,+j P +j = X,j p,x,j ( π+j π + π +j π +,j>, j= }, The i h firm maximizes profis by choice of p Thefachahisvariabledoesnohave an index, i, reflecs ha all firms ha have he opporuniy o reopimize in period solve hesameproblem,andhencehavehesamesoluion Differeniaing is profi funcion, muliplying he resul by p + E X j=, rearranging, and scaling e obain: βξp j A +j [ p X,j s +j ]=, here A +j is exogenous from he poin of vie of he firm: A +j = ψ z +,+jy +j X,j Afer rearranging he opimizing inermediae good firm s firs order condiion for prices, e obain, p = E P j j= βξp A +j s +j P E j = Kf, j= βξp A +j X,j F f say, here X K f j E βξp A +j s +j F f = E j= j βξp A +j X,j j=

11 These objecs have he folloing convenien recursive represenaions: # π,+ E "ψ z,y + + βξ π p F f + F f = + π,+ E ψ z,y + s + βξ p K f + K f = Turning o he aggregae price index: π + P = = Z P i di ( λf ) λ ξp P f + ξ p ( π P ) ( λf ) (E) Afer dividing by P and rearranging: ³ ξ π, p π =( p ) (E2) ξ p This complees he derivaions of opimal decisions ih respec o firms price seing F Opimal Wage Seing in he Medium-sized Model The objecive funcion ih he subsiued labor demand funcion looks as follos: ³ λ W π,+i π,+ E j (βξ ) i W +i H +i [ A L Ã! λ W π,+i π,+ +υ +i W π,+i π,+ H +i ] W +i Recalling he scaling of variables, (B2), e have here W π,+i π,+ = W π,+i π,+ W +i +i z +i + P +i ³ W W /W = +i z + P X,i = W +i z + X,i P ³ W /W = +i X,i = π,+i π,+,i> π +i π +i π + μ z +,+i μ z +,+ =, X,i = +i X,i, (F) (F2)

12 I is ineresing o invesigae he value of X,i in seady sae, as i Thus, In seady sae, X,i = (π π +i ) κ (π i ) ( κ) μ i z + π +i π +i π + μ z +,+i μ z +,+ X,i = (πi ) κ (π i ) ( κ) μ i z + = π i μ i z + Simplifying using he scaling noaion, ³ λ E j (βξ ) i +i X,i H +i [ A L or, or, E j +υ +i W +i +i X,i λ X,i H+i ], +i ³ λ E j (βξ ) i +i X,i H +i [ A L λ +ψ z,+i + X,i X,i H+i ], +i (βξ ) i [ A L +ψ z,+i + λ + ³ λ +i X,i H +i λ X,i X,i H+i ] +i λ () Differeniaing ih respec o, ³ λ E j (βξ ) i +i X,i H +i [ A L λ ( + φ) λ () +ψ z,+i λ λ + X,i X,i H+i ]= +i Dividing and rearranging, Ã! λ E j (βξ ) i [ A L X,i H+i +i + ψ z +,+i λ λ () X,i X,i H+i ]= +i (F3) 2

13 Solving for he age rae: () = E j E j P ³ λ (βξ ) i A L +i X,i H +i P ³ λ (βξ ) i ψ z +,+i λ X,i +i X,i H +i here K, = E j F, = E j = A LK, F, Ã! λ (βξ ) i X,i H+i +i (βξ ) i ψ λ z +,+i X,i X,i H+i λ +i Thus, he age se by reopimizing households is: AL K, = F, We no express K, and F, in recursive form: or, K, = E j () Ã (βξ ) i X,i +i + βξ π κ π ( κ) μ z + + π + μ z +,+ = H Ã +(βξ ) 2 + K, = H λ H+i! λ +2 (π π + ) κ (π 2 ) ( κ) μ 2 z + π +2 π + μ z +,+2μ z +,+ π κ + E βξ π ( κ) μ z + + π + μ z +,+ +βξ + π κ + π ( κ) μ z + +2 π +2 μ z +,+2 λ H+! λ H +2 λ () {H + H+2 + } = H = H π κ + βξ E π ( κ) μ z + + π + μ z +,+ + βξ E π,+ π,+ λ () K,+, λ () K,+ (F4) 3

14 using, Also, or, F, = E j π,+ = W + W = +z + +P + z + P = +μ z+,+π + = ψ z +, H λ +βξ ψ z +,+ λ (βξ ) i ψ λ z +,+i X,i X,i H+i λ +i + +(βξ ) 2 ψ z +,+2 + Ã λ λ π κ +2 λ (π π + ) κ (π 2 ) ( κ) μ 2 z + π +2 π + μ z +,+2μ z +,+ π κ μ z + π + μ z +,+! + λ H +2 + λ H+ F, = ψ z +, H λ +βξ + λ π κ λ + π κ +βξ +2 +} = ψ z +, H + βξ λ π κ μ z + π + μ z +,+ + π κ μ z + π +2 μ z +,+2 + π,+ π,+ + λ { ψ z +,+ + λ + λ F,+, λ H + ψz +,+2 λ H +2 so ha F, = ψ + λ z +, + π,+ H + βξ λ E F,+ (F5) π,+ We obain a second resricion on using he relaion beeen he aggregae age rae and he age raes of individual households: ³ W = ( ξ ) W + ξ ( π, W ) Dividing boh sides by W and rearranging, = ³ ξ π, π, ξ λ 4

15 Subsiuing, ou for from he household s firs order condiion for age opimizaion: A L ³ ξ π, π, ξ λ () F, = K, We no derive he relaionship beeen aggregae homogeneous hours orked, H, and aggregae household hours, h Z h j, dj Subsiuing he demand for h j, ino he laer expression, e obain, h = Z Wj, H W = (W ) λ = ẘ λ H, λ H dj Z (W j, ) λ dj (F6) here Also, W = ẘ W W, W = Z ³ λ ( ξ ) W (W j, ) λ dj λ ³ λ + ξ π, W λ λ This complees he derivaions of he opimal age seing G The Wage-Phillips Curve in he Medium-Sized Model The household faces he folloing demand for he j h ype of labor: By (G), Here,ehaveused, h +i = h,j = W W,j λ H Ã! λ λ W +i H +i = X,i H+i W +i +i W W, W z + P, W +i = W π,+ π,+i, (G) (G2) (G3) 5

16 and Reriing (??), or, using, e have Bu, E X E ( X,i = (βξ ) i υ +i P +i z + +i X (βξ ) i ψ z +,+i π,+i π,+ π +i π +i π + μ z +,+i μ z +,+ i> i = " W +ih +i h # P +i z +i + A +i L ( + φ) υ +i P +i z +i + ψ z +, = υ P z +, " W +i h +i h # P +i z +i + A +i L ( + φ) ψ z +,+i Then, E X W +ih +i P +i z + +i ³ W W /W h +i = P z + X,i = h +ix,i λ = X,i H+i X,i +i ³ λ λ (βξ ) i ψ z +,+i +i X,i X,i H+i X,i A L +i ( + φ) ψ z +,+i Differeniaing ih respec o, or () H +i X λ E (βξ ) i λ ψ z,+i[ + + X,i H+i X,i λ +i ³ λ λ +i X,i () H +i ( + φ) A L ] λ ( + φ) ψ z +,+i E X (βξ ) i ψ z +,+ih +i X,i λ MRS +i, (G4) Here, MRS+i in (G4) denoes he (scaled) cos of orking for he marginal orker in period + i hoseageasreopimizedinperiod and no again reopimized in periods +,+2,, + i : h φ MRS+i A +i L 6 ψ z +,+i

17 According o (G4), he union seeks o se he age o a markup, λ, overhecosoforking of he marginal orker, on average We no expand (G4) abou a seady sae in hich =,χ,i =,X,i =, for all i, = λ MRS, π = π, π, = πμ z +, π,+ = πμ z + I is convenien o obain some preliminary resuls Noe, ½ ( κ ˆπ ˆX,i = κ ˆπ +i ) ˆμ z +,+i + +ˆμ z +,+ i> i = ½ ( κ ˆπ ˆχ,i =,+ + + κ ˆπ,+i ) i> i = \MRS +i = ˆψ z +,+i + φĥ +i + φ ³ĥ +i Ĥ +i here Also, from (G2), ½ ĥ +i Ĥ +i = We have = λ κ ˆπ + ˆπ + κ ˆπ, κ ˆπ,+i ˆπ,+ κ ˆπ λ λ (ŵ κ ˆπ,+ κ ˆπ,+i ) i> λ λ ŵ i = φ ŵ +(βξ λ ) φ λ (ŵ κ ˆπ,+ ) λ +(βξ ) 2 φ λ (ŵ κ ˆπ,+ κ ˆπ,+2 ) λ +(βξ ) 3 φ λ (ŵ κ ˆπ,+ κ ˆπ,+2 κ ˆπ,+3 ) λ + φ λ ŵ φ λ (βξ βξ λ λ βξ ) κ ˆπ,+ φ λ (βξ λ βξ ) 2 κ ˆπ,+2 φ λ (βξ λ βξ ) 3 κ ˆπ,+3 Using he las expression, e can rie he discouned sum of he marginal cos of orking as follos: S MRS, (βξ ) i \MRS +i = S o, + φ λ [ŵ S, ] (G5) λ βξ Here, S o, S, h i (βξ ) i ˆψ z +,+i + φĥ +i = ˆψ z +, + φĥ + βξ S o,+ (G6) (βξ ) i κ ˆπ,+i = βξ κ ˆπ,+ + βξ S,+ i= 7 (G7)

18 The folloing expression is also useful: S X, = (βξ ) i ˆX,i = βξ i= (βξ ) i ˆμ z +,+i κ ˆπ +i i= (G8) βξ = ˆμz βξ +,+ κ ˆπ + + βξ S χ,+ Because he objec in square brackes in (G4) is zero in seady sae, he expansion of (G4)doesnorequireexpandingheexpressionousidehesquarebracke Takinghisand = λ MRS ino accoun, he expansion of (G4) is: = b +ŵ + SX, S MRS, (G9) βξ We no deduce he resricion across ages implied by he aggregae age index Using heageupdaingequaionandhefachanon-opimizingunionsareselecedarandom, heaggregaeageindexreduceso: ³ W = ( ξ ) W + ξ ( π, W ) Divide by W and use (G3): =( ξ )( ) π, + ξ π, Log-linearize his expression abou seady sae, o obain: ŵ = ξ κ ˆπ, ξ Replace S MRS, in (G9) using (G5) and hen subsiue ou for ŵ using he previous expression: ξ b + κ ˆπ, + S X, (G) βξ βξ ξ = S o, + φ λ ξ κ ˆπ, φ λ S, λ βξ ξ λ βξ Muliply (G) evaluaed a +by βξ and subrac he resul from (G) evaluaed a o obain: ξ b βξ βξ b + + ( κ ˆπ, βξ βξ ξ κ ˆπ,+ ) +(S X, βξ S X,+ ) = (S o, βξ S o,+ )+φ λ ξ ( κ ˆπ, βξ λ βξ ξ κ ˆπ,+ ) φ λ (S, βξ λ βξ S,+ ) 8

19 Simplify his expression using (G6), (G7) and (G8): ξ b βξ βξ b + + ( κ ˆπ, βξ βξ ξ κ ˆπ,+ ) (G) βξ ˆμz βξ +,+ + κ ˆπ + = ˆψ z +, + φĥ + φ λ ξ ( κ ˆπ, βξ λ βξ ξ κ ˆπ,+ ) φ λ βξ λ βξ κ ˆπ,+ The relaionship beeen age and price inflaion, he change in he real age and echnology groh is given by: b = b +ˆπ, ˆπ ˆμ z, (G2) + Then, ˆπ = b b +ˆπ, ˆμ z +, κ ˆπ ˆπ κ ˆπ = b b +ˆπ, ˆμ z +, κ ˆπ = b b + κ ˆπ, ˆμ z +, Use his o subsiue ou for κ ˆπ + in (G): ξ b βξ βξ b + + ( κ ˆπ, βξ βξ ξ κ ˆπ,+ ) βξ b b + + κ ˆπ,+ βξ = ˆψ z +, + φĥ + φ λ ξ ( κ ˆπ, βξ λ βξ ξ κ ˆπ,+ ) φ λ βξ λ βξ κ ˆπ,+ Collecing erms in b, b +, ˆπ,, ˆπ,+ : βξ βξ b βξ b + βξ βξ βξ βξ ξ + φ λ ξ κ ˆπ, βξ ξ λ βξ ξ βξ [ ξ + βξ φ λ βξ ξ βξ ξ βξ λ βξ ξ φ λ βξ λ βξ ] κ ˆπ,+ = ˆψ z +, + φĥ 9

20 or, ξ φ λ βξ ξ λ κ ˆπ, = ˆψ z +, + φĥ b + βξ βξ ξ φ λ λ κ ˆπ,+ Le κ = ( ξ )( βξ ) ξ Muliply he previous expression by κ and rearrange: φ λ κ ˆπ, = κ ³ ˆψ + φĥ λ z+, b + φ λ β κ ˆπ,+ λ 2

Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano

Technical Notes for Discussion of Eggertsson, What Fiscal Policy Is Effective at Zero Interest Rates? Lawrence J. Christiano Tecnical Noes for Discussion of Eggersson Wa Fiscal Policy Is Effecive a Zero Ineres Raes? Larence J Crisiano Te model a as simulaed for e discussion is presened in e firs secion Te simulaion sraegy is

Διαβάστε περισσότερα

A Suite of Models for Dynare Description of Models

A Suite of Models for Dynare Description of Models A Suie of Models for Dynare Descripion of Models F. Collard, H. Dellas and B. Diba Version. Deparmen of Economics Universiy of Bern A REAL BUSINESS CYCLE MODEL A real Business Cycle Model The problem of

Διαβάστε περισσότερα

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation

A note on deriving the New Keynesian Phillips Curve under positive steady state inflation A noe on deriving he New Keynesian Phillips Curve under posiive seady sae inflaion Hashma Khan Carleon Univerisiy Barbara Rudolf Swiss Naional Bank Firs version: February 2005 This version: July 2005 Absrac

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

Notes on New-Keynesian Models

Notes on New-Keynesian Models Noes on New-Keynesian Models Marco Del Negro, Frank Schorfheide, FRBNY DSGE Group Sepember 4, 202 Please do no circulae Smes & Wouers Chrisiano, Eichenbaum, & Evans. Define he problem, FOCs, and equilibrium

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication

Mark-up Fluctuations and Fiscal Policy Stabilization in a Monetary Union: Technical appendices not for publication Mark-up lucuaions and iscal Policy Sabilizaion in a Moneary Union: Technical appendices no for publicaion M. W. J. B Universiy of Amserdam and CEP J Universiy of Copenhagen, CEP and EPU July, 003 Mailing

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

is the home less foreign interest rate differential (expressed as it

is the home less foreign interest rate differential (expressed as it The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu

Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu Produc Innovaion and Opimal Capial Invesmen under Uncerainy by Chia-Yu Liao Advisor Ching-Tang Wu Insiue of Saisics, Naional Universiy of Kaohsiung Kaohsiung, Taiwan 8 R.O.C. July 2006 Conens Z`Š zz`š

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

& Risk Management , A.T.E.I.

& Risk Management , A.T.E.I. Μεταβλητότητα & Risk Managemen Οικονοµικό Επιµελητήριο της Ελλάδας Επιµορφωτικά Σεµινάρια Σταύρος. Ντεγιαννάκης, Οικονοµικό Πανεπιστήµιο Αθηνών Χρήστος Φλώρος, A.T.E.I. Κρήτης Volailiy - Μεταβλητότητα

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι. Ιανουάριος 2012

ΑΣΚΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι. Ιανουάριος 2012 ΑΣΚΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Ιανουάριος 202 (Οι σημειώσεις αυτές είναι σε κάθε περίπτωση επικουρικές και σε καμμία περίπτωση δεν υποκαθίστουν τις διαλέξεις και τα φροντίστηρια. Επίσης δεν περιέχουν

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

A Baseline DSGE Model

A Baseline DSGE Model A Baseline DSGE Moel Jesús Fernánez-Villavere Duke Universiy, NBER, an CEPR Juan F. Rubio-Ramírez Duke Universiy an Feeral Reserve Bank of Alana Ocober 10, 2006 1 1. Inroucion In hese noes, we presen a

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological

Διαβάστε περισσότερα

Internet Appendix for Uncertainty about Government Policy and Stock Prices

Internet Appendix for Uncertainty about Government Policy and Stock Prices Inerne Appendix for Uncerainy abou Governmen Policy and Sock Prices ĽUBOŠ PÁSTOR and PIETRO VERONESI This Inerne Appendix provides proofs and addiional heoreical resuls in suppor of he analysis presened

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Technical Appendix. Uncertainty about Government Policy and Stock Prices

Technical Appendix. Uncertainty about Government Policy and Stock Prices Technical Appendix o accompany Uncerainy abou Governmen Policy and Sock Prices Ľuboš Pásor Universiy of Chicago, CEPR, and NBER Piero Veronesi Universiy of Chicago, CEPR, and NBER July 8, 0 Conens. Learning

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Analiza reakcji wybranych modeli

Analiza reakcji wybranych modeli Bank i Kredy 43 (4), 202, 85 8 www.bankikredy.nbp.pl www.bankandcredi.nbp.pl Analiza reakcji wybranych modeli 86 - - - srice - - - per capia research and developmen dynamic sochasic general equilibrium

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem. 5 TRIGONOMETRIC FORMULAS FOR SUMS AND DIFFERENCES The fundamental trignmetric identities cnsidered earlier express relatinships amng trignmetric functins f a single variable In this sectin we develp trignmetric

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts / / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα